集成电路的现状和后摩尔时代

集成电路的现状和后摩尔时代
集成电路的现状和后摩尔时代

摘要:集成电路是信息社会经济发展的基石。通过对集成电路发展规律的分析,从集成电路的设计、制造、新产品研发和市场动态等方面,描述了集成电路的最新动态;探讨了集成电路的发展趋势;指出集成电路与其它学科、技术的结合,不断形成新的研究方向;新材料、新结构、新器件不断涌现,特征尺寸继续缩小,摩尔定律仍然起作用。

关键词:集成电路;微电子技术;摩尔定律;标准加工线;系统集成芯片中Abstract:Integrated circuit is the base of economic development of an informati on society. By analyzing the development law of IC’s, recent progresses in t he design and fabrication of IC’s are described, as well as the R & D ofnew products and market trends. The latest development trend of IC’s is discussed. It is pointed out that, by combining with other subjects and technologies, new research topics are emerging. With the advent of novel materialsstructures and devices, the feature size of integrated circuits ke eps scaling down, and the Moore’s law still works.

Key words: Integrated c ircuit; Microelectronics; Moore’s law; Foundry; SOC

1 引言

集成电路和软件是信息社会经济发展的基石和核心。正如美国工程技术界最近评出20世纪世界20项最伟大工程技术成就中第五项电子技术时提到,/从真空管到半导体、集成电路,已成为当代各行各业智能工作的基石。集成电路是最能体现知识经济特征的典型产品之一。目前,以集成电路为基础的电子信息产业已成为世界第一大产业。随着集成电路技术的发展,整机与元器件之间的明确界限被突破,集成电路不仅成为现代产业和科学技术的基础,而且正创造着代表信息时代的硅文化[1]。

2 集成电路的发展

2.1 市场及其发展

30多年来,集成电路市场成长迅速,基本上是一条指数发展规律。随着科学技术的进步,集成电路在电子产品销售额中所占的份额逐年提高。目前,集成电路在整机中的应用,以计算机(PC)最大,通讯次之,第三位是消费类电子[2]。集成电路的发明人J. Kilby认为:集成电路产业一向是通过寻找新的应用领域发展起来的,如计算器、数字手表、PC、手机等,而每一种产品销售量都比前一种高出一个数量级。21世纪,在移动中随时随地获取信息和处理信息成为把握先机而制胜的法宝。如果说前20年PC是集成电路发展的驱动器,那么,后20年主要的驱动器应该是与因特网结合的可移动袖珍实时信息处理设备,其核心是数字信号处理器[3]。

20世纪90年代前半期,IC技术和市场发展的推动力是PC;进入后半期,手机成为仅次于PC的第二大推动力;进入21世纪,汽车将成为IC技术发展的新动力。据日本野村证券金融研究所推算,2008-2009年,车载IC市场将超过PC。汽车电子已成为半导体业界的另一热点。微机电系统(MEMS)市场需求数量未来两年会达到约45%的复合成长率;美国使用微机电组件的比例,预计将从现在的每人低于2件增长到2007年每人超过6件。

2.2 产业格局与结构

集成电路产业的发展是市场牵引和技术推动的结果。集成电路根本的生命力在于它可以大批量、低成本和高可靠地生产。集成电路芯片价格约为101~102美元,而集成电路生产线的投资高达10~15亿美元(200 mm,0.18Lm),即109美元。要想赢利,产量必须在107~108量级。集成电路是整机高附加值的倍增器,但它并不是最终产品,如果它不能在整机和系统中应用,那它既不能吃,也不能用,就没有价值,更谈不上高附加值。这就决定了集成电路产业的建设必须首先考虑整机和系统应用的发展,即市场的需求。只有在市场足够大的情况下,才能开始建设芯片生产厂。

2.3 Foundry建设

集成电路的加工正在向Foundry模式转变。我国台湾的台积电公司(TSMC)于1987年最早建成Foundry。现在全世界Foundry服务做得最好的都是华人,主要代表是中国台湾的TSMC、联电UMC、中芯国际SMIC、新加坡的特许半导体公司等,全世界67%的Foundry业务集中在东南亚。Foundry的建设必须采用系统工程的方法,使其具备多进多出功能,即能接受行为描述级、逻辑级、版图级等不同层次的电路设计输入,可以有硅片级、封装后成品级等输出。因此,Foundry要有自己的设计服务部和掩膜版制作部,并与封装厂和测试厂建立固定的战略同盟;提供多种工艺模块,以适应不同电路设计的加工需要;把适应自身生产线加工的标准工艺以单元库和IP库的形式提供给客户,并不断提升和扩展;在管理上要做好服务,要在世界各地和全国各地建立自己的服务站点[4]。

3 集成电路动态

3.1 设计技术

3.1.1 R芯片—可重构芯片设计

随着IC产品的多样化和产品周期的缩短,新型逻辑的IC需要越来越旺盛,一种被称为可重构芯片(Reconfigurable Chip,简称R芯片,也称为变色龙芯片)设计技术受到关注。与通用处理器设计不同的是,这种芯片能够根据产品的目的和功能而改变自身逻辑电路。

3.1.2 结构化ASIC方法

ASIC设计中最新的趋势表明,越来越多的公司将在较高成本、基于标准单元的ASIC与高性能、灵活的FPGA之间进行折中。客户会被结构化ASIC方法的更快上市时间和更低流片成本吸引。对于标准ASIC来说,0.13Lm到0.09Lm 的流片费用比结构化ASIC高两倍多,上市时间也从18个月缩短到10个月。Fujitsu表示,结构化ASIC将减少50%的芯片开发时间,降低约30%的非经常性工程成本。

3.1.3 适应计算—新的手机芯片设计技术[5]

采用适应计算(Adaptive Computing)技术,软件能有效地刷新芯片的实线电

路。相对现在固定不变的常用芯片,不仅能使单个芯片实现通常需要几个芯片才能实现的功能,而且还能提高芯片速度,节约成本和提高能效。然而,适应计算仍是一个有争议的概念,硅谷一些设计师就对它持有怀疑态度,但英特尔(Intel)对此充满信心,还专门召开了有关适应计算的大会;IBM也对此芯片充满信心,还与德国芯片巨头英飞凌(Infineon)一同联手。

3.1.4 设计中应用更多IP核

ARM是一家站在芯片产业链最顶端的公司,因为它是全球领先的16/32位嵌入式RISC芯片技术方案供应商,其芯片体系已成为全球标准,超过100家著名IT企业正在使用ARM的技术,市场份额超过70%。ARM公司出售的是基于其架构的技术授权和解决方案,是知识产权(IP)。ARM公司2001年两亿多美元的营业额中,50%属于专利授权费用,这是客户采用ARM设计专利时需一次性付出的费用;20%来自专利使用费;14%至17%是销售设计工具所得;剩下的来自设计顾问服务和培训支持服务。

3.2 新产品开发

目前,芯片制造技术上采用更大尺寸的硅晶片(300 mm);采用铜线互连技术替代铝线技术;进一步缩小芯片内部特征尺寸(采用90 nm甚至65 nm的制造技术)。集成电路中的新技术、新产品不断涌现。比如,Intel公司发布了集成4亿只晶体管的新款Itanium 2,Xilinx公司以300 mm晶圆90 nm工艺推出了现场可编程门阵列(FPGA);Actel公司推出了新一代抗辐射FPGA;M-Systems发布了世界上最小的1 GB多级单元闪存;苹果公司推出了全球首款64位台式PC/Power Mac G50;Agere Sys-tems公司发布了业界首款0.25Lm锗硅(SiGe)前置放大器;CreeMicrowave公司推出了A/B级10W碳化硅(SiC)MESFET;英飞凌采用SiGe:C 双极技术,成功开发出110 GHz以上的高速分频IC等等。

从2000年美国总统克林顿宣布了国家纳米计划(National Nanotech Initiative)以来,美国政府在纳米技术的研发上已经投入了约20亿美元;欧盟在2002-2006年,投入10亿美元以上,进行纳米技术研究;日本纳米技术预算也从1997年的1.2亿美元提高到2002年的7.5亿美元[6]。

目前,最新的移动处理器采用的是28/32nm制造工艺,这是我们都知道的一

件事情,比如已经曝光的三星Cortex-A15架构处理器Exyn5250。不过,28nm 肯定不是移动处理器制造工艺的终点,有消息称,三星正准备在新建的工厂内准备20nm甚至14nm的芯片,而高通和NVIDIA也正在和台积电商量它们的下一代移动处理器。

同ARM阵营相比,Intel在芯片制造工艺上无疑要领先许多:现在已经达到了22nm工艺,不过目前只是针对桌面电脑以及笔记本电脑处理器。不过,在新召开的一个工业大会上,英特尔宣布,计划将22nm工艺引入到即将问世的智能手机以及平板电脑芯片中。

4 集成电路的发展趋势

集成电路已进入超深亚微米时代,体硅CMOS的批量生产已采用90 nm工艺、300 mm晶圆;65nm工艺也即将量产化;集成电路的发展仍以继续追求高频、高速、高集成度、多功能、低功耗为目标。

4.1 器件的特征尺寸继续缩小

从纵向看,在新技术的推动下,集成电路自发明以来四十年间,集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小2倍。这就是由Intel公司创始人之一的Gordon E. Moore博士1965年总结的规律,被称为摩尔定律。基于市场竞争,不断提高产品的性能/价格比是IC技术发展的动力,缩小特征尺寸,从而提高集成度,是提高产品性能/价格比最有效的手段之一。

据国际半导体技术发展路线图(ITRS,2002年修订)[7],预计到2016年,将生产出特征尺寸为22nm的CMOS电路,实际栅长为9 nm的MPU和RAM。集成电路正在接近其物理极限,同时,受工艺加工极限和经济承受力的制约,到底什么尺度是其极限呢?目前仍无定论,其微细化的方向仍有很大发展空间,集成电路技术仍然遵从摩尔定律快速发展。

随着IC设计与工艺技术水平的不断提高,IC规模越来越大,复杂程度越来越高。目前,已经可以在一个芯片上集成108~109个晶体管,而且随着集成电路制造技术的发展,21世纪的集成电路技术将从目前的3G(G=109)时代逐步发展到3T(T=1012)时代,即存储容量由G位发展到T位、集成电路的速度由GHz发

展到THz,数据传输速率由Gb-ps发展到Tbps(bits per second)。IC技术是近50年来发展最快的技术,设计规则从1959年以来缩小了140倍,而平均晶体管价格降低了107倍。如果小汽车也按此速度降价,那么现在小汽车的价格不到1美分。

4.2 集成电路发展的机遇与挑战

从横向看,集成电路与其它学科和技术相结合,形成新的方向,新的学科或专业,不断改变着传统专业分工的格局。这种技术结合融合的趋势,对集成电路来说,就是越来越复杂的片上系统(SOC,Sys-tem on Chip)。

SOC的概念在不断发展。ITRS2002年修订版表明:2000年以前已经实现了逻辑电路、SRAM、FLASH、E-DRAM、CMOS RF的SOC;2001年,实现了FPGA与FeRAM(铁电存储器)的SOC;接着实现了MEMS、化学传感器和集成光电器件的SOC;预计到2006年,将实现集成生物电子器件的SOC[8]。

SOC的发展在国内外引起高度重视,正在开展建立针对各种应用的SOC技术平台的研究,努力推进SOC的发展和应用。如面向通讯的综合信息处理SOC 平台,第三代移动通讯SOC平台;高速的信息安全SOC平台,高清晰度电视SOC平台及家庭网络SOC平台等[9]。这一广阔的发展方向有着十分重要的意义和应用前景。MEMS的发展非常迅速。1988年,美国一批著名科学家提出/小机器、大机遇,并呼吁美国应当在这一重大领域发展中走在世界的前列;1993年,美国ADI公司将加速度计与IC集成在一起,成功地将MEMS加速度计商品化,并大批量应用于汽车防撞气囊,标志着MEMS技术走向商品化。MEMS的发展将对人类生产和生活方式产生革命性的影响,已引起了广泛的关注。

伴随着集成电路技术发展从一维模式向多维模式转变,对物理学基础理论提出了挑战,也对物理学研究提出了新的更高要求。进入到纳米尺度,集成电路技术面临着系列物理限制的挑战,有来自于基本物理规律的物理极限,也有材料、技术、器件、系统和传统理论方面物理挑战。一是基本物理规律挑战。计算机处理信息是一个进行布尔逻辑运算的过程,涉及到布尔逻辑间的转换。计算机或集成电路处理

信息过程是一个物理过程,需满足物理规律限制[10]。包括电磁学、量子力

学测不准、热力学限制。这些是不可逾越的集成电路技术的物理极限。二是材料方面的挑战。传统微电子材料硅衬底、二氧化硅、多晶硅和金属导电材料等无法满足集成电路技术发展需要,需要寻找新材料。三是技术方面的挑战。传统的集成电路的光学光刻工艺、离子注入工艺等快接近物理极限,器件无法进一步缩小,需寻找新工艺方法和途径,包括新一代的替代光刻工艺等。四是器件方面的挑战。按摩尔定律预测,MOS 器件开关仅需少数几个电子参与,MOS 器件经典理论将不适用,须采用新器件结构和新器件工作原理。五是系统方面的挑战。包括互连延迟、系统散热问题等挑战。在集成电路实现光互连,尚有许多基础物理和技术问题需解决[11]。六是传统物理理论的挑战。传统微电子学理论的挑战。微电子学大部分理论基础是基于经典物理理论,需利用量子力学理论等。

上述来自理论与技术层面对集成电路的挑战,需要在多方面下功夫,首先应积极适应集成电路技术的多维发展模式。其次是通过克服在材料、技术、物理基础方面遇到的挑战,按特征尺寸按比例缩小途径发展。其三是发展纳米结构的自组装技术等。其四是将纳米低维材料与集成电路技术结合,开发新型纳米电路。其五是研究量子器件,发展量子逻辑运算等。其六是将集成电路技术形成新学科和技术领域,提高处理信息和应用信息能力,提高社会信息化程度。

2010 年,全球印制电路产业走出金融危机影响,进入新一轮增长期,中国是增长最快国家之一。作为电子信息产业基础和支撑产业的与集成电路密切相关的PCB 产业,我国表现出稳固发展态势,在全球所占分量快速攀升,产量、产值、利税总额均大幅度增长。中国已成为全球最大的PCB 生产国。

随着市场对集成电路与相关软件的巨大需求,使得国家把此技术提升为国家战略层面优先发展成为可能,这也是集成电路技术面对的巨大机遇。我国集成电路产业快速发展,产业规模迅速扩张,技术水平不断提升,推动国家信息化建设。但与国际先进水平比,我国集成电路产业发展基础较薄弱,科技创新和发展能力不强,应用开发水平待提高,产业链待完善等。

国家在不久前颁布专门文件,全方位为集成电路产业提供政策。在财税政策方面,集成电路设计企业从事信息系统集成、咨询和运营维护,集成电路设计等业务,免征营业税;对集成电路线宽小于0.25微米或投资额超过80 亿元的集成电路生产企业,实行所得税"五免五减半"优惠政策;新办集成电路设计企业,

享受企业所得税"两免三减半"优惠政策。在投融资政策方面,地方政府设立集成电路企业发展的股权投资基金或创业投资基金,引导社会资金投资集成电路产业;建立贷款风险补偿机制,积极推动集成电路企业利用知识产权等无形资产进行质押贷款。在研究开发政策方面,国家积极支持集成电路重大关键技术研发,加快具有自主知识产权技术的产业化和推广应用;重点支持高端芯片、集成电路装备和工艺技术、集成电路关键材料、关键应用系统的研发。

4.3 新材料、新结构、新器件不断涌现

集成电路以Si/CMOS为主流高速发展的同时,新材料、新结构、新器件不断涌现。如绝缘体上硅(SOI),Ge/Si异质结和应变Si器件及FeRAM等。由于SOI具有无闩锁、高速、低耗、抗辐射的优良性能,不但在军事上,而且在民用方面也很有前景,已成为研发高性能电路(如CPU)的重要技术,并被认为会成为0.1Lm CMOS的主要技术。Ge/Si异质结器件由于其高速特性,已成为在射频领域及在Si和GaAs之间性/价比最合适的应用。Fe-RAM因其快速、低功耗、非挥发、长寿命、耐辐射等优势而发展迅速。宽禁带的SiC、GaN和AlN等,由于其宽禁带、高击穿电压、抗辐射性能好等特点,其异质结器件在高频、高温、大功率方面具有很好的应用前景,已引起广泛重视,成为研究热点,尽管形成产业尚待时日,但仍是值得注意的发展方向。

5 后摩尔时代

集成电路产业经过50多年的发展,产业技术链不断发展变化,产业结构逐渐细化,分工越来越细致。集成电路制造环节仍然遵循着摩尔定律快速向前发展,延续摩尔定律的先导技术研究依然是全球热点。芯片制造技术从45纳米拓展到32纳米和22纳米,而硅晶圆片的最大尺寸将达到450毫米(18英寸),进一步降低成本、节约能源,这些均对制造装备和工艺提出新的要求。自从集成电路发明以来,芯片已无可辩驳地成为电子电路集成的基本形式。从那以后,集成度增加的速度就按照摩尔定律的预测稳步前进。摩尔定律的预测在未来若干年依然有效的观点目前仍被普遍接受。

然而,芯片制造的实践表明,制造尺寸的缩小会遇到各种技术挑战,其中有

属于不可逾越的物理限制。一个同样被广泛认同的观点是,芯片的尺寸缩小碰到物理限制,则物理定律将使摩尔定律最初描述的发展趋势停止。根据摩尔定律“芯片的集成度每18个月至2年提高一倍,即加工线宽缩小一半”,人们普遍推测,在这一定律的描述下的摩尔定律时代还能延续十几年。提出该定律的摩尔本人也曾公开表示十几年以后,摩尔定律将很难继续有效,因为硅材料的加工极限一般认为是10纳米线宽,受物理原理的制约,小于10纳米后不太可能生产出性能稳定、集成度更高的产品。

目前,全球集成电路技术的发展呈现出以下趋势:一是基于经济因素的考虑,决定放弃超小型化制造技术的芯片厂日益增多;二是超小型化制造技术的发展仍在延续,但不会持续很长时间。日本索尼公司半导体和元件研究组首席执行官兼副社长中川裕曾指出,利用超小型化技术不能生产出独具特色的半导体产品,也不能带来更多的附加值。

当集成电路制造愈接近摩尔定律极限时,全球半导体产品将进入微利时代。自20世纪50—60年代起,集成电路产品从小规模集成电路逐渐发展到现在的特大规模集成电路,整个集成电路产品的发展经历了传统的板上系统到片上系统的过程。在这一历史过程中,世界集成电路产业为适应技术的发展和市场的需求,其产业结构经历了三次变革。第一次变革是加工制造为主导的集成电路产业发展的初级阶段;第二次变革体现为以制造加工为主的代工型公司与专注芯片设计的集成电路设计公司分离发展;第三次变革则出现“四业分离”的集成电路产成长经历了从进口—国内生产—出口三个阶段,如果把这一过程用曲线绘成图形,在一个以横轴为年代、纵轴为市场的坐标图上,这三个阶段就如三只大雁在飞翔。

在过去的近半个世纪,世界集成电路产业经历了两次产业“拓展”:第一次在20世纪70年代末,从美国“拓展”到了日本,造就了富士通、日立、东芝、NEC 等世界顶级的集成电路制造商;第二次在20世纪80年代末,韩国与我国台湾地区成为集成电路产业的主力,继美国、日本之后,韩国成为世界第三个半导体产业中心。

目前,凭借巨大的市场需求、较低的生产成本、丰富的人力资源,以及稳定的经济发展和优越的政策扶持等众多优势条件,中国已经成为集成电路制造、消费大国,亚洲制造从某种程度上正被“中国制造”取代。未来,随着全球集成电

路制造技术的发展和制造成本等条件的变化,以及中国集成电路产业技术能力的提升,集成电路传统制造业将呈现出产业再次向外“拓展”的趋势,由中国等发展中国家向后发展中国家逐步“拓展”。

集成电路产业的发展进步不仅仅只与技术相关,还涉及到经营理念的转变、发展模式的转型和发展路径的创新,是全局性、战略性的庞大系统工程,我们有理由相信,对产业发展规律充分的认识,完善、有效的产业发展政策支撑体系和产业规划将对实现中国集成电路产业的健康发展必将起到重要的推动作用。

6 结束语

不断提高性价比是集成电路产品迅速发展的动力。在今后几年,集成电路的特征尺寸将继续缩小,摩尔定律仍然在起作用。同时,集成电路与其它学科、技术结合,形成新的方向、新的学科或专业,不断改变着传统专业分工的格局。集成电路与系统之间的明确界限已被突破,集成电路不仅成为现代产业和科学技术的基础,也成为当代各行各业智能工作的基石。

参考文献:

[1]张兴,黄如,刘晓彦.微电子学概论[M].:北京大学出版社,2000.

[2]中国半导体工业协会编译.国际半导体技术发展路线图[M].(2002年修订版). 2003.

[3]董云庭. 2003~2004年中国电子信息产业回顾与展望[J].电子产品世界,2004,(21): 8-14.

[4]莫大康.全球半导体工业发展漫笔[J].电子产品世界,2004,(21): 20-24.

[5] The Proceedings of the Symposium of IC China[M].Shanghai, China, 2003.

[6] https://www.360docs.net/doc/f111570544.html,[EB/OL].

[7] .intel.[EB/OL].

[8] . altera./ SOPCWorldAsia[EB/OL].

[9]王阳元,黄如,刘晓彦,等.面向产业需求的21世纪微电子技术的发展[J].中国集成电路,2004,(6): 407-413.

[10]中国集成电路设计分会年会论文集[M].中国,,2005.

[11] Khan A. Recent developments in high-performance

system-on-chip IC design[A]. Proc IEEE ICICDT[C]. Austin, TX, USA. 2004. 151-158.

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

集成电路封装的发展现状及趋势

集成电路封装的发展现 状及趋势 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

序号:39 集成电路封装的发展现状及趋势 姓名:张荣辰 学号: 班级:电科本1303 科目:微电子学概论 二〇一五年 12 月13 日

集成电路封装的发展现状及趋势 摘要: 随着全球集成电路行业的不断发展,集成度越来越高,芯片的尺寸不断缩小,集成电路封装技术也在不断地向前发展,封装产业也在不断更新换代。 我国集成电路行业起步较晚,国家大力促进科学技术和人才培养,重点扶持科学技术改革和创新,集成电路行业发展迅猛。而集成电路芯片的封装作为集成电路制造的重要环节,集成电路芯片封装业同样发展迅猛。得益于我国的地缘和成本优势,依靠广大市场潜力和人才发展,集成电路封装在我国拥有得天独厚的发展条件,已成为我国集成电路行业重要的组成部分,我国优先发展的就是集成电路封装。近年来国外半导体公司也向中国转移封装测试产能,我国的集成电路封装发展具有巨大的潜力。下面就集成电路封装的发展现状及未来的发展趋势进行论述。 关键词:集成电路封装、封装产业发展现状、集成电路封装发展趋势。 一、引言 晶体管的问世和集成电路芯片的出现,改写了电子工程的历史。这些半导体元器件的性能高,并且多功能、多规格。但是这些元器件也有细小易碎的缺点。为了充分发挥半导体元器件的功能,需要对其进行密封、扩大,以实现与外电路可靠的电气连接并得到有效的机械、绝缘等

方面的保护,防止外力或环境因素导致的破坏。“封装”的概念正事在此基础上出现的。 二、集成电路封装的概述 集成电路芯片封装(Packaging,PKG)是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连线,引出接线端并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。此概念称为狭义的封装。 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。封装为芯片提供了一种保护,人们平时所看到的电子设备如计算机、家用电器、通信设备等中的集成电路芯片都是封装好的,没有封装的集成电路芯片一般是不能直接使用的。 集成电路封装的种类按照外形、尺寸、结构分类可分为引脚插入型、贴片型和高级封装。 引脚插入型有DIP、SIP、S-DIP、SK-DIP、PGA DIP:双列直插式封装;引脚在芯片两侧排列,引脚节距,有利于散热,电气性好。 SIP:单列直插式封装;引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

集成电路产业发展现状与未来趋势分析

集成电路产业发展现状与未来趋势分析 一、概念介绍 集成电路,英文为Integrated Circuit,缩写为IC;顾名思义,就是把一定数量的常用电子元件,如电阻、电容、晶体管等,以及这些元件之间的连线,通过半导体工艺集成在一起的具有特定功能的电路。 为什么会产生集成电路?我们知道任何发明创造背后都是有驱动力的,而驱动力往往来源于问题。那么集成电路产生之前的问题是什么呢?我们看一下1942年在美国诞生的世界上第一台电子计算机,它是一个占地150平方米、重达30吨的庞然大物,里面的电路使用了17468只电子管、7200只电阻、10000只电容、50万条线,耗电量150千瓦。 显然,占用面积大、无法移动是它最直观和突出的问题;如果能把这些电子元件和连线集成在一小块载体上该有多好!我们相信,有很多人思考过这个问题,也提出过各种想法。典型的如英国雷达研究所的科学家达默,他在1952年的一次会议上提出:可以把电子线路中的分立元器件,集中制作在一块半导体晶片上,一小块晶片就是一个完整电路,这样一来,电子线路的体积就可大大缩小,可靠性大幅提高。 这就是初期集成电路的构想,晶体管的发明使这种想法成为了可能,1947年在美国贝尔实验室制造出来了第一个晶体管,而在此之前要实现电流放大功能只能依靠体积大、耗电量大、结构脆弱的电子管。晶体管具有电子管的主要功能,并且克服了电子管的上述缺点,因此在晶体管发明后,很快就出现了基于半导体的集成电路的构想,也就很快发明出来了集成电路。杰克·基尔比(Jack Kilby)和罗伯特·诺伊斯(Robert Noyce)在1958~1959期间分别发明了锗集成电路和硅集成电路。 集成电路又称芯片,是工业生产的“心脏”,其技术水平和发展规模已成为衡量一个国家产业竞争力和综合国力的重要标志之一。 二、集成电路产业分类 集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。 集成电路按制作工艺可分为半导体集成电路和膜集成电路,膜集成电路又分类厚膜集成电路和薄膜集成电路。 集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。

集成电路行业分析

集成电路行业分析 集成电路产业的技术水平和产业规模已成为衡量一个国家产业竞争力和综合国力的重要标志。 行业概述: 从1958年第一块集成电路发明开始,至今近60年的发展历程中,全球IC 产业经历了起源壮大于美国,发展于日本,加速于韩国以及我国台湾地区的过程,目前整个产业又有向中国大陆地区转移的迹象。 狭义集成电路行业产业链包括芯片设计、制造、封装和测试等环节,各个环节目前已分别发展成为独立、成熟的子行业。按照芯片产品的形成过程,集成电路设计行业是集成电路行业的上游。集成电路设计企业设计的产品方案,通过代工方式由晶圆代工厂商和封装测试厂商完成芯片的制造和封装测试,然后将芯片产成品作为元器件销售给电子设备制造厂商。芯片加工处于芯片产业的中游,封装测试属于芯片行业的体力活。 广义的集成电路行业产业链包括集成电路制造设备(北方华创)、加工时用的特种材料(如强力新材:专业生产晶圆生产过程用的光刻胶引发剂),以及制造本身要用的材料(如:宁波江丰电子材料股份有限公司(非上市公司)专门从事超大规模集成电路芯片制造用超高纯金属材料及溅射靶材的研发生产,南大光电主要从事光电新材料MO源的研发、生产和销售,是全球主要的MO源生产商。MO 源即高纯金属有机源,是制备LED、新一代太阳能电池、相变存储器、半导体激光器、射频集成电路芯片等的核心原材料)。

(1)集成电路设计:集成电路设计企业处于产业链上游,主要根据电子产品及设备等终端市场的需求设计开发各类芯片产品。集成电路设计水平的高低决定了芯片产品的功能、性能和成本。 (2)晶圆制造:晶圆制造是指晶圆的生产和测试等步骤。 晶圆是指硅半导体集成电路制作所用的硅晶片,由于其形状为圆形,故称为晶圆;在硅晶片上可加工制作成各种电路元件结构,而成为有特定电性功能之IC 产品。 晶圆生产是指晶圆制造厂接受版图文件(GDS 文件),生产掩膜(Mask),并通过光刻、掺杂、溅射、刻蚀等过程,将掩膜上的电路图形复制到晶圆基片上,从而在晶圆基片上形成电路。一款芯片由晶体管、电容、电阻等各种元件及其相互间的连线组成,这些元件和互连线通过研磨、抛光、氧化、离子注入、光刻、外延生长、蒸发等一整套平面工艺技术,在一小块硅单晶片上逐层制造而成。 晶圆测试(CP 测试)是指在测试机台上采用探针卡(Probe Card)并利用测试向量对每一颗裸片的电路功能和性能进行测试的过程。 (3)集成电路封装测试:经过CP 测试的晶圆再经过减薄、切割后,可以进行封装、成品测试从而形成芯片成品。 芯片封装包括包括晶圆切割、上芯、键合、封塑、打标、烘烤等过程。芯片封装使芯片内电路与外部器件实现电气连接,在芯片正常工作时起到机械或环境保护的作用,保证芯片工作的稳定性和可靠性。 成品测试是利用测试向量对已封装的芯片进行功能和性能测试的过程。经过成品测试后,即形成可对外销售的芯片产品。

国内外集成电路产业的差距及其发展设想

国内外集成电路产业的差距及其发展设想 摘要:集成电路产业是一个国家现代工业的基础,在国民经济和国防建设中有举足轻重的地位。本文首先回顾了世界集成电路的发展历程以及中国集成电路的发展状况,然后先在集成电路产业的三个部分—设计业,制造业,封装测试业分析了中外的技术差距,之后又从集成电路的创新性,研发投入,人才层面,产业结构等方面进行了分析。最后对世界集成电路的未来发展提出了自己的设想。 关键词:集成电路,发展设想,中国集成电路产业,中外技术差距 集成电路产业是信息产业的核心和灵魂,是信息化和网络化时代的基石。集成电路产业在国民经济和国防建设中具有举足轻重的地位,它是大国竞争的焦点,是国民经济发展的“倍增器”,其对传统产业的改造是提升传统产业竞争力的重要途径。同时,集成电路产业是知识密集、技术密集和资金密集型产业,世界集成电路产业发展异常迅速,技术进步日新月异我国正处在信息化加速发展的时期,信息产业发展进入到由大到强转变的新阶段,迫切需要加快做强集成电路产业,为做大做强信息产业,保障国家信息安全提供支撑。因此,集成电路产业的发展对我国具有重大战略意义。 一.集成电路简介及其发展历程 集成电路是在微电子学的基础上,将晶体管等有源元件和电阻、电容等无源元件,按照一定电路“集成”在一起,完成特定的电路或功能的系统。集成电路技术包括半导体材料及器件物理,集成电路及系统的设计原理和技术,芯片加工工艺、功能和特性测试技术等。集成电路按功能可分为:数字集成电路、模拟集成电路、微波集成电路及其他集成电路,其中,数字集成电路是近年来应用最广、发展最快的集成电路品种 集成电路的发展是在应用需求的基础上,依托一系列的创新发展起来的。它的发展一直遵循摩尔定律,即在集成电路的单个芯片上集成的元件数,即集成电路的集成度,每18个月增加一倍.即集成度每三年翻两番.特征尺寸缩小1.414倍,而且集成电路芯片的需求量也以相同的速度增加,在集成电路性能提高的同时价格下降。 集成电路的发展分为三个阶段。 第一阶段:晶体管的发明极大地推动了当时集成电路技术的发展。美国TI公司的J S Kilby 于1958年9月12日在实验室实现了第一个集成电路震荡器的演示实验,标志着集成电路的诞生。在集成电路的第一阶段发展过程中,平面技术的发明是推动集成电路产业化的关键技 术基础。现代平面技术包括氧化、扩散、薄膜生长和 光刻刻蚀等技术。其中光刻技术是另一关键技术。光 刻是一种精密的表面加工技术,目前集成电路技术中 主流的光刻技术加工的线条宽度已在超深亚微米量 级。同时,集成电路的设计也有了极大发展推动了它 的发展。微处理器的发明是集成电路设计一个具有里 程碑意义的事件。现在大规模集成电路的设计多以EDA为工具进行电路的设计。 第二阶段:在这一阶段中,集成电路按摩尔定律以特征尺寸缩小、集成度增加的一维方式发展。光刻技术的进一步改进对特征尺寸的按比例缩小起了关键作用。此外,铜互连技术的发明对这一阶段的发展也起到了重要作用。在传统集成电路中主要采用铝导线互连工艺。物理分析表明,采用铜替代铝作为互连后,无沦是电路的性能还是可靠性都得到显著的改善。但由于一些关键的技术和物理州题一直得不到解决,人们对铜互连只能停留在“望梅止渴”的阶段。直到大马士革工艺的发明才真正使铜互连技术成为现实。

我国集成电路封装测试行业的研究

中国集体经济 CHINA COLLECTIVEECONOMY 势、消除劣势、抓住机会、规避威胁。 (一)内部环境分析 1.农村信用社的优势。(1)地域优势;(2)政策优势;(3)决策优势;(4)网点优势;(5)人员优势。 2.农村信用社的劣势。(1)历史包袱重,不良资产占比高;(2)规模小,风险管理能力低;(3)经营区域受限;(4)人员素质仍是短板;(5)金融创新能力不足;(6) 市场定位仍不明确。 (二)外部环境分析 1.机会。(1)支农惠农政策为农信社提供了更广阔的发展空间;(2)当地社会影响力大;(3)行业管理水平的提高,有力 推动了农信社的发展。 2.威胁。(1)行业竞争者多,同业竞争压力大;(2)宏观经济下行,客户违约风险增加;(3)利率市场化进程的推进增加了农信社的财务压力和经营风险;(4)人才流失仍是重要威胁;(5)影子银行的威胁。 (三)农信社的SWOT 分析 首先制定出农信社的SWOT 矩阵,如表1所示。 将SWOT 矩阵进行分解,对SO ———优势与机会、WO ———劣势与机会、ST ——— 优势与威胁、WT ———劣势与威胁等条件进行分析,并根据分析找出相应的可选择的目标市场。 1.基于SO 战略应确定的贷款目标市 场:利用地域、网点、人员优势,挖掘、深耕各类个人贷款市场;利用地域、网点、人员、决策优势,做好公司贷款的拓展。 2.基于WO 战略应确定的贷款目标 市场:拓展全部个人贷款市场,增加积累,消化不良;积极介入公司贷款市场中的中小微企业市场,但根据自身风险管理能力以及资本的承受能力,要做好单户额度的控制,大型企业谨慎进入;受风险管理水平、人员素质制约,企业贷款市场以流动资金贷款市场为主,固定资产贷款市场谨慎进入;受风险管理水平、人员素质制约,贸易型公司谨慎进入。 3.基于ST 战略应确定的贷款目标市 场:全部个人贷款市场。一方面提高服务水平,提高客户贷款便利度,另一方面强化风险控制;企业贷款市场中的中小微企 业,但要注意行业风险,做好成本测算;大型企业贷款市场谨慎进入,避免议价能力不足,降低资金运用效率;生产加工型企业贷款市场要提高风险管控意识;铺底性流动资金贷款市场以及固定资产贷款市场谨慎进入。 4.基于WT 战略应确定的贷款目标 市场:出于风险管理、风险承受能力以及资金收益考虑,大型公司贷款市场应谨慎进入;企业贷款市场中的中小微企业,但要注意行业风险,做好成本测算;生产加工型企业贷款市场要提高风险管控意识;铺底性流动资金贷款市场以及固定资产贷款市场谨慎进入。 通过SWOT 分析,得出农信社应确定的目标市场:积极拓展个人贷款市场,但要提高贷款便利度,加强风险控制;将公司类贷款市场中的中小微企业作为重要的市场目标,但要根据自身风险管理能力以及资本的承受能力,做好单户额度的控制。要注意防范行业风险。企业固定资产贷款市场、铺底性流动资金贷款市场等要谨慎进入;出于风险管理、风险承受能力以及资金收益率考虑,大型公司类贷款市场要谨慎进入。总之,农信社应选择个 人及中小微企业贷款市场为目标市场,但要控制中小企业的单户额度限制,求小、求散。 (作者单位:山东省农村信用社联合社) 摘要:近年来,集成电路封装测试行业技术进步较快,行业发展也十分迅速,一些内资和本土品牌企业的质量、技术和产能已经接近国际先进水平。未来国内集成电路封测市场增长前景广阔,但也需要应对各种挑战。国内封测企业必须进一步增强技术创新能力、加大成本管控,才能在日新月异的市场竞争中取得更大进步。 关键词:技术进步;行业发展前景;经营模式;核心竞争力 一、集成电路封装测试的技术进步封装测试是集成电路制造的后续工艺,为了使集成电路芯片的触点能与外界电路如PCB 板连接,也为了给芯片加上一个“保护壳”,防止芯片受到物理或化学损坏,需要对晶圆芯片的进一步加工,这一环节即封装环节。测试环节则是对芯片电子电路功能的检测确认。 集成电路封装技术发展历程大约可以分为三个阶段:第一阶段是1980年之 前的通孔插装(THD)时代,插孔直接安装到PCB 上,主要形式包括TO(三极管)、 DIP(双列直插封装),优点是可靠、散热好、结实、功耗大,缺点是功能较少,封装密度及引脚数难以提高,难以满足高效自动化生产的要求。 第二阶段是1980年代开始的表面贴装(SMT )时代,该阶段技术的主要特点是引线代替针脚,引线采用翼形或丁形,以两边或四边引线封装为主,从两边或四边表1 农信社的SWOT 矩阵 优势(S ) 劣势(W ) 机会(O )SO 战略 发挥优势,把握机会 WO 战略 利用外部机会,弥补内部劣势 威胁(T ) ST 战略 发挥优势,规模外部威胁 WT 战略减少劣势,规避威胁 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 我国集成电路封装测试行业的研究 ■ 尤晟 张燕 53

集成电路的发展现状和方向

集成电路的发展现状和方向近几年,中国集成电路产业取得了飞速发展。中国集成电路产业已经成为全球半导体产业关注的焦点,即使在全球半导体产业陷入有史以来程度最严重的低迷阶段时,中国集成电路市场仍保持了两位数的年增长率,凭借巨大的市场需求、较低的生产成本、丰富的人力资源,以及经济的稳定发展和宽松的政策环境等众多优势条件,以京津唐地区、长江三角洲地区和珠江三角洲地区为代表的产业基地迅速发展壮大,制造业、设计业和封装业等集成电路产业各环节逐步完善。 2006年中国集成电路市场销售额为4862.5亿元,同比增长27.8%。其中IC 设计业年销售额为186.2亿元,比2005年增长49.8%。 2007年中国集成电路产业规模达到1251.3亿元,同比增长24.3%,集成电路市场销售额为5623.7亿元,同比增长18.6%。而计算机类、消费类、网络通信类三大领域占中国集成电路市场的88.1%。 目前,中国集成电路产业已经形成了IC设计、制造、封装测试三业及支撑配套业共同发展的较为完善的产业链格局,随着IC设计和芯片制造行业的迅猛发展,国内集成电路价值链格局继续改变,其总体趋势是设计业和芯片制造业所占比例迅速上升。 (一)集成电路产业规模快速扩大 1998年我国集成电路产量达到22.2亿块,销售规模为58.5亿元。 到2007年,我国集成电路产量达到411.7亿块,销售额为1251.3亿元,10年间产量和销售额分别扩大18.5倍与21倍之多,年均增速分别达到38.3%与 40.5%,销售额增速远远高于同期全球年均6.4%的增速。 (二)设计、制造和封装测试业三业并举,半导体设备和材料的研发水平和生产能力不断增强,产业链基本形成 经过30年的发展,我国已初步形成了设计、芯片制造和封测三业并举、较为协调的发展格局,产业链基本形成。2001年我国设计业、芯片制造业、封测业的销售额分别为11亿元、27.2亿元、161.1亿元,分别占全年总销售额的5.6%、13.6%、80.8%,产业结构不尽合理。最近5年来,在产业规模不断扩大的同时,IC产业结构逐步趋于合理,设计业和芯片制造业在产业中的比重显著提高。到2007年我国IC设计业、芯片制造业、封测业的销售额分别为225.5亿元、396.9亿元、627.7亿元,分别占全年总销售额的18.0%、31.7%、50.2%。 半导体设备材料的研发和生产能力不断增强。在设备方面,100纳米等离子刻蚀机和大角度等离子注入机等设备研发成功,并投入生产线使用。随着国产太阳能电池制造设备的大量应用,近几年国产半导体设备销售额大幅增长。在材料方面,已研发出8英寸和12英寸硅单晶,硅晶圆和光刻胶的国内生产和供应能力不断增强。 (三)技术水平快速提升 技术创新能力不断提高,与国外先进水平差距不断缩小。从改革开放之初的3英寸生产线,发展到目前的12英寸生产线,IC制造工艺向深亚微米挺进,研发了不少工艺模块,先进加工工艺已达到80nm。封装测试水平从低端迈向中高端,在SOP、PGA、BGA、FC和CSP以及SiP等先进封装形式的开发和生产方面取得了显著成绩。IC设计水平大大提升,设计能力小于等于0.5微米企业比例已超过60%,其中设计能力在0.18微米以下企业占相当比例,部分企业设计水平已经达到90nm的先进水平。设计能力在百万门规模以上的国内IC设计企业比例

集成电路的发展与应用

粉体(1)班学号:1003011020 集成电路技术的发展与应用 摘要: 集成电路(Integrated Circuit,简称IC)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”(也有用文字符号“N”等)表示。 关键词:集成电路模拟集成电路电子元件晶体管发展应用集成电路对一般人来说也许会有陌生感,但其实我们和它打交道的机会很多。计算机、电视机、手机、网站、取款机等等,数不胜数。除此之外在航空航天、星际飞行、医疗卫生、交通运输、武器装备等许多领域,几乎都离不开集成电路的应用,当今世界,说它无孔不入并不过分。 在当今这信息化的社会中,集成电路已成为各行各业实现信息化、智能化的基础。无论是在军事还是民用上,它已起着不可替代的作用。 一、集成电路的定义、特点及分类介绍 1、什么是集成电路:所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体 工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。[1] 2、集成电路的特点:集成电路或称微电路(microcircuit)、微芯片(microchip)、 芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜(thin-film)集成电路。另有一种厚膜(thick-film)混成集成电路(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到衬底或线路板所构成的小型化电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 3、集成电路的分类: (1)按功能结构分类:集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大系。

微电子技术的发展

什么是集成电路和微电子学 集成电路(Integrated Circuit,简称IC):一半导体单晶片作为基片,采用平面工艺,将晶体管、电阻、电容等元器件及其连线所构成的电路制作在基片上所构成的一个微型化的电路或系统。 微电子技术 微电子是研究电子在半导体和集成电路中的物理现象、物理规律,病致力于这些物理现象、物理规律的应用,包括器件物理、器件结构、材料制备、集成工艺、电路与系统设计、自动测试以及封装、组装等一系列的理论和技术问题。微电子学研究的对象除了集成电路以外,还包括集成电子器件、集成超导器件等。 集成电路的优点:体积小、重量轻;功耗小、成本低;速度快、可靠性高; 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向; 衡量微电子技术进步的标志要在三个方面:一是缩小芯片器件结构的尺寸,即缩小加工线条的宽度;而是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功一这种组件为基础的混合组件; 1958年美国的杰克基尔比发明了第一个锗集成电路。1960年3月基尔比所在的德州仪器公司宣布了第一个集成电路产品,即多谐振荡器的诞生,它可用作二进制计数器、移位寄存器。它包括2个晶体管、4个二极管、6个电阻和4个电容,封装在0.25英寸*0.12英寸的管壳内,厚度为0.03英寸。这一发明具有划时代的意义,它掀开了半导体科学与技术史上全新的篇章。 1960年宣布发明了能实际应用的金属氧化物—半导体场效应晶体管(metal-oxide-semiconductor field effect transistor ,MOSFET)。 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路; 由于MOS电路在高度集成和功耗方面的优点,70年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费事和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 微电子发展状态与趋势 微电子也就是集成电路,它是电子信息科学与技术的一门前沿学科。中国科学院王阳元院士曾经这样评价:微电子是最能体现知识经济特征的典型产品之一。在世界上,美国把微电子视为他们的战略性产业,日本则把它摆到了“电子立国”的高度。可以毫不夸张地说,微电子技术是当今信息社会和时代的核心竞争力。 在我国,电子信息产业已成为国民经济的支柱性产业,作为支撑信息产业的微电子技术,近年来在我国出现、崛起并以突飞猛进的速度发展起来。微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 1.微电子发展状态 1956年五校在北大联合创建半导体专业:北京大学、南京大学、复旦大学、

浅谈我对微电子的认识

[键入公司名称] 浅谈我对微电子的认识 [键入文档副标题] X [选取日期] [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

我是电子信息科学与技术专业的学生,考虑到微电子对我们专业知识学习的重要性,我怀着极大的热情报了《微电子入门》这门选修课。希望通过这门课的学习,使我对微电子有更深入的认识,以便为以后的专业课学习打下基础。 微电子是一门新兴产业,它的发展关系着国计民生。它不仅应用于科学领域,也被广泛应用于国防、航天、民生等领域。它的广泛应用,使人们的生活更见方便。现代人的生活越来越离不开电子。因此,对电子的了解显得十分重要。微电子作为电子科学的一个分支,也发挥着日益重要的作用。通过几周的学习,我对微电子有了初步的认识。 首先,我了解了微电子的发展史,1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。1964年出现了磁双极型集成电路产品。 1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。 70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺

国内集成电路的现状发展

国内集成电路的现状及发展 作者:崔建红 单位:山东工商学院邮政编码:264000 摘要:集成电路是一种微型电子器件或部件,它的出现给电子行业带来了新的契机。从最初集成电路在我国发展以来,我国已取得了可喜的成就。但仍然面临资源利用率低,芯片与整机脱节,缺乏自我品牌,创新能力较弱等问题。我们都应采取有效的对策。在今后发展中加以解决,争取使我国由消费大国走向产业强国。 关键词:国内、集成电路、发展现状、措施、 Present Situation and Development of The Domestic Integrated Circuit Author:Cui Jianhong Unit:Shandong Institute of Business and Technology Zip Code:264000 Summary:IC is a miniature electronic devices or components, its appearance to the electronics industry has brought new opportunities. Since the initial IC has developed in our country , China has achieved gratifying achievements. But we still faces many problems,such as resource utilization is low, the chip out of the whole ,lack of our own brand, weak innovation capabilityand so on. We should take effective measures to solve them in future development and Striving to make our country join in industrial power by the country of consumption. Keyword:national, integrated circuits, development status, measures 一、集成电路的定义与特点 集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”(也有用文字符号“N”等)表示。 集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。

(完整版)微电子技术发展现状与趋势

本文由jschen63贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 微电子技术的发展 主要内容 微电子技术概述;微电子发展历史及特点;微电子前沿技术;微电子技术在军事中的应用。 2010-11-26 北京理工大学微电子所 2 2010-11-26 北京理工大学微电子所 3 工艺流程图 厚膜、深刻蚀、次数少多次重复 去除 刻刻蚀 牺牲层,释放结构 多 工艺 工工艺 2010-11-26 工 5 微电子技术概述 微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和;微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向;衡量微电子技术进步的标志要在三个方面:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 2010-11-26 北京理工大学微电子所 6 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功以这种组件为基础的混合组件; 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路;由于MOS电路在高度集成和功耗方面的优点,70 年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 2010-11-26 北京理工大学微电子所 7 微电子技术的发展特点 超高速:从1958年TI研制出第一个集成电路触发器算起,到2003年Intel推出的奔腾4处理器(包含5500 万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%;辐射面广:集成电路的快速发展,极大的影响了社会的方方面面,因此微电子产业被列为支柱产业。

我国集成电路产业的现状与发展机遇

毫配奠. i妻它量大面广、适销对路的产品。将以国家支持、地方组织、企业承担的模式来组为实现“十五”期间我国集成电路产业的快建,产、学、研、用相结合,按照现代股份企 塞发展,我们要认真业模式进行管理和运营,开展集成电路关键共性技抓好以F几项主要工作:术和核心产品的研发,增强自主创新能力,以促进1、进一步落实国务院18号文件,改善投资环我围成为集成电路工业强国这一宏伟日标的实现。竟,形成国家、民间和境外投入的多渠道投融资体5、加大关键设备和材料的研发。“十五”期剀,支持具备条件的企业优先上市.鼓励海外公问,我们要组织好O1微米工艺JH光刻机、高密度司、整机企业和其他行业向集成电路产业投资。等离子刻蚀机、高能离子注入机等关键设备的研2、加强知识产权保护,实施《集成电路布制,突破12英寸硅单晶技术,实现8英寸硅单晶 訇设计保护条例》,鼓励集成电路企业和研究单位及化学试剂、光刻胶、金丝、塑封料、引线框架 开发具有自主知识产权的产品和技术,使我们尽快等配套材料的批量生产,争取经过5年的努力使我 隆集成电路领域拥有一批自主的知识产权。国材料配套率达到30~50%。 3、加大产品开发力度,提高市场占有率,6、关于人才培养工作。“十五”期间,国 r十矗’’期间,以集成电路设计作为突破口,抓家将择优支持10家在微电了学及相关学科人才培养 庄市场需求旺盛的机遇,集中力量重点开发国内大方面具有实力的高等学校建立“国家集成电路人才 量需求的市场热点产品,提高自主开发能力。重视培养基地”,到“十五”末达到每年培养lOOO名 sOc技术和IP核的开发,从系统整机到集成电路设左右集成电路设计人才和200名左右工艺技术人才。计,形成具有自主知识产权的新一代技术与产品。当前正是我们引进海外人才回国【作的好时机,要4、建立研发中心,加强自主创新能力。根重点引进在企业管理、市场营销、技术创新等方面 据国务院文件的要求,遵照体制创新和机制创新的的技术与管理带头人,争取经过3—5年的努力,使 思路,建设l~2个开放式的研发中心,研发中心我国微电子人才严重短缺的问题得到缓解。 [上接弟2页) 产业快速健康发展做出贡献。着走向全球化升拓市场所带来的压力。希望作为信种种迹象显示,2004年世界半导体产业将摆脱息产业的核心和国民经济信息化的基础与集中体现低迷徘伽I局面步八新一轮发展周期,我国信息产业核心竞争力的集成电路产、【k把握好当前发展的历史的快速发展已经成为全球经济的亮点,同时也面临性机遇,勇于开拓、创新。 征稿启示 诚征围绕集成电路制造产业链的各栏目:“集成 电路制造技术”、“封装测试技术”以及包括设备材料领 域的“支撑技术”等,欢迎专家学者及生产一线工程技 术人员的稿件。

超大规模集成电路发展趋势

超大规模集成电路的设计发展趋势;摘要:随着信息产品市场需求的增长,尤其通过通信、;关键字:超大规模集成电路发展趋势SOCIP复用技;1引言;集成电路是采用半导体制作工艺,在一块较小的单晶硅;2超大规模集成电路发展的概述;集成电路之所以获得如此迅速的发展,与数据处理系统;1.改进性能;在计算机中采用高密度的半导体集成电路是减少信号传;2.降低成本;用Lsl替换 超大规模集成电路的设计发展趋势 摘要:随着信息产品市场需求的增长,尤其通过通信、计算机与互联网、电子商务、数字视听等电子产品的需求增长,世界集成电路市场在其带动下高速增长。本文主要从半导体电子学与计算技术工程方面进行进行的诸多研究成果以及国际集成电路的发展现状和发展趋势反映其在国际上的重要地位。 关键字:超大规模集成电路发展趋势 SOC IP复用技术 1 引言 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用IC(Integrated Circuit)表示。近廿多年来,半导体电子学的发展速度是十分惊人的。从分离元件发展为集成电路,从小规模集成电路发展为现代的超大规模集成电路。集成电路的性能差不多提高了3个数量级,而其成本却下降了同样的数量级。 2 超大规模集成电路发展的概述 集成电路之所以获得如此迅速的发展,与数据处理系统日益增长的各种要求是分不开的,也是半导体电子学与计算技术工程方面进行了许多研究工作的结果。这些工作可以概括为:(l)改进性能一尽可能减少信号处理的传递时间。(2)降低成本一从设计、制造、组装、冷却等各方而降低成本。(3)提高可靠性一减少失效率,增加检测与诊断的手段。(4)缩短研制/生产周期一加快从确定研制产品到产品可用之间的时间,使产品保持领先地位。(5)结构上的改进一半导体存储器的进展,推动了计算机体系的发展。 1.改进性能 在计算机中采用高密度的半导体集成电路是减少信号传递时间,提高机器性能的重要环节。因为在普通采用小规模集成电路(551)或中规模集成电路(MSI)的硬件结构中,信号传输与负载引起的延迟,与插件上的门的有效组装密度的平方根成正比,如图(1.1.1)。也就是说,组装延迟与每个门所需的有效面积的平方根成正比。因此将组装延迟减少一半的话,必须提高组装密度4倍。从 ssl/Msl发展为LSI/VLsl标志着芯片上元件的集成度得到了很大的提高。目

相关文档
最新文档