精品高中物理必修一牛顿运动定律知识点题型完美总结

精品高中物理必修一牛顿运动定律知识点题型完美总结
精品高中物理必修一牛顿运动定律知识点题型完美总结

精品高中物理必修一牛顿运动定律知识点题型完美

总结

It was last revised on January 2, 2021

牛顿运动定律一.课前自主回顾

知识点1:从亚里士多德到伽利略

1.亚里士多德的观点

亚里士多德把地面上的运动分为天然运动和受迫运动两类,他认为天然运动不需要力的维持,如气、火等轻的东西向上运动,重的东西向下运动;受迫运动需要力的维持,如拉动水平面上的桌子和推动桌子上的书,有外力推它,才能运动,外力消失,受迫运动也就停止。

2.伽利略的观点

在地面上运动的物体之所以会停下来,是因为摩擦力的缘故。

3. 伽利略对运动和力的关系的研究

(1)理想实验:

如图所示,让小球沿一个斜面从静止状态开始滚下,小球将滚上另一个斜面,如果没有摩擦,小球将上升到原来的高度,减小右斜面的倾角,小球在这个斜面上仍达到同一高度,但这时它要滚得远些,继续减小右斜面的倾角,球达到同一高度时就会运动的更远。于是他想到:若将右斜面放平,小球将会永远运动下去。

(2)实验结论:力不是维持物体运动的原因。

【例1】.伽利略的理想斜面实验说明()

A.可以不必具体做实验,只通过抽象分析就能得出结论

B.亚里士多德的运动和力的关系是错误的

C.力是维持物体运动的原因

D.力是改变物体运动状态的原因

知识点2:牛顿第一定律

1.牛顿第一定律的内容

一切物体总保持状态或状态,直到有迫使它改变这种状态为止。

2.惯性的概念

物体本身要保持不变的性质。

【注意】:

1.如何理解牛顿第一定律?

(1)明确了惯性的概念:定律的前半句话“一切物体总保持匀速直线运动状态

或静止状态”,揭示了物体所具有的一个重要的属性——惯性,即物体有保持匀速直线运动状态或静止状态的性质,牛顿第一定律指出一切物体在任何情况下都具有惯性。因此牛顿第一定律又叫惯性定律。

(2)确定了力的含义:定律的后半句话“直到有外力迫使它改变这种状态为

止”,实际上是力的定义,即力是改变物体运动状态的原因,并不是维持物体运动的原因,这一点要切实理解。

(3)定性揭示了力和运动的关系:牛顿第一定律指出物体不受外力作用时的运

动规律,它描述的只是一种理想状态,而实际中不受外力作用的物体是不存在的,当物体所受合外力为零时,其效果跟不受外力的作用相同。因此,我们可以把“不受外力作用”理解为“合外力为零”。

(4)牛顿第一定律不是实验定律,它是在理想实验的基础上总结出来的。

2.对惯性的理解

(1)惯性是物体本身的固有属性,一切物体都有惯性。

(2)物体的惯性是由物体的决定的,是物体惯性大小的唯一量度。

(3)惯性的表现形式:

①物体在不受外力或所受合外力为零的情况,惯性表现为保持原来的运动

状态不变,即原来静止的物体保持静止,原来运动的物体以原来的速度继续运

动下去。

②物体受到外力作用时,惯性表现为改变运动状态的难易程度。物体的质

量越大,惯性越大,运动状态越难改变;物体的质量越小,惯性越小,运动状

态越易改变。

(4)惯性不是力,惯性是物体保持原来运动状态的性质,是物体本身的属

性,而力是物体对物体的相互作用。

【例2】.关于牛顿第一定律,下列说法中正确的是()

A.牛顿第一定律是实验定律

B.牛顿第一定律说明力是改变物体运动状态的原因

C.惯性定律与惯性的实质是相同的

D.物体的运动不需要力来维持

【例3】.关于惯性,下列说法中正确的是()

A.物体只有静止或做匀速直线运动时才有惯性

B.速度越大的物体惯性越大

C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球

惯性减小为1/6

D.质量越大的物体惯性越大

【例4】.如图所示,在一辆表面光滑的足够长的小

车上,有质量为m1和m2的两个小球(m1>m2),两个小球

原来随车一起运动,当车突然停止时,如不考虑其他阻力,则两个小球() A.一定相碰B.一定不相碰

C.不一定相碰D.无法确定

知识点3:牛顿第二定律

1.牛顿第二定律的内容

物体的加速度跟所受的合力成,跟物体的质量成,加速度的方向跟方向相同。

2.牛顿第二定律的表达式:

(1)公式中的F为物体所受外力的合力,即合外力,而不是物体受到的某一个力或某个力的分力。

(2)公式中的a为物体实际运动的加速度,即合加速度。

【注意】:

如何理解牛顿第二定律?

A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度

B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同

C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的

D.合力变小,物体的速度一定变小

【例5】图中小球m处于静止状态,弹簧与竖直方向的夹角为θ,烧断BO绳的瞬间,试求小球m的加速度的大小和方向。

[思路点拨]求解该题可按如下思路分析:

分析烧断绳前后小球m的受力→求烧断绳后

小球的合力→

求出小球的

瞬时加速度

【例6】.一个质量为20 kg的物体,从斜面的顶端由静止匀加速滑下,物体与斜面间的动摩擦因数为,斜面与水平面间的夹角为37°。求物体从斜面下滑过程中的加速度。(g取10 m/s2)

知识点4:牛顿第三定律

1.牛顿第三定律的内容

两个物体之间的作用力(F)和反作用力(F′)总是大小相等、方向,且作用在。

2.牛顿第三定律的表达式

F=-F′,其中F、F′分别表示作用力与反作用力,“负号”表示作用力与反作用力的方向相反。

【注意】:

1.对牛顿第三定律的进一步理解

理解牛顿第三定律的关键是理解作用力与反作用力的关系。其关系如下:

(1)同时性:作用力和反作用力总是同时产生,同时变化,同时消失,没有先后之分。不能认为先有作用力,后有反作用力。

(2)同性质:作用力和反作用力一定是性质相同的力,如作用力是弹力,反作用力也是弹力;作用力是摩擦力,反作用力也是摩擦力。

(3)独立性:作用力和反作用力分别作用在两个不同的物体上,在两个物体上各自产生作用效果,这两个作用效果不能相互抵消。

(4)反向性:作用力与反作用力大小相等、方向相反,作用在同一直线上,这反映了力的矢量性,也反映了力的作用是相互的。

2.作用力和反作用力跟平衡力的区别与联系

A.马拉车时,只有马对车的拉力大于车对马的拉力时才能前进

B.物体A静止在物体B上,A的质量是B的质量的10倍,所以A作用于B的力大于B作用于A的力

C.轮船的螺旋桨旋转时向后推水,水同时给螺旋桨一个作用力

D.发射火箭时,燃料点燃后,喷出的气体给空气一个作用力,空气施加

的反作用力推动火箭前进

【例8】.如图所示,吊于电梯天花板上的物体处于静止状态,下列说法中正确的是()

A.绳对物体的拉力和物体对绳的拉力是作用力与反作用力B.物体的重力和物体对绳的拉力是一对平衡力

C.物体的重力与绳对物体的拉力是作用力与反作用力

D.物体的重力的反作用力作用在绳上

【例9】.一质量为m的人站在电梯中,电梯加速上升,加速度大小为1

3 g,g为重力加速度。人对电梯底部的压力大小为()

mg B.2mg

C.mg mg

知识点5:超重和失重

超重和失重的概念

(1)超重:物体对悬挂物的拉力(或对支持物的压力) 物体所受重力的现象。

(2)失重:物体对悬挂物的拉力(或对支持物的压力) 物体所受重力的现象。

(3)完全失重:物体对悬挂物的拉力(或对支持物的压力) 的现象。

【注意】:

(1)物体处于超重或失重状态时,物体对支持物的压力(或对悬挂物拉力)的大小与物体的重力大小不相等,但物体所受的重力并没有发生变化。

(2)物体处于超重或失重状态,与物体的速度大小、速度方向无关,只取决于物体的加速度方向:加速度方向则超重,加速度方向则失重。

(3)如果物体不在竖直方向上运动,只要其加速度在竖直方向上有分量,即

a y≠0,就存在超重、失重现象。当a y方向竖直向上时,物体处于超重状态。当

a y方向竖直向下时,物体处于失重状态。

(4)在完全失重状态下,通常由重力产生的一切物理现象都会完全消失,比如物体对桌面无压力,单摆停止摆动,浸在水中的物体不受浮力等。靠重力才能使用的仪器,也不能再使用,如天平、液体气压计等。

【例10】.关于超重和失重现象,下列说法正确的是()

A.超重就是物体所受的重力增加了

B.失重就是物体所受的重力减小了

C.完全失重就是物体一点重力都不受了

D.无论超重还是失重,物体所受重力都是不变的

【例11】.一质量为m=40 kg的小孩站在电梯内的体重计上。电梯从t=0时刻由静止开始上升,在0到6 s内体重计示数F的变化

如图所示。试问在这段时间内电梯上升的高度是多少。(取重力加速度g=10 m/s2)

二.重点知识题型总结。

(一).探究加速度与力、质量的关系

一、实验目的

探究加速度与力、质量的关系。

二、实验原理

1.影响物体加速度的因素

物体质量相同时,受到的合外力越大,加速度越大;受到的合外力越小,加速度越小。

物体所受合外力一定时,质量大的物体加速度小,质量小的物体加速度大。

2.F与a的求法

F的求法:小车质量越大,则小车所受拉力越接近砝码的重力。

a的求法:在小车上连接纸带,利用打点计时器在纸带上打点记录小车的运动情况,通过测量纸带上的点迹求出加速度的大小。

3.探究法——

加速度a和质量m、外力F都有关系。

先保持不变,测量物体在不同的力的作用下的加速度,分析加速度与力的关系;再保持不变,测量不同质量的物体在该力作用下的加速度,分析加速度与质量的关系。这种先控制某些参量不变,研究另两个参量之间变化关系的方法叫控制变量法。

三、实验器材

砝码,一端有定滑轮的长木板,细绳,纸带,导线,夹子,小盘,,小车,,,。

四、实验步骤

(1)用天平测出小车和小盘(包括其中砝码)的质量分别为M0、m0,并把数值记录下来。

(2)按图所示将实验器材安装好(小车上不系绳)。

(3)把,以平衡摩擦力。

(4)将小盘通过细绳系在小车上,接通电源放开小车,用纸带记录小车的运动情况;取下纸带并在纸带上标上号码及此时所挂小盘的重力m0g。

(5)保持小车的质量不变,改变小盘(包括其中砝码)的质量重复步骤(4)多做几次实验。每次小车从同一位置释放,并记录好相应纸带。

(6)保持小车所受合力不变,在小车上加砝码,并测出小车和放上砝码后的总质量M1,接通电源放开小车,用纸带记录小车的运动情况,取下纸带并在纸带上标上号码。

(7)继续在小车上加放砝码,重复步骤(6),多做几次实验,并记录好相应纸带。

五、数据处理

(1)把小车在不同力作用下产生的加速度填在下表中:

所示。

通过a-F关系图像,我们可以得出。

(2)把不同质量的小车在相同力作用下产生的加速度填在下表中:图3-2-2

由以上数据画出它的a-M图像及a-1

图像,如图甲、乙所示。

M

通过a-M和a-1

关系图像,我们可以得出。

M

六、注意事项

(1)平衡摩擦力时不要挂重物,整个实验平衡了摩擦力后,不管以后是改变盘和砝码的质量还是改变小车及砝码的质量,都不需要重新平衡摩擦力。

(2)实验中必须满足小车和砝码的质量远大于小盘和砝码的总质量。只有如此,砝码和小盘的总重力才可视为与小车受到的拉力相等。

(3)各纸带上的加速度都应是该纸带上的平均加速度。

(4)作图像时,要使尽可能多的点在所作直线上,不在直线上的点应尽可能地对称分布在所作直线两侧。离直线较远的点是错误数据,可舍去不予考虑。

(5)小车应靠近打点计时器,且先接通电源再放手。

七、误差分析

(1)质量的测量、纸带上打点计时器打点间隔距离的测量、细绳或纸带不与木板平行等都会造成误差。

(2)因实验原理不完善造成误差。本实验中用小盘及砝码的总重力代替小车受到的拉力(实际上小车受到的拉力要小于小盘及砝码的总重力),存在系统误差。小盘及砝码的总质量越接近小车的质量,误差就越大;反之,小盘及砝码的总质量越小于小车的质量,误差就越小。

(3)平衡摩擦力不准造成误差。

【例一】:“探究加速度与物体质量、物体受力的关系”的实验装置如图甲所示。

(1)在平衡小车与桌面之间摩擦力的过程中,打出了一条纸带如图乙所示。打点计时器打点的时间间隔为 s。从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离。该小车的加速度a=______m/s2。(结果保留两位有效数字)

(2)平衡摩擦力后,将5个相同的砝码都放在小车上。挂上砝码盘,然后每次从小车上取一个砝码添加到砝码盘中,测量小车的加速度。小车的加速度a 与砝码盘中砝码总重力F的实验数据如下表:

(3)根据提供的实验数据作出的a-F图线不通过原点。

请说明主要原因。

(二).牛顿运动定律的应用

专题一. 已知受力情况求运动状况

1).基本思路

2).解题步骤

(1)确定研究对象,对研究对象进行受力分析,并画出物体的受力图。

(2)根据力的合成与分解,求出物体所受的合外力(包括大小和方向)。

(3)根据牛顿第二定律列方程,求出物体运动的加速度。

(4)结合物体运动的初始条件,选择运动学公式,求出所需的运动学量——任意时刻的位移和速度,以及运动轨迹等。

3).应注意的问题

(1)正确的受力分析是解答本类题目的关键。

(2)若物体受两个力作用,用合成法求加速度往往要简便一些;若物体受三个或三个以上力作用时,要正确应用正交分解法求加速度。

【例一】:如图所示,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连。设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是()

A.向右做加速运动B.向右做减速运动

C.向左做加速运动D.向左做减速运动

【例二】:如图所示,轻弹簧下端固定在水平面上,一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是()

A.小球刚接触弹簧瞬间速度最大

B.从小球接触弹簧起加速度变为竖直向上

C.从小球接触弹簧到最低点的过程,小球的速度先增大后减小

D.从小球接触弹簧到最低点的过程,小球的加速度先减小后增大

专题二. 已知运动情况求受力状况

1).基本思路

运动情况分析运动学

公式求a

F=ma

求合力

求其他力

2).解题步骤

(1)确定研究对象,对研究对象进行受力分析和运动过程分析,并画出受力图和运动草图。

(2)选择合适的运动学公式,求出物体的加速度。

(3)根据牛顿第二定律列方程,求物体所受的合外力。

(4)根据力的合成与分解的方法,由合力求出所需的力。

3).应注意的问题

(1)由运动学规律求加速度,要特别注意加速度的方向,从而确定合外力的方向,不能将速度的方向和加速度的方向混淆。

(2)题目中所求的力可能是合力,也可能是某一特定的力,均要先求出合力的大小、方向,再根据力的合成与分解求分力。

【例一】:质量为t的电车,由静止开始做匀加速直线运动,经过8 s速度达到14.4 km/h,电车所受阻力为×103 N,求电车的牵引力大小。

专题三.牛顿运动定律在连接体问题中的运用

(1)两个或两个以上的物体相互连接参与运动的系统称为连接体,与连接体有关的问题被称为连接体问题。

(2)整体法适用于系统中各部分物体的加速度大小和方向相同的情况。隔离法对于系统中各部分物体的加速度大小、方向相同或不相同的情况均适用。

(3)当连接体的各部分加速度相同时,求加速度或合力,优先考虑“整体法”,如果还要求物体之间的作用力,再用“隔离法”。如果连接体中各部分加速度不同,一般选用“隔离法”。在实际应用中,应根据具体情况,灵活交替使用这两种方法,不应拘泥于固定的模式。常用的方法如下:

①先整体后隔离;

②先隔离后整体。

【例一】:如图3-2所示,两个用细线相连的位于光滑水平面上的物块,质量分别为m1和m2。拉力F1和F2方向相反,与细线在同一水平直线上,且F1>F2。试求在两个物块运动过程中细线的拉力T。

专题四牛顿运动定律与图像问题

(1)求解该类问题的思路是根据题目中给出的物理过程,利用图像分析研究对象的受力特点和运动性质,并利用牛顿运动定律求解。

(2)动力学中常见的图像有v-t图像、a-t图像、F-t图像、F-a图像等。

(3)利用图像分析问题时,关键是看清图像的纵、横坐标轴表示的物理量,弄清图像中斜率、截距、交点、转折点、面积等的物理意义。

【例一】:放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物块速度v与时间t的关系分别如图甲、乙所示。取重力加速度g=10 m/s2,由此两图像可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为()

A.m=0.5 kg,μ=B.m=1.5 kg,μ=2 15

C.m=0.5 kg,μ=D.m=1 kg,μ=

专题五牛顿第二定律的瞬时性问题

(1)两种基本模型:

①刚性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间。一般题目中所给细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。

②弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的。

(2)做变加速运动的物体,加速度时刻在变化(大小变化或方向变化或大小、方向都变化),与某一时刻所对应的加速度叫瞬时加速度。由牛顿第二定律知,加速度是由合外力决定的,即有什么样的合外力就有什么样的加速度相对应。当合外力恒定时,加速度也恒定,合外力随时间变化时,加速度也随时间改变,且瞬时力决定瞬时加速度,可见,确定瞬时加速度的关键是正确确定瞬时作用力。

【例一】:如图,轻弹簧上端与一质量为m的木

块1相连,下端与另一质量为M的木块2相连,整个

系统置于水平放置的光滑木板上,并处于静止状态。

现将木板沿水平方向突然抽出,设抽出后的瞬间,木

块1、2的加速度大小分别为a1、a2。重力加速度大小

为g。则有()

A.a1=0,a2=g B.a1=g,a2=g

C.a1=0,a2=m+M

M g D.a1=g,a2=

m+M

M g

【例二】:“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处,

从几十米高处跳下的一种极限运动。某人做蹦极运动,所受绳子拉力F的大小随时间t变化的情况如图19所示。将蹦极过程近似为在竖直方向的运动,重力加速度为g。据图可知,此人在蹦极过程中最大加速度约为() A.g B.2g

C.3g D.4g

三:课后强化训练

1.一物块静止在粗糙的水平桌面上。从某时刻开始,物块受到一方向不变的水平拉力作用。假设物块与桌面间的最大静摩擦力等于滑动摩擦力,以a表示物块的加速度大小,F表示水平拉力的大小。能正确描述F与a之间关系的图象是

2.如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行。在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受

到细线的拉力T和斜面的支持力为F N分别为

(重力加速度为g)

A.T=m(gsinθ+ a cosθ),F N=

m(gcosθ- a sinθ)

B.T=m(gsinθ+ acosθ),F N= m(gsinθ- acosθ)

C.T=m(acosθ- gsinθ),F N= m(gcosθ+ asinθ)

D.T=m(asinθ- gcosθ) ,F N= m(gsinθ+ acosθ)

3.如图甲所示,静止在水平地面的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的静摩擦力最大值f m与滑动摩擦力大小相等,则()

A.t2~t3时间内物块做减速运动

B.t2时刻物块A的加速度最大

C.t2时刻后物块A做反向运动

D.t3时刻物块A的动能最大

4.如图26所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。下列说法正确的是()

A.在上升和下降过程中A物体对B物体的压力一定为零

B.上升过程中A物体对B物体的压力大于A物体受到的重力

C.下降过程中A物体对B物体的压力大于A物体受到的重力

D.在上升和下降过程中A物体对B物体的压力等于A物体受到的重力5.如图所示,质量分别为M和m的物块由相同的材料制成,且M>m,将它们用通过轻而光滑的定滑轮的细线连接。如果按图甲装置在水平桌面上,两物块刚好做匀速运动。如果互换两物块按图乙装置在同一水平桌面上,它们的共同加速度大小为()

g g

g D.上述均不对

6.如图所示,一物体m从某曲面上的Q点自由滑下,通过一粗糙的静止传送带后,落到地面P点。若传送带的皮带轮沿逆时针方向转动起来,使传送带也随之运动,再把该物体放在Q点自由下滑,则() 图3

A.它仍落在P点B.它将落在P点左方

C.它将落在P点右方D.无法确定落点

7.如图所示,ad、bd、cd是竖直面内三根固定的光滑细杆,每根杆上套着一个小滑环(图中未画出),三个滑环分别从a、

b 、

c 处释放(初速度为零),用t 1、t 2、t 3依次表示各滑环达到

d 点所用的时间,则( )

A .t 1<t 2<t 3

B .t 1>t 2>t 3

C .t 3>t 1>t 2

D .t 1=t 2=t 3

8.如图所示,劲度系数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变。用水平力,缓慢推动物体,在弹性限度内弹簧长度被压缩了x 0,此时物体静止。撤去F 后,物体开始向左运动,运动的最大距离为4x 0。物体与水平面间的动摩擦因数为μ,重力加速度为g 。则

A .撤去F 后,物体先做匀加速运动,再做匀减速

运动

B .撤去F 后,物体刚运动时的加速度大小为g m kx μ-0

C .物体做匀减速运动的时间为2g

x μ0 D .物体开始向左运动到速度最大的过程中克服摩擦力做的功为)(0k mg

x mg μμ-

9.摩天大楼中一部直通高层的客运电梯,行程超过百米.电梯的简化模型如图1所示.考虑安全、舒适、省时等因素,电梯的加速度a 是随时间t 变化的,已知电梯在t =0时由静止开始上升,a ─t 图像如图2所示.

电梯总质量m =×103kg .忽略一切阻力,重力加速度g 取10m /s 2.

(1)求电梯在上升过程中受到的最大拉力F 1和最小拉力F 2;

(2)类比是一种常用的研究方法.对于直线运动,教科书中讲解了由υ─t 图像求位

移的方法.请你借鉴此方法,对比加速度和速度的定义,根据图2所示a ─t 图像,求电梯在第1s 内的速度改变量Δυ1和第2s 末的速率υ2;

(3)求电梯以最大速率上升时,拉力做功的功率P ;再求在0─11s 时间内,拉力和

重力对电梯所做的总功W .

10.某飞机场利用如图所示的传送带将地面上的货物运送到飞机上,传送带与地面的夹角θ=30°,传送带两端A 、B 之间的长度L =10 m ,传送带以v =5 m/s 的恒定速度向上运动。在传送带底端轻轻放上一

质量m =5 kg 擦因

数μ=32。求货物从A 端运送到B 端所需的时间。(取g =10 m/s 2) 图1 电梯 拉力

a /m s -1 0 1 2 10 11 30 31 30 41 图2

t /s 32

人教版高中物理必修二知识点及题型总结

第五章曲线运动 一、知识点 (一)曲线运动的条件:合外力与运动方向不在一条直线上 (二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则) (三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动) (四)匀速圆周运动 1受力分析,所受合力的特点:向心力大小、方向 2向心加速度、线速度、角速度的定义(文字、定义式) 3向心力的公式(多角度的:线速度、角速度、周期、频率、转)(五)平抛运动 1受力分析,只受重力 2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式 3速度与水平方向的夹角、位移与水平方向的夹角 (五)离心运动的定义、条件 二、考察内容、要求及方式 1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空) 3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表

示方式、合力提供向心力(计算题) 3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空) 4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算) 5离心运动:临界条件、最大静摩擦力、匀速圆周运动相关计算(选择、计算) 第六章万有引力与航天 一、知识点 (一)行星的运动 1地心说、日心说:内容区别、正误判断 2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律 1万有引力定律:内容、表达式、适用范围 2万有引力定律的科学成就 (1)计算中心天体质量 (2)发现未知天体(海王星、冥王星) (三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)

牛顿运动定律经典例题(含解析)

7.14作业一牛顿第一定律、牛顿第三定律 看书:《大一轮》第一讲 基础热身 1.2012·模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示,下列说确的是( ) B.F2的反作用力是F3 C.F3的施力物体是地球 D.F4的反作用力是F1 2.2011·模拟关于惯性,下列说法中正确的是( ) A.在月球上物体的重力只有在地面上的1 6 ,但是惯性没有变化 B.卫星的仪器由于完全失重,惯性消失了 C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D.磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·模拟跳高运动员蹬地后上跳,在起跳过程中( ) A.运动员蹬地的作用力大小大于地面对他的支持力大小 B.运动员蹬地的作用力大小等于地面对他的支持力大小 C.运动员所受的支持力和重力相平衡 D.运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F1、F2、F3三个力的作用而保持平衡状态,则以下说确的是( ) A.F1与F2的合力一定与F3大小相等,方向相反 B.F1、F2、F3在某一方向的分量之和可能不为零 C.F1、F2、F3中的任何一个力变大,则物体必然做加速运动 D.若突然撤去F3,则物体一定沿着F3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D.摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A.作用力大时,反作用力小 B.作用力和反作用力的方向总是相反的 C.作用力和反作用力是作用在同一个物体上的 D.牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

高中物理力学经典题型

高中力学经典题型 求以下各力的功: 水平拉着物块绕着半径为R的圆形操场一圈,物块与地面动摩擦因数为μ,质量为m,则此过程中,物块克服摩擦力做功为________________. 子弹水平射入木块,在射穿前的某时刻,子弹进入木块深度为d,木块位移为s,设子弹与木块相互作用力大小为f,则此过程中木块对子弹做功W f子=________________;子弹对木块做功W f木=________________;一对作用力与反作用力f对系统做功W f系=________________; 如图所示,用竖直向下的力F通过定滑轮拉质量为m的木块,从位置A拉到位置B. 在两个位置上拉物体的绳与水平方向的夹角分别为α和β. 设滑轮距地面高为h,在此过程中恒力F所做的功为____________。 如图所示,某人通过定滑轮拉住一个重力等于G的物体使物体缓慢上升,这时人从A 点走到B点,前进的距离为s,绳子的方向由竖直方向变为与水平方向成θ角。若不计各种阻力,在这个过程中,人的拉力所做的功等于__________。

2.一质量为4.0×103kg的汽车从静止开始以加速度a= 0.5m/s2做匀加速直线运动,其发动机的额定功率P = 60kW,汽车所受阻力为车重的0.1倍,g = 10m/s2,求 (1)启动后2s末发动机的输出功率 (2)匀加速直线运动所能维持的时间 (3)汽车所能达到的最大速度 3.一物体以初速度v0从倾角为α的斜面底端冲上斜面,到达某一高度后又返回,回到斜面底端的速度为v t,则斜面与物体间的摩擦系数为____________。 4.质量为m的滑块与倾角为θ的斜面间的动摩擦因数为μ,μ<tgθ。斜面底端有一个和斜面垂直放置的弹性挡板,滑块滑到底端与它碰撞时没有机械能损失,如图所示,若滑块 从斜面上高度为h处以速度v0开始沿斜面下滑,设斜面足够长,求:(1)滑块最终停在何处? (2)滑块在斜面上滑行的总路程是多少? 5.长为L的细线的一端系一质量为m的小球,另一端固定在O点,细线可承受的最大拉力为7mg。将小球拉起,并在水平位置处释放,小球运动到O点的正下方时,悬线碰到一钉子。求: (1)钉子与O点的距离为多少时,小球刚好能通过圆周的最高点? (2)钉子与O点的距离为多少时,小球能通过圆周的最高点? 6.质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为 A.mgR/4 B.mgR/3C.mgR/2D.mgR 7.如图所示,电动机带动绷紧的传送皮带,始终保持v0=2m/s的速度运行。传送带与水平面的夹角为300。先把质量为m=10㎏的工件轻放在皮带的底端,经一段时间后,工件被传送到高h=2m的平台上。则在传送过程中产生的内能是______J,电动机增加消耗的电能 是_____J。(已知工件与传送带之间的动摩擦因数μ=,不计其他损耗,取g=10m/s2)

(完整版)人教版高中物理必修一知识点超详细总结带经典例题及解析(20200921053238)

高中物理必修一知识点运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎ 知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2 .参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3 .质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。 ' 物体可视为质点主要是以下三种情形: (1) 物体平动时; (2) 物体的位移远远大于物体本身的限度时; (3) 只研究物体的平动,而不考虑其转动效果时。 4 .时刻和时间 (1) 时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2 秒末”,“速度达2m/s 时”都是指时刻。 (2) 时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5 .位移和路程 (1) 位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2) 路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3) 位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1) .速度:是描述物体运动方向和快慢的物理量。 (2) .瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3) .平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。 第 1 页共28 页

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高中物理电学实验经典题型分析

教师:______ 学生:______ 时间:_____年_____月____日____段 例1、 用伏安法测量一个定值电阻的器材规格如下: 待测电阻R x (约100 Ω); 直流电流表(量程0~10 mA 、内阻50 Ω); 直流电压表(量程0~3 V 、内阻5 kΩ); 直流电源(输出电压4 V 、内阻不计); 滑动变阻器(0~15 Ω、允许最大电流1 A ); 开关1个,导线若干. 根据器材的规格和实验要求画出实验电路图. 【审题】本题只需要判断测量电路、控制电路的接法,各仪器的量程和电阻都已经给出,只需计算两种接法哪种合适。 【解析】用伏安法测量电阻有两种连接方式,即电流表的内接法和外接法,由于R x <v A R R ,故电流表应采用外接法.在控制电路 中,若采用变阻器的限流接法,当滑动变阻器阻值调至最大,通过负载的电流最小, I min = x A R R R E ++=24 mA >10 mA,此时电流仍超过电流表的量程,故滑动变阻器必须采 用分压接法.如图10-5所示. 课 题 电学实验经典题型分析

【总结】任一种控制电路必须能保证电路的安全,这是电学实验的首要原则,限流接法虽然简洁方便,但必须要能够控制电路不超过电流的额定值,同时,能够保证可获取一定的电压、电流范围,该题中,即便控制电流最小值不超过电流表的量程,因滑动变阻器全阻值相对电路其它电阻过小,电流、电压变化范围太小,仍不能用限流接法。 例2、在某校开展的科技活动中,为了要测出一个未知电阻的阻值R x,现有如下器材: 读数不准的电流表A、定值电阻R0、电阻箱R1、滑动变阻器R2、单刀单掷开关S1、单刀双掷开关S2、电源和导线。 ⑴画出实验电路图,并在图上标出你所选用器材的代码。 ⑵写出主要的实验操作步骤。 【解本测量仪器是电压表和电流表,当只有一个电表(或给定的电表不能满足要求时),可以用标析】 ⑵验电路如右图所示。 ⑵①将S2与R x相接,记下电流表指针所指位置。②将S2 与R1相接,保持R2不变,调节R1的阻值,使电流表的指 针指在原位置上,记下R1的值,则R x=R1。

牛顿运动定律-最全面、经典题型

1. 如图所示,在光滑的水平 面上,有一物体A,质量为3kg, 当用F=10N 的力通过滑轮拉 物体A 时,物体做什么运动? 绳子上的拉力是多大?若改用质量为1kg 的物体B 拉物体A 时,物体A 又做什么运动?绳子上的拉力又是多大? (g 取10m/s 2) 2. 如图甲所示,物体A 与B 用一根不可伸长的轻绳连接,放置 于光滑的水平面上,现用F=6N 的力拉物体A,则物体的加速度为多少?绳上的张力为多大?若图乙呢? A B 2kg 1kg F=6N A B 2kg 1kg F=6N 3.如图所示,光滑水平面上静止放着长L=1.6m ,质量为M=3kg 的木块(厚度不计),一个质量为m=1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,(g 取10m/s2). A B F (1)为使物体与木板不发生滑动,F 不能超过多少? (2)如果拉力F=10N 恒定不变,求小物体所能获得的最大速度? (3)如果拉力F=10N ,要使小物体从木板上掉下去,拉力F 作用的时间至少为多少? 4.水平传送带以v=2m/s 速度匀速运动,将物体轻放在传送带的A 端,它运动到传送带另一端B 所需时间为11s ,物体和传送带间的动摩擦因数μ=0.1,求: (1)传送带AB 两端间的距离? (2)若想使物体以最短时间到达B 端,则传送带的速度大小至少调为多少?(g=10m/s2) 5.如图所示,传送带与地面倾角θ=37°,A→B 长度为L=16m ,传送带 以v0=10m/s 的速率逆时针转动,在传送带上端A 无初速度地释放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数 为0.5.求:物体从A 运动到B 需时间是多少? 6.将金属块用压缩的轻弹簧卡在一个矩形箱子中,如图所示,在箱子的上顶板和下底板装有压力传感器,能随时显示出金属块和弹簧对箱子上顶板和下底板的压力大小.将箱子置于电梯中,随电梯沿竖直方向运动.当箱子随电梯以a=4.0m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0N ,下底板的传感器显示的压力为10.0N .取g=10m/s2,若 上顶板传感器的示数是下底板传感器的示数的一半,则升降机的运动状态可能是( ) A .匀加速上升,加速度大小为5m/s2 B .匀速上升 C .匀加速下降,加速度大小为5m/s2 D .静止状态 7.质量为50kg 的一学生从1.8m 高处跳下,双脚触地后,他紧接着弯曲双腿使重心下降0.6m ,则着地过程中,地面对他的平均作用力为多少? 8.如图所示,在水平面上行驶的车厢中,车厢顶部悬挂一质量为m 的球,悬绳与竖直方向成α角,相对车厢处于静止状态,求箱子的运动状态? 9.如图所示,一个箱子质量为M 放在水平地面上,箱子内有一固定的竖直杆,在杆上套着一个质量为m 的圆环,圆环沿着杆加速下滑,环与杆的摩擦力大小为f ,则此时箱子对地面的压力为( ) A .等于Mg B .等于(M+m )g C .等于Mg+ f D .等于(M+m )g- f A A B 1kg F=10N M m

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

牛顿运动定律经典例题(含解析)

7.14作业一 牛顿第一定律、牛顿第三定律 看书 :《大一轮》 第一讲 基础热身 1.2012·厦门模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示, 下列说法正确的是( ) B .F 2的反作用力是F 3 C .F 3的施力物体是地球 D .F 4的反作用力是F 1 2.2011·芜湖模拟关于惯性,下列说法中正确的是( ) A .在月球上物体的重力只有在地面上的16 ,但是惯性没有变化 B .卫星内的仪器由于完全失重,惯性消失了 C .铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D .磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·金华模拟跳高运动员蹬地后上跳,在起跳过程中( ) A .运动员蹬地的作用力大小大于地面对他的支持力大小 B .运动员蹬地的作用力大小等于地面对他的支持力大小 C .运动员所受的支持力和重力相平衡 D .运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F 1、F 2、F 3三个力的作用而保持平衡状态,则以下说法正确的是( ) A .F 1与F 2的合力一定与F 3大小相等,方向相反 B .F 1、F 2、F 3在某一方向的分量之和可能不为零 C .F 1、F 2、F 3中的任何一个力变大,则物体必然做加速运动 D .若突然撤去F 3,则物体一定沿着F 3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A .采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B .射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C .货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D .摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·台州模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A .作用力大时,反作用力小 B .作用力和反作用力的方向总是相反的 C .作用力和反作用力是作用在同一个物体上的 D .牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理弹簧模型经典题型汇总

弹簧专题 1、弹簧弹力的双向性 弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解. 例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0 120,已知弹簧a b 、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为 ( ) A、0 B、F mg +C、F mg -D、mg F - 2、轻弹簧 高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别. 例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有() 3、质量不可忽略的弹簧 例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 答案解析F x =F L x 图3-7-15

4、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。 例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题: (1)现将线L2剪断,求剪断L2的瞬间物体的加速度. (2)若将图甲中的细线L1换成长度相同,质量不计的轻 弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体 的加速度. 例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小 球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。两绳与 弹簧轴线构成正三角形,三个小球处于静止状态,此时弹簧处在伸长状态,且F 弹=mg,小球A与小球B间轻绳拉力为F1,剪断小球与小球C间细绳的瞬间,小 球A与小球B间细绳拉力为的大小为F2,则F1与F2的比值为() A.1:1B.2:1C.2?√3 3D.1+√3 2 5、弹簧串、并联组合 弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;完全相同的两根弹簧并联时,每根弹簧的形变量相等. 串联:F=K 1?x 1 =K 2 ?x 2 则有:?x=?x 1 +?x 2 =F(1 K 1 +1 K 2 ) 等效思想,设等效劲度系数为K’则有K 等效=(1 K 1 +1 K 2 )

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

高中物理经典题库1000题

《物理学》题库 一、选择题 1、光线垂直于空气和介质的分界面,从空气射入介质中,介质的折射率为n,下列说法中正确的是() A、因入射角和折射角都为零,所以光速不变 B、光速为原来的n倍 C、光速为原来的1/n D、入射角和折射角均为90°,光速不变 2、甘油相对于空气的临界角为42.9°,下列说法中正确的是() A、光从甘油射入空气就一定能发生全反射现象 B、光从空气射入甘油就一定能发生全反射现象 C、光从甘油射入空气,入射角大于42.9°能发生全反射现象 D、光从空气射入甘油,入射角大于42.9°能发生全反射现象 3、一支蜡烛离凸透镜24cm,在离凸透镜12cm的另一侧的屏上看到了清晰的像,以下说法中正确的是() A、像倒立,放大率K=2 B、像正立,放大率K=0.5 C、像倒立,放大率K=0.5 D、像正立,放大率K=2 4、清水池内有一硬币,人站在岸边看到硬币() A、为硬币的实像,比硬币的实际深度浅 B、为硬币的实像,比硬币的实际深度深 C、为硬币的虚像,比硬币的实际深度浅 D、为硬币的虚像,比硬币的实际深度深 5、若甲媒质的折射率大于乙媒质的折射率。光由甲媒质进入乙媒质时,以下四种答案正确的是() A、折射角>入射角 B、折射角=入射角 C、折射角<入射角 D、以上三种情况都有可能发生 6、如图为直角等腰三棱镜的截面,垂直于CB面入射的光线在AC面上发生全反射,三棱镜的临界角() A、大于45o B、小于45o C、等于45o D、等于90o 7、光从甲媒质射入乙媒质,入射角为α,折射角为γ,光速分别为v甲和v乙,已知折射率为n甲>n乙,下列关系式正确的是() A、α>γ,v甲>v乙 B、α<γ,v甲>v乙 C、α>γ,v甲

高中物理曲线运动经典题型总结(可编辑修改word版)

42+ 32 【题型总结】 专题五曲线运动 一、运动的合成和分解 1.速度的合成:(1)运动的合成和分解(2)相对运动的规律v甲地=v甲乙+v乙地 例:一人骑自行车向东行驶,当车速为 4m/s 时,他感到风从正南方向吹来,当车速增加到 7m/s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为() A. 7m/s B. 6m/s C. 5m/s D. 4 m/s 解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。而风相 对地的速度方向不变,由此可联立求解。 解:∵θ=45°∴V 风对车=7—4=3 m/s ∵V 风对车 +V 车对地 =V 风对地 V 风对 ∴V 风对地= =5 答案:C 2.绳(杆)拉物类问题 m/s V 风对 V 车对 ① 绳(杆)上各点在绳(杆)方向上的速度相等 ②合速度方向:物体实际运动方向 分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩) 垂直于绳(杆)方向:使绳(杆)转动 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ 角,且重物下滑的速率为v 时,小车的速度为多少? 解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两 个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C. 1 若Δt 很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 (180°- Δφ)→90°.亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ ?s 2 因为?t = ?h ?t ·cosθ,所以v′=v·cosθ 方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ. (1)(2) V 风对 θ

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

相关文档
最新文档