双波长差吸光度法及后分光技术的应用和发展前景

双波长差吸光度法及后分光技术的应用和发展前景
双波长差吸光度法及后分光技术的应用和发展前景

双波长差吸光度法及后分光技术的应用和发展前景

李雪志

(本文1996年发表)

建立在Lambert—beer定律基础上的单波长分光光度分析技术,应用极为广泛,但由于单波长法存在混浊试样对光的散射和比色杯背景吸收等难以克服的缺点,它在高精度测量中的应用受到一定的限制。为了解决浑浊试样对分光光度测定的干扰问题,美国的B.Chance于1951年制成了用振动镜使两束不同波长的单色光交替通过待测溶液的双波长分光光度计(Double Wavelength Spectrophotometer),从而奠定了双波长分光光度法的基础。随着科学技术的发展,双波长分光光度分析技术已日臻完善,与先进的后分光技术相结合,在生化自动化分析中得到了广泛的应用并显示出了光明的发展前景。

1 双波长分光光度法的原理

双波长分光光度法是在传统分光光度法的基础上发展起来的,它的理论基础是差吸光度和等吸收波长。它与传统分光光度法的不同之处,在于它采用了两个不同的波长即测量波长(又叫主波长λp, Primary Wavelength)和参比波长(又叫次波长λs, Second Wavelength)同时测定一个样品溶液[1,2],以克服单波长测定的缺点,提高了测定结果的精密度和准确度。

早期的双波长分光光度计在测定时,两束不同波长的单色光经斩光器(Chopper,一种用于双波长分光光度计中使光束按一定周期反射,遮断或通过的装置)处理后,以一定的时间间隔交替照射[1]比色杯,经待测溶液吸收后,再照到光电管上,产生两个不同的吸光度,再将这两个吸光度相减,就得到了差吸光度ΔA。根据Lamber-Beer定律, 得:

Aλ p = ελpLC + Ap (1)

A λs = ελsLC + As (2)

式中:Aλ p 、A λs 分别为待测溶液在主波长和次波长处的吸光度

ελp 、ελs 分别为待测溶液在主波长和次波长处的摩尔吸光系数

L:光径

C:待测溶液的浓度

Ap、As:分别为待测溶液在主波长和次波长处的散射或背景吸收当λp 、λs相差不太大时,由同一待测溶液产生的光散射吸光度和背景吸光度大致相等,即Ap=A s,将(1)式-(2)式得:

Aλ p-A λs =ΔA =(ελp-ελs)LC (3)

对于同一待测溶液来说,ελp-ελs是一常数K,在光径L不变的情况下,(3)式可简化为:

ΔA =KC (4)

(4)式说明,待测溶液在λp与λs两个波长处测定的差吸光度ΔA与试样中待测物质的浓度C成正比。这就是双波长法赖以建立的定量公式[1,3]。

双波长差吸光度法具有可以克服溶液浑浊的影响、共存组分吸收谱线叠加的干扰,以及减少比色杯的光学不均一等优点。它的差吸光度在2.5以内时,线性范围良好。

2 选择双波长的方法[1,3]

双波长差吸光度尽管有许多优点,但是如何正确选择双波长,则是应用的关键。选择双波长常用的方法有三种:

2.1 根据待测溶液对吸光谱的吸收曲线,选择最大吸收峰对应的波长为λp,吸收曲线下端较为平

坦的某一波长为λs。

2.2 选待测溶液嗫大吸收峰对应的波长为λp,选等吸收点的长为λs。所谓等吸收点,是指对于某个波长,尽管待测溶液的浓度不同,但对该波长的光的吸收均相等。

等吸收点所对应的波长叫做等吸收波长。对于吸收光谱具有吸收峰的物质,同浓度下吸光度相等的两个波长,也是等吸收波长。等吸收波长是双波长法的理论基础之一。应用这一方法的必要条件是能准确地测定出等吸收点,否则将造成显著的误差。

2.3 选溶液最大吸收峰的波长为λp,选显色剂的最大吸收峰对应的波长为λs。该法又称为双波长增敏法,它的原理是:当向一定浓度的显色剂溶液中加入待测物时,由于生成物质浓度的增大,生成物的吸光度也随之增大,而显色剂则由于不断消耗,其吸光度逐渐减小。如果以λp为测定波长,λs为参比波长时,测得的差吸收光度显然是生成物吸光度与消耗的显色剂的吸光度之和,从而提高了测定的灵敏度。

由上述方法可以看出,双波长法选择主波长的原理与单波长法相同:均选择待测溶液最大吸收峰对应的波长,所不同的是双波长法还应根据不同条件选择次波长。

文献指出[1],影响双波长法测定精密度的因素是:光辐射噪声,电源不稳和读出噪声,采用强光源可以改善测定的精密度。当试样中含有干扰物质时,由于双波长法减少了样品的形式误差,故测定的精密度优于单波长法。

影响双波长法准确度的因素是:①由化学干扰物引起的误差,但这种误差要比单波长法小得多;②由物理干扰引起的误差,但可以通过采用较小的双波长差等方法来减少误差,而且这种误差本身就比单波长法更小;③由仪器的非理想性如比色杯的性质和位置,以及信号失调、狭缝过大和杂散光等引起的误差,其中尤以后者引起的误差为大,因此要求仪器的波长精度在高并且尽量减少杂散光。

3后分光技术及其在仪器上的应用

现代的全自动化分析仪由于多项目同时进行测定的需要,对分光光度计作了革命性的改造,并产生了后分光技术的概念,从而使双波长分光光计光学系统的结构变得较为简单而且与单波长分光光度计有很大的区别。

所谓后分光技术是相对传统的分光光度计而言的。众所周知,光电比色法赖以建立的Lambert-Beer定律只适用于单色光,单色光纯度越高则测定结果的精密度和准确度越好,如果用混合光比色,则溶液的吸光度与液层厚度和溶液浓度间不成比例关系。因此,传统的分光光度计是以单色器(棱镜或光栅)对入射光进行分光,然后使特定波长的单色光通过待测溶液进行比色测定,而现代生化分析仪上采用所谓后分光技术的分光光度计则是直接以光源灯所发出的混合光透过待测溶液,经溶液吸收后再用全息光栅(Holographic Grating,是目前最高级的分光器件,它既可以简化光路,又可以减少杂散光,由它色散后投射到二极管矩阵上的光谱焦平面的波长精度在±2nm以内)[6]对出射光进行分光,然后将纯度很高的不同波长的单色光折射到光电二极管矩阵(Photodiode Array)上,由于位置不同,矩阵上的每一个光电二极管只能接收某个特定波长的单色光。有人据此认为这种类型的分析仪只是用某几个波长的滤光板,光不纯,波长精度差,其实这是一种误解。这种仪器在编制程序时(厂家或用户)已预先设定好某项试验选用某个波长,仪器工作时在微机的控制下只接收所选波长的光电管上产生的电信号并将其转变成相应的吸光度。

目前的大多数生化分析仪的二极管矩阵都有7到10个光电二极管,包含了从340nm~700nm 范围内常用的7~10个测定波长[4,5],有的分析仪(如美国雅培公司的EPX、SPECTRUM、CCX系列)甚至多达16个波长。

由于现代生化分析仪采用凹面全息光栅为后分光器件,从而取消了斩光器。使双波长分光光度计的结构变得相对简单,而且更为关键的是,采用这种结构的后分光技术使生化分析仪上多顶

目同时测定变为现实。否则,如果仍按传统分光光度计一样以单色光进行比色测定,为适应不同顶目在短时间内用不同波长比色的需要,分光器件必须在几秒甚至更短的时间内频繁地变动反射镜的位置,这对于机械来说是难以办到的,即使制成也会易于损坏而缺乏实用价值。后分光技术的建立使上述问题迎刃而解,而且使双波长分光光度法变得更为实用。

4 双波长法及后分光技术的现状和前景

双波长法自建立至今已有四十多年的历史,各种通用型双波长分光光度计在国外应用已相当普遍,但国产的分光光度计仍以单波长法为主。国内有人根据双波长法的基本原理,因陋就简,利用普通的单波长分光光度计(如721型)建立双波长测定法,即先用某一波长比色,记录吸光度,再用另一波长比色后记录另一吸光度,然后按双波长法进行计算,获得了较满意的结果。近年来,应用双波长法并结合后分光技术的全自动生化分析仪已大量引进到国内,但除了厂家提供的双波长数据外,不少人在仪器上自行编制试验程序时对次波长选择的重要性往往认识不足,具有较大的随意性,由此造成试验结果误差还不知原因所在,因此有必要加强对双波长法和后分光技术的认识。但可以预见,随着国外先进仪器的引进以及国产双波长分光光度计逐步进入市场,这一新技术必将为越来越多的人所认识和接受,并在医学检验领域得到广泛的应用。

5参考文献

[1] 王叔仁,等。双波长分光光度法.济南:山东科学技术出版,1986.

[2] 叶应妩,等主编.临床实验诊断学(上). 北京:人民卫生出版社, 1989: 137.

[3] 黄尊波,等. 双波长分光光度法在医学检验上的应用. 中华医学检验杂志,1981,4(3) :185.

[4] Service Reference Manual of 550 Express. CIBA.CORNING.

[5] Spectrophotomentric principles of measurement of the CX4.SYNCHOR Clinical system CX4/CX7 operating instructions. BECKMAN.

[6] [美]加里D.克理斯琴著(王令今,张振宇译).分析化学.第3 版,北京:化学工业出版社. 1988:455~457.

紫外分光光度法计算

第20章 吸光光度法 思 考 题 1. 什么叫单色光复色光哪一种光适用于朗伯-比耳定律 答:仅具有单一波长的光叫单色光。由不同波长的光所组成光称为复合光。朗伯--比耳定律应适用于单色光。 2. 什么叫互补色与物质的颜色有何关系 答:如果两种适当的单色光按一定的强度比例混合后形成白光,这两种光称为互补色光。当混合光照射物质分子时,分子选择性地吸收一定波长的光,而其它波长的光则透过,物质呈现透过光的颜色,透过光与吸收光就是互补色光。 3. 何谓透光率和吸光度 两者有何关系 答:透光率是指透射光强和入射光强之比,用T 表示 T = t I I 吸光度是吸光物质对入射光的吸收程度,用A 表示,A εbc =,其两者的关系 lg =-A T 4. 朗伯-比耳定律的物理意义是什么 什么叫吸收曲线 什么叫标准曲线 答:朗伯--比耳定律是吸光光度法定量分析的理论依据,即吸光物质溶液对光的吸收程度与溶液浓度和液层厚度之间的定量关系。数学表达式为 lg A T εbc =-= 吸收曲线是描述某一吸光物质对不同波长光的吸收能力的曲线,即在不同波长处测得吸光度,波长为横坐标,吸光度为纵坐标作图即可得到吸收曲线。 标准曲线是描述在一定波长下,某一吸光物质不同浓度的溶液的吸光能力的曲线,吸光度为纵坐标,浓度为横坐标作图即可得到。 5. 何谓摩尔吸光系数质量吸光系数两者有何关系 答:吸光系数是吸光物质吸光能力的量度。摩尔吸光系数是指浓度为 mol ·L ,液层度为1cm 时,吸光物质的溶液在某一波长下的吸光度。用ε表示,其单位 11cm mol L --??。 质量吸光系数是吸光物质的浓度为1g 1L -?时的吸光度,用a 表示。其单位 11cm g L --?? 两者的关系为 εM a =? M 为被测物的摩尔质量。 6. 分光光度法的误差来源有哪些 答:误差来源主要有两方面,一是所用仪器提供的单色光不纯,因为单色光不纯时,朗伯—比耳定律中吸光度和浓度之间的关系偏离线性;二是吸光物质本身的化学反应,其结果同样

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

双波长法测定复方磺胺甲恶唑含量

双波长法测定复方磺胺甲噁唑含量 一、目的 1.掌握复方制剂的分析特点及赋形剂的干扰与排除方法。 2.掌握双波长分光光度法测定复方磺胺甲噁唑片中磺胺甲噁唑与甲氧苄啶含量的原理与方法。 二、实验内容 1.供试品溶液的制备 取本品20片,精密称定,研细,精密称取适量(约相当于磺胺甲噁唑50mg (20片平均片重的8分之一)与甲氧苄啶10mg(20片平均片重的8分之一)),置于100ml量瓶中,加乙醇适量,振摇15分钟磺胺甲口恶唑与甲氧苄啶溶解,加乙醇稀释至刻度,摇匀,滤过,取续滤液作为供试品溶液。 2.对照品溶液的制备 精密称取105℃干燥至恒重的磺胺甲噁唑对照品50mg(按原料药95%含量计)与甲氧苄啶对照品10mg(按原料药95%含量计),分置100ml量瓶中,各加乙醇溶解并稀释至刻度,摇匀,分别作为对照品溶液(1)与对照品溶液(2)。 3.磺胺甲噁唑的测定 精密量取供试品溶液与对照品溶液(1)、(2)各2ml,分置100ml量瓶中,各加0.4%氢氧化钠溶液稀释至刻度,摇匀。取对照品溶液(2)的稀释液;以257nm 为测定波长(λ2),在304nm波长附近(每间隔0.5nm)选择等吸收点波长为参与波长(λ1),要求△A=Aλ2-Aλ1=0。再在λ2与λ1波长处分别测定供试品溶液的稀释液与对照品溶液(1)的稀释液的吸收度,求出各自的吸收度差值(△A),计算,即得。 4.甲氧苄啶的测定 精密量取上述供试品溶液与对照品溶液(1)(2)各5ml,分置100ml量瓶中,各加盐酸-氯化钾溶液[取盐酸液(0.1mol/L)75ml与氯化钾6.9g,加水至1000ml 摇匀] 稀释至刻度,摇匀。取对照品溶液(1)的稀释液,以239.0nm为测定波长(λ 2 ),在295nm波长附近(每间隔0.2nm)选择等吸收点波长为参比波长(λ1),要求△A=Aλ2-Aλ1=0。再在λ2与λ1波长处分别测定供试品溶液的稀释液与对照品溶液(2)的稀释液的吸收度,求出各自的吸收度差值(△A),计算,即得。 本品每片中含磺胺甲噁唑(C10H11N3O2S)应为0.360~0.440g,含甲氧苄啶(C14H12N4O3)应为72.0~88.0mg。 三说明 1.磺胺甲噁唑与甲氧苄啶的结构分别为: NH2SO 2NH CH3 O N OC H3 CH3O CH3O CH2N N NH 2 NH2 (SMZ) (TMP) SMZ与TMP的紫外吸收图谱分别为:

实验1 高吸光度示差分析法

实验二高吸光度示差分析法 一、目的: 通过标准曲线的绘制及试样溶液的测定,了解高吸光度示差分析法的基本原理,方法优点。掌握721型分光光度计的使用方法。 二、原理: 普通吸光光度法是基于测量试样溶液与试剂空白溶液(或溶剂)相比较的吸光度,从相同条件下所作的标准曲线来计算被测组份的含量,这种方法的准确度一般不会优于1~2%,因此,它不适合于高含量组份的测定。 为了提高吸光光度法测定的准确度,使其适合于高含量组分的测定,可采用高吸光度示差分析法。示差法与普通吸光光度法的不同之处,在于用一个待测组份的标准溶液代替试剂空白溶液作为参比溶液,测量待测量溶液的吸光度。它的测定步骤如下: (1)在仪器没有光线通过时(接受器上无光照射时)调节透光率为0,这与比色法或普通分光光度法相同。 (2)将一个比待测溶液(浓度为C+△C)稍稀的参比溶液(浓度为C)放在仪器光路中,调节透光率为100%。 (3)将待测量溶液(或标准溶液)推入光路中,读取表现吸光度A f。 表观吸光度A f实际上是由△C引起的吸收大小,可表达为: A f=ab△c 上式说明,待测溶液(或标准溶液)与参比溶液的吸光度之差与这两次溶液的浓度差成正比。 无论普通吸光度或高吸光度示差法,只要符合比尔定律,而且测量误差仅仅是由于透光率(或吸光度)读数的不确定所引起的,则可以方便地计算出分析的

误差。 仪器刻度上透光率读数改变数(dT )所引起的浓度误差dc 为绝对误差,它与透光率有关,其关系式容易由比耳定律推得: A f =ab △c=k △c lgT=-A f =-k △c 0.43lnT=-k △c KT dc 43 .0 ·dT 式中k 为标准曲线(A ~C )的斜率。实验中三条曲线的三个k 很接近。根据k 值及上述关系可以计算出实验中各点的绝对误差(假设透光率读数误差为l%,即dT=0.01)。 对于化学工作者来说,更有意义的是浓度的相对误差(c dc ),或者相对百分误差(c dc ×100)。浓度相对百分误差与参比溶液的浓度关系密切。随着有色参比溶液浓度的增加(或A 的增加),相对百分误差也随之减小。当所用参比溶液的A=1.736时,最低的相对百分误差也可减小至0.25%。由此可见了,差示法中高吸光度法可达到容量分析和重量分析的准确度。 三、仪器与试剂 721型分光光度计(附2只1厘米比色皿) 0~10ml 微量滴定管1支(刻度准确至0.005ml ) 25ml 容量瓶×16 0.2500M Cr (NO 3)3 四、实验步骤

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

《有限差分法在微分方程中的应用》课程论文

课程论文

有限差分法在微分方程中的应用 本学期学习了《微分方程数值解》,本书中有限差分法给我留下的印象比较深刻,下边说说自己在方面的一点理解,请老师指正。 1.有限差分法的基本思想: 当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。 2.有限差分法求解偏微分方程的步骤: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点; 近似替代,即采用有限差分公式替代每一个格点的导数。 逼近求解,换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。 从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值进行插值计算来近似得到。理论上,当网格步长趋近于零时,差分方程组的解应该收敛于精确解,但由于机器字节的限制,网格步长不可能也没有必要取得无限小,那么差分法的收敛性或者说算法的稳定性就显得至关重要。因此,在运用有限差分法时,除了要保证精度外,还必须要保证其收敛性。 3.构造差分法的几种形式: 主要草用的是泰勒级数展开的方法。其基本差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等。其中前两种形式为一阶计算精度,后一种为二阶计算精度。

双波长法测定安钠咖中组分含量

院系:医学检验系班级:11检验本科1班:**** 双波长法测定安钠咖中组分含量 实验目的和要求 1、掌握紫外可见分光光度计的基本操作; 2、掌握双波长分光光度法测定二元混合物中待测组分含量的原理和方法; 3、掌握在物质中吸收曲线上寻找吸收点、测定波长、参比波长的方法; 4、掌握标准曲线绘制及应用; 5、了解双波长分光光度法在单光束分光光度计上的测定方式。 实验原理 每毫升安钠咖注射液中含0.12g无水咖啡因和0.13g苯甲酸钠,要求二组分的含量均应为标示量的93%~107%。在0.10mol/L盐酸溶液中,苯甲酸钠在230nm波长处有一较强吸收峰,咖啡因在272nm波长处有一较强吸收峰;二者吸收曲线重叠十分严重,直接采用吸光度进行定量测定时,相互之间有严重干扰。 根据光吸收定律,溶液吸光度应为各个组分吸光度的加合。当在230nm波长处

测定苯甲酸钠(此时把咖啡因视为干扰组分)时,测定的吸光度为: 咖啡因苯甲酸钠安钠咖230 230230A A A += 但是在咖啡因的吸收曲线可以发现,咖啡因在230nm 和257nm 两波长处得吸收相等(吸光度值相等,即等吸收点): 咖啡因咖啡因257 230A A = 因此,通过直接测定混合物溶液在230nm 和257nm 两波长处得吸光度值,再计算二吸光度的差值,可消除咖啡因对苯甲酸钠测定的干扰: ) ()(咖啡因苯甲酸钠咖啡因苯甲酸钠安钠咖安钠咖257257230230257230A A -A A A -A A ++==? 苯甲酸钠苯甲酸钠苯甲酸钠苯甲酸钠苯甲酸钠)(C b -b A -A 257230257 230εε== =KC 苯甲酸钠 可以看出,混合物溶液在230nm 和257nm 两波长处得吸光度差值仅与苯甲酸钠浓度成正比,而与咖啡因浓度无关,从而实现苯甲酸钠的定量分析。 同理,当在272nm 波长处测定咖啡因(视苯甲酸钠为干扰组分)时,可选择272nm 和253nm 两个苯甲酸钠的等吸收点波长进行测定,混合物溶液在这两个波长处得吸光度差值仅与咖啡因浓度成正比,而与苯甲酸钠浓度无关,可消除苯甲酸钠对咖啡因测定的干扰,从而实现咖啡因的定量分析: 咖啡因KC A =? 实验仪器与试剂 1.752Pro 型紫外可见分光光度计 2.标准咖啡因储备溶液(0.2500mg/ml ) 3.标准甲酸钠储备溶液(0.2500mg/ml ) 4.盐酸溶液(0.10mol/L ) 5.50ml 容量瓶12个 6.5ml 移液管4只

试验六双波长分光光度法

典型实验教学案例简介 案例x 双波长分光光度法测定复方磺胺甲噁唑片中两组分含量 药物的含量测定是药物质量控制的重要方面。紫外分光光度法以其准确度、灵敏度高,简便快速等特点,成为药物含量测定的重要方法。紫外法测定含量时,常选择被测组分的最大吸收波长最为测定波长,以提高检测的灵敏度。当用紫外法测定复方制剂多组分中一种组分的含量时,共存组分常常也会有吸收干扰,此时,消除干扰就成为准确测定的关键环节。双波长分光光度法作为计算分光光度法的一种,就是消除干扰、实现多组分含量同时测定的一种有效手段。本实验就以复方磺胺甲噁唑片为实验对象,通过双波长分光光度法测定其两组分的含量,从而达到学习双波长法的原理和操作的目的。 一、实验目的 1.掌握双波长分光光度法的测定原理。 2.熟悉双波长分光光度法在复方制剂分析中的应用。 二、实验原理 当吸收光谱重叠的a、b两组分共存时,若要消除a组分的干扰测定b组分,可在a组分的吸收光谱上选择两个吸收度相等的λ1和λ2,测定混合物的吸光度差值。然后根据ΔA值计算b的含量。 SMZ在257nm波长处有最大吸收,TMP在此波长吸收最小并在304nm波长附近有一等吸收点,故选定257nm为SMZ的测定波长(图1),在304nm波长附近选择参比波长。 TMP在239nm波长处有较大吸收,此波长又是SMZ的最小吸收峰,并在295nm波长附近有一等吸收点,故选定239nm为测定波长(图2),并规定在此波长附近选择供测定的参比波长。由于参比波长对测定影响较大,故采用对照品溶液来确定。此波长可因仪器不同而异,测定时应仔细选择。

三、仪器与试剂 1.主要仪器:紫外-可见分光光度计;100mL 容量瓶 2.主要试剂:磺胺甲噁唑和甲氧苄啶对照品;0.4%氢氧化钠溶液;0.1mol/L 盐酸溶液;氯化钾 四、实验步骤 1.磺胺甲噁唑的含量测定 (1)平均片重测定:10片,精密称定。 (2)供试品溶液配制: 图2 TMP 紫外吸收图谱 1. TMP(5.0μg/ml); 2.SMZ(25.0μg/ml); 3. SMZ+TMP; 4. 辅料 图l SMZ 紫外吸收图谱 1. TMP(0.2μg/ml); 2.SMZ(10.0μg/ml); 3. SMZ+TMP; 4. 辅料 精密称取片粉 (约50mg SMZ, 10mg TMP) 片剂 乙醇 溶解、定容 过滤 研磨 100m

差示分光光度法测定高含量的二氧化硅

差示分光光度法测定高含量的二氧化硅 (作者:余建华,毛杏仙本信息发布于2009年08月11日,共有183人浏览) [字体:大中小] 二氧化硅是水泥及原材料化学分析的常检项目,由于材质、含量差别很大,因此关于二氧化硅的测定方法很多。根据二氧化硅含量的不同分为三类,含SiO2量较高(Wsio2≥95%)的材质,多采用重量法;含SiO2为常量(Wsio25%~95%)的,多采用容量法;含SiO2量较低(Wsio2<5%)的,一般采用硅钼蓝比色法测定。这三种方法各有特点,重量法和容量法理论上准确度较高方法可靠,但是整个操作流程相对较复杂,费时费力测定周期长;用比色法测定,适用范围很小。 用硅钼蓝光度法测定高含量SiO2,难于准确测定,主要是由于随SiO2含量的升高在制取母液时硅酸易产生聚合,标准曲线易产生弯曲等,使测定结果受到影响。在这种情况下,应用差示分光光度法,可使测定的准确度大为提高。这一方法的实质,是用已知浓度的标准溶液代替常用的水或空白溶液作参比来绘制工作曲线,也就是借增加参比液的吸光度提高待测溶液的吸光度读数的准确度,从而降低光度法的测定误差。本试验根据待测试样的SiO2含量估算范围不同,采取分段比色、减少称样量、浸取试样时以盐酸逆酸化法避免硅酸聚合、选取2~3个基体成分尽量与试样相近,二氧化硅含量比试样稍低和稍高的标样为参比校准标准曲线等多种手段,消除或减少测量误差,提高测量的准确性和稳定性,实现了常量二氧化硅的快速测定。 1 试验部分 1.1主要试剂与仪器 721型分光光度计;容量瓶;镍坩埚;马弗炉等; 氢氧化钾(分析纯);无水乙醇(分析纯);盐酸(V/V):1/1; 钼酸铵溶液(50g/L):量取500ml蒸馏水于塑料杯中,加入25g钼酸铵,搅拌至完全溶解并过滤,贮于塑料瓶中备用; 钼蓝显色剂:将30g草酸、30g硫酸亚铁铵溶于500ml水中,搅拌溶解后,缓缓的加入l00ml浓硫酸,用水稀释至l000ml,搅拌,备用。 1.2测定方法原理 测定时,调节吸光度至∞;吸光度为零的点用浓度C1稍低于试样溶液的标准溶液来调定。然后测定一系列大于Cl的已知溶液的标准溶液的吸光度,并按浓度与吸光度的对应关系,绘制工作曲线和测定试样溶液的吸光度。 设透过空白溶液、第一个标准溶液(C1)和第二个标准溶液(C2)的光强度依次为I0、I1和I2,对应于C1和C2的吸光度为A1,A3,ε为摩尔吸光系数,根据比耳定律:

差示分光光度法

4.5 分光光度测定方法 中文词条名:差示分光光度法 英文词条名:differential spectrophotometry 分光光度法中,样品中被测组分浓度过大或浓度过小(吸光度过高或过低)时,测量误差均较大。为克服这种缺点而改用浓度比样品稍低或稍高的标准溶液代替试剂空白来调节仪器的100%透光率(对浓溶液)或0%透光率(对稀溶液)以提高分光光度法精密度、准确度和灵敏度的方法,称为差示分光光度法。差示分光光度法又可分高吸光度差示法,低吸光度差示法,精密差示分光光度法等。 4.5.2 差示分光光度法 吸光度A在0.2-0.8范围内误差最小。超出此范围,如高浓度或低浓度溶 液,其吸光度测定误差较大。尤其是高浓度溶液,更适合用差示法。 一般分光光度测定选用试剂空白或溶液空白作为参比,差示法则选用一已知浓度的溶液作参比。该法的实质是相当于透光率标度放大。 高吸收法在测定高浓度溶液时使用。选用比待测溶液浓度稍低的已知浓度溶液作标准溶液,调节透光率为100%。

低吸收法在测定低浓度溶液时使用。选用比待测液浓度稍高的已知浓度溶液作标准溶液,调节透光率为0。 最精密法是同时用浓度比待测液浓度稍高或稍低的两份已知溶液作 标准溶液,分别调节透光率为0或100%。 设试样浓度为,以溶剂作参比时,其透光率为,吸光度为。若选浓度为(其以溶剂为参比时的透光率为,吸光度为)的已知溶液作参比,调节透光率为100%。根据吸收定律,有: 溶剂作参比时,;(4.14) ;(4.15) 差示法,用已知浓度的溶液作参比时, (4.16) ,(4.17) (4.16)式为差示分光光度法的基本关系式。

分光光度法测定

分光光度法測定[Co(NH3)5Cl]2+的水合反應機制的研究 王淩華 (中原大學化三甲學號04101248) 摘要:根據beer’s law,吸收度與濃度成正比及一級反應反應速率通式可求得反應速率,通過反應速率之間的關係對比[Co(NH3)5Cl]2+水合反應可能的反應機制,從而得出其正確的反應原理。 關鍵字:分光光度計;鈷錯合物;反應速率;一級反應 1 簡介 錯合物在我們生活不可缺少在工業生産中,我們可以通過生成配合物來改變物質的溶解度,從而與其它離子分離或是消除分析實驗中會對結果造成干擾的因素,比如配位催化、制鏡、提取金屬、材料先驅物、硬水軟化等;在生物學中,很多生物分子都是配合物,並它們可與重金屬離子配合,使其轉化為毒性很小的配位化合物,從而達到解毒的目的。因此我們通過分光光度法測得Co化合物水解的反應速率,控制反應的溫度、濃度等條件,根據反應可能的機制對比可知Co錯合物水解的具體步驟,從而真正認識此類反應的本質,達到控制此類反應的結果,用以簡化工業生産。 2 原理 2.1 [Co(NH3)5Cl]2+的製備

[Co(NH3)5Cl]2+的製備是通過在[Co(NH3)4CO3]NO3的溶液中分別加入一定量的鹽酸、氨水、鹽酸,其中配合基團分別被取代之後生成[Co(NH3)5Cl]2+的沉澱析出從而得到產物,反應方程式如下: [Co(NH3)4CO3]+ 3)4(H2O)Cl]2+ + CO2 + Cl- (1) [Co(NH3)4(H2O)Cl]2+ + NH33)5(H2O)]3+ + Cl- (2) [Co(NH3)5(H2O)]3+ [Co(NH3)5Cl]2+↓+ H2O + 3H+ (3) 2.2 水和反應可能的反應機制 反應方程式:[Co(NH3)5Cl]2+ + H2O → [Co(NH3)5(H2O)] 3+ + Cl-(4)在鈷錯和物的水合反應在酸性條件下,以H2O取代Cl-的反應機制一般來説,[Co(NH3)5Cl]2+的水合反應機制可能有3種可能情況。 一种是S N1离解机理,即在反应中首先是Co- Cl键断裂, Cl-配体离去, 而后H2O分子很快进入配合物中Cl-配体的位置; [Co(NH3)5Cl]2+的反應速率R= k1[Co(NH3)5Cl]2+ (5) 一种是S N2缔合机理,在这种反应中水分子首先进入配合物形成短暂的七配位中间体,然后中间体很快失去Cl-而形成产物。 [Co(NH3)5Cl]2+反應速率R= k2[Co(NH3)5Cl]2+[H2O] (5) 由於反應在水溶液中進行, 水作為溶劑其濃度與[ Co(NH3)5Cl] 2+的濃度相比是大大過量的,在實際反應中所消耗的水是非常小的, 故可認為在反應過程中水的濃度保持不變為一常數。 [Co(NH3)5Cl]2+反應速率R= k o bs[Co(NH3)5Cl]2+ (k o bs = k2[H2O]) (6) 第三種是酸催化反應由H+加到Cl-上H+與Cl-結合後,Co-HCl鍵斷裂,HCl脫離此錯合物,而空出的配位座由H2O取代。

紫外-可见分光光度法-答案

第二章 紫外-可见分光光度法 一、选择题 1 物质的紫外 – 可见吸收光谱的产生是由于 (B ) A. 原子核内层电子的跃迁 B. 原子核外层电子的跃迁 C. 分子的振动 D. 分子的转动 2 紫外–可见吸收光谱主要决定于 (C ) A.原子核外层电子能级间的跃迁 B. 分子的振动、转动能级的跃迁 C. 分子的电子结构 D. 原子的电子结构 3 分子运动包括有电子相对原子核的运动(E 电子)、核间相对位移的振动(E 振动)和转 动(E 转动)这三种运动的能量大小顺序为 (A ) A. E 电子>E 振动>E 转动 B. E 电子>E 转动>E 振动 C. E 转动>E 电子>E 振动 D. E 振动>E 转动>E 电子 4 符合朗伯-比尔定律的一有色溶液,当有色物质的浓度增加时,最大吸收波长和吸光度分别是 (C ) A. 增加、不变 B. 减少、不变 C. 不变、增加 D. 不变、减少 5 吸光度与透射比的关系是 (B ) A. T A 1= B. T A 1lg = C. A = lg T D. A T 1lg = 6 一有色溶液符合比尔定律,当浓度为c 时,透射比为T 0,若浓度增大一倍时,透光率的对数为 (D ) A. 2T O B. 021T C. 0lg 2 1T D. 2lg T 0 7 相同质量的Fe 3+和Cd 2+ 各用一种显色剂在相同体积溶液中显色,用分光光度法测定,前者用2cm 比色皿,后者用1cm 比色皿,测得的吸光度值相同,则两者配合物的摩尔吸光系数为 (C ) 已知:A r(Fe) = ,A r(Cd) = A. Cd Fe 2εε≈ B. e d F C 2εε≈

紫外-可见分光光度法习题(答案与解析)18141

紫外-可见分光光度法 ●习题精选 一、选择题(其中1~14题为单选,15~24题为多选) 1.以下四种化合物,能同时产生B吸收带、K吸收带和R吸收带的是() A. CH2CHCH O B. CH C CH O C. C O CH3 D. CH CH2 2.在下列化合物中,*跃迁所需能量最大的化合物是() A. 1,3丁二烯 B. 1,4戊二烯 C. 1,3环已二烯 D. 2,3二甲基1,3丁二烯 3.符合朗伯特-比耳定律的有色溶液稀释时,其最大吸收峰的波长位置() A. 向短波方向移动 B. 向长波方向移动 C. 不移动,且吸光度值降低 D. 不移动,且吸光度值升高 4.双波长分光光度计与单波长分光光度计的主要区别在于() A. 光源的种类及个数 B. 单色器的个数 C. 吸收池的个数 D. 检测器的个数 5.在符合朗伯特-比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度三者的关系是() A. 增加、增加、增加 B. 减小、不变、减小 C. 减小、增加、减小 D. 增加、不变、减小 6.双波长分光光度计的输出信号是() A. 样品吸收与参比吸收之差 B. 样品吸收与参比吸收之比 C. 样品在测定波长的吸收与参比波长的吸收之差 D. 样品在测定波长的吸收与参比波长的吸收之比 7.在紫外可见分光光度法测定中,使用参比溶液的作用是() A. 调节仪器透光率的零点

B. 吸收入射光中测定所需要的光波 C. 调节入射光的光强度 D. 消除试剂等非测定物质对入射光吸收的影响 8.扫描K2Cr2O7硫酸溶液的紫外-可见吸收光谱时,一般选作参比溶液的是() A. 蒸馏水 B. H2SO4溶液 C. K2Cr2O7的水溶液 D. K2Cr2O7的硫酸溶液 9.在比色法中,显色反应的显色剂选择原则错误的是() A. 显色反应产物的值愈大愈好 B.显色剂的值愈大愈好 C. 显色剂的值愈小愈好 D. 显色反应产物和显色剂,在同一光波下的值相差愈大愈好 10.某分析工作者,在光度法测定前用参比溶液调节仪器时,只调至透光率为%,测得某有色溶液的透光率为%,此时溶液的真正透光率为() A. % B. % C. % D. % 11.用分光光度法测定KCl中的微量I—时,可在酸性条件下,加入过量的KMnO4将I—氧化为I2,然后加入淀粉,生成I2-淀粉蓝色物质。测定时参比溶液应选择() A. 蒸馏水 B. 试剂空白 C. 含KMnO4的试样溶液 D. 不含KMnO4的试样溶液 12.常用作光度计中获得单色光的组件是() A. 光栅(或棱镜)+反射镜 B. 光栅(或棱镜)+狭缝 C. 光栅(或棱镜)+稳压器 D. 光栅(或棱镜)+准直镜 13.某物质的吸光系数与下列哪个因素有关() A. 溶液浓度 B. 测定波长 C. 仪器型号 D. 吸收池厚度 14.假定ΔT=±%A= 则测定结果的相对误差为() A. ±% B. ±% C. ±% D. ±% 15.今有A和B两种药物的复方制剂溶液,其吸收曲线相互不重叠,下列有关叙述正确的是()

紫外分光光度法计算

第20章吸光光度法 思考题 1?什么叫单色光?复色光?哪一种光适用于朗伯一比耳定律? 答:仅具有单一波长的光叫单色光。由不同波长的光所组成光称为复合光。朗伯--比耳定律应 适用于单色光。 2?什么叫互补色?与物质的颜色有何关系? 答:如果两种适当的单色光按一定的强度比例混合后形成白光,这两种光称为互补色光。当 混合光照射物质分子时,分子选择性地吸收一定波长的光,而其它波长的光则透过,物质呈现透过光的颜色,透过光与吸收光就是互补色光。 3?何谓透光率和吸光度?两者有何关系? 答:透光率是指透射光强和入射光强之比,用T表示T=X 10 吸光度是吸光物质对入射光的吸收程度,用A表示,A b e,其两者的关系 A lgT 4.朗伯-比耳定律的物理意义是什么?什么叫吸收曲线?什么叫标准曲线? 答:朗伯--比耳定律是吸光光度法定量分析的理论依据,即吸光物质溶液对光的吸收程度与溶液浓度和液层厚度之间的定量关系。数学表达式为 A lgT be 吸收曲线是描述某一吸光物质对不同波长光的吸收能力的曲线,即在不同波长处测得吸 光度,波长为横坐标,吸光度为纵坐标作图即可得到吸收曲线。 标准曲线是描述在一定波长下,某一吸光物质不同浓度的溶液的吸光能力的曲线,吸光度 为纵坐标,浓度为横坐标作图即可得到。 5?何谓摩尔吸光系数?质量吸光系数?两者有何关系? 答:吸光系数是吸光物质吸光能力的量度。摩尔吸光系数是指浓度为1.0 mol L,液层度为1em 时,吸光物质的溶液在某一波长下的吸光度。用&表示,其单位L mol 1 cm 1。 质量吸光系数是吸光物质的浓度为1g L 1时的吸光度,用a表示。其单位L g 1 cm 1 两者的关系为 e M a M为被测物的摩尔质量。 6. 分光光度法的误差来源有哪些? 答:误差来源主要有两方面,一是所用仪器提供的单色光不纯,因为单色光不纯时,朗伯一

双波长分光光度法的基本原理及应用

双波长分光光度法的基本原理及应用 应用分光光度法对共存组分进行不分离定量测定时,通常采用的方法有双波长法,三波长法,导数光谱法、差谱分析法及多组分分析法等方法,其快速,简便的优点使这些方法在实用分析中得到越来越广泛的应用。其中以双波长法的应用为最多,该法的准确度和精密度要高于其它方法,是对共存组分不分离定量测定的有效方法之一。 实用中的双波长法主要采用等吸收波长法和系数倍增法两种分析方法,下面就其基本原理和应用作以介绍: 一、等吸收波长法 1、基本原理 图1是同一组分三个不同浓度供试液的吸收光谱图,经典分光光度法的定量测定通常是在被测组分的最大吸收波长处进行测定,根据兰伯一比耳定律,其吸光度值与被测组分的浓度C成正比,即: 依(3)式测定被测组分a,则可完全消除b组分的干扰,达到共存组分不分离进行定量测定的目的。 2、影响因素 (1)测定波长和组合波长的选择应使被测组分的△A值尽可能大,以增加测定的灵敏度和精确度。 (2)测定波长和组合波长应尽可能选择在光谱曲线斜率变化较小的波长处,以减小波长变化对测定结果的影响。 (3)干扰组分等吸收波长(组合波长)的选择必须精确,只有其△A值等于零时才能完全消除干扰,否则会引入测定误差。为此,在实用分析中,都是先配制一个干扰组分b的供试液,在仪器上准确找出等吸收波长,然后再对样品进行测定。 3 应用实例 等吸收波长法的一个典型应用实例为收载于《中华人民共和国药典》中的抗菌消炎药复方磺胺甲噁唑片的含量测定。复方磺胺甲噁唑片中含有磺胺甲噁唑(SMZ)和甲氧苄(TMP)两个成分,其吸收光谱见图3。 当测定SMZ时,选择其最大吸收波长257nm为测定波长,可以在干扰组分TMP的光谱曲线上304nm附近找到等吸收波长为组合波长消除其干扰;当测定TMP时,选择239nm为测定波长,可以在干扰组分SMZ的光谱曲线上295nm附近找到等吸收波长为组合波长消除其干扰,分别对SMZ和TMP进行含量测定。 二、系数倍增法 1 基本原理

双波长法测淀粉含量

附录4 直链淀粉和支链淀粉的测定(双波长法) 1、目的 淀粉一般都是直链淀粉和支链淀粉的混合物。直链淀粉和支链淀粉含量和比例因植物种类而不同,决定着谷物种子的出粉率和食物品质,并影响着谷物的贮藏加工。通过本实验学习掌握双波长测定谷物中直链淀粉和支链淀粉的含量。 2、原理 根据双波长比色原理,如果溶液中某溶质在两个波长下均有吸收,则两个波长的吸收差值与溶质浓度成正比。 直链淀粉与碘作用产生纯蓝色,支链淀粉与碘作用产生紫红色。如果用两种淀粉的标准溶液与碘反应,然后在同一个坐标系里进行扫描或做吸收曲线,即可达到实验目的。 3、仪器、试剂和材料 1、仪器 (1)电子分析天平 (2)分光光度计1台 (3)ph计 (4)容量瓶100mlx2,50mlx16 (5)吸管0.5mlx1,2mlx1,5mlx1 2、试剂 (1)乙醚 (2)无水乙醇 (3)0.5mol/LKOH溶液 (4)0.1mol/LHCL溶液 (5)碘试剂:称取碘化钾2.0g,溶于少量蒸馏水,在加碘0.2g,待溶解后用蒸馏水稀释定容至100ml。 (6)直链淀粉标准溶液:称取直链淀粉纯品0.1000g,放在100ml容量瓶中,加入0.5mol/LKOH10ml,在热水中待溶解后,取出加蒸馏水定容至100ml,即为1mg/ml直链淀粉标准溶液。 (7)支链淀粉标准溶液:用0.1000 g 支链淀粉按(6)法制备成1mg支链淀粉标准溶液。 3、材料 小麦粉 4、操作步骤 1、选择支链、直链淀粉测定的波长参比波长。 直链淀粉:取1mg/ml直链淀粉标准溶液1ml,放入50ml容量瓶中,加蒸

馏水30ml,以0.1mol/LHCL溶液调至PH3.5左右,加入碘试剂0.5ml,并以蒸馏水定容。静置20min,以蒸馏水为空白,用光束分光光度计进行可见光全波段扫描或用普通比色法绘出直链淀粉吸收曲线。 支链淀粉:取1mg/ml支链淀粉标准溶液1ml,放入50ml容量瓶中,加蒸馏水30ml,以0.1mol/LHCL溶液调至PH3.5左右,加入碘试剂0.5ml,并以蒸馏水定容。静置20min,以蒸馏水为空白,用光束分光光度计进行可见光全波段扫描或用普通比色法绘出支链淀粉吸收曲线。 2、制作双波长直链淀粉标准曲线:吸取1mg/ml直链淀粉标准溶液0. 3、0.5、0.7、0.9、1.1、1.3ml分别放入6只不同的50ml容量瓶中,加蒸馏水30ml,以0.1mol/LHCL溶液调至PH3.5左右,加入碘试剂0.5ml,并以蒸馏水定容。静置20min,以蒸馏水为空白,比色,吸光差值为纵坐标,直链淀粉含量(mg)为横坐标制备双波长直链淀粉标准曲线。 3、制作双波长支链淀粉标准曲线:吸取1mg/ml支链淀粉标准溶液2.0、2.5、3.0、3.5、4.0、4.5ml分别放入6只不同的50ml容量瓶中,加蒸馏水30ml,以0.1mol/LHCL溶液调至PH3.5左右,加入碘试剂0.5ml,并以蒸馏水定容。静置20min,以蒸馏水为空白,比色,吸光差值为纵坐标,支链淀粉含量(mg)为横坐标制备双波长支链淀粉标准曲线。 4、样品中直链淀粉、支链淀粉及总淀粉的测定:样品粉碎过60目筛,用乙醚脱脂,称取脱脂样品0.1g左右(精确到1ml),置于50ml容量瓶中。加0.5mol/LKOH溶液10ml,在沸水浴中加热10min,取出,以蒸馏水定容至50ml,静置。吸取样品液2.5ml两份(即样品液和空白液),均加蒸馏水30ml,以0.1mol/LHCL溶液调至PH3.5左右,样品中加入碘试剂0.5ml,空白液不加碘试剂,然后定容至50ml。静置20min,以样品空白液为对照比色。 五、结果处理 直链淀粉(%)=(X1*50*100)/(2.5*m*1000) 支链淀粉(%)=(X2*50*100)/(2.5*m*1000) 式中, X1----查双波长直链淀粉标准曲线得样品中直链淀粉含量(mg) X2----查双波长支链淀粉标准曲线得样品中支链淀粉含量(mg) m-----样品质量(g) 总淀粉(%)=直链淀粉(%)+支链淀粉(%)

实验九 差示分光光度法测定维生素B 1片的含量

实验九差示分光光度法测定维生素B1片的含量 一、实验目的 1.掌握差示分光光度法的基本原理。 2.熟悉标准曲线定量的操作方法。 二、实验原理 (一)差示分光光度法(简称△A法),它保留了通常的分光光度法简便、快捷、直接读数的优点,又无需事先分离,并能消除干扰。 方法:取两份相等的供试液,分别制成两种不同的化学环境(如在其一中加酸或碱,改变pH或在其一中加能与供试品发生某种化学反应的试剂),然后将它们稀释至同样浓度后,分置于样品池和参比池中,于适当波长处,测定吸光度的差值(△A)。应用条件:①供试品在不同的化学环境中以不同的分子形式存在,它们的吸收光谱有显著的差异;②干扰物的吸收不受测定时化学环境的影响,光谱行为不变。 定量依据:设x、y分别代表在两种不同的化学环境中供试品的存在形式,它们在测定波长处的吸光度以A x、A y表示,

背景和干扰的吸收度以A Z表示,A Z不受测定时化学环境改变的影响。根据吸光度加和性原则: 即在供试液的一定浓度范围内△A值与其浓度C呈线性关系,并消除了A Z的干扰,可用标准曲线法或对照法定量。 (二)维生素B1片的测定 维生素B1分子中具有共轭双键结构,在紫外区有吸收,其紫外吸收随溶液pH的变化 而变化。在pH7的磷酸盐缓冲液中具有两个吸收峰,在232~233nm 处,%11cm E=345; 在266nm处,%11cm E=255。在pH2时,最大吸收在246nm 处,%11cm E=425。可用于维生素B1片的差示分光光度法的测定。 三、实验方法 (一)测定波长的选择 精密称取维生素B1100mg,用水溶解并稀释成100ml,精密量取2ml二份,分别用缓冲液(pH7.0)和盐酸液(pH 2.0)稀释成100ml,以相应溶剂为空白,测定紫外吸收光谱。再将前者放于参比池,后者放于样品池,绘制差示吸收光谱(见图11)。差示光谱图表明在247nm处有最大差示吸收值(△A),确定247nm为

相关文档
最新文档