蛋白质有关的各类实验

蛋白质有关的各类实验
蛋白质有关的各类实验

1 蛋白质含量测定法

2 WESTERN PROTOCOL

3 Western免疫印迹(W estern Blot)

4 蛋白质沉淀法

5 蛋白质提取的方法总汇

1 蛋白质含量测定法

本实验的目的是学会各种蛋白质含量的测定方法。了解各种测定方法的基本原理和优缺点。蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。

考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。

一、微量凯氏(Kjeldahl)定氮法

样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:

CH2COOH

| + 3H2SO4 ? 2CO2 + 3SO2 +4H2O +NH3 (1)

NH2

2NH3 + H2SO4 ? (NH4)2SO4 (2)

(NH4)2SO4 + 2NaOH ? 2H2O +Na2SO4 + 2NH3 (3)

反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白

氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

五种蛋白质测定方法比较如下:

方法灵敏度时间原理干扰物质说明凯氏定氮法

(Kjedahl法)灵敏度低,适用于0.2~ 1.0mg氮,误差为±2%费时8~10小时将蛋白氮转化为氨,用酸吸收后滴定非蛋白氮(可用三氯乙酸沉淀蛋白质而分离)用于标准蛋白质含量的准确测定;干扰少;费时太长双缩脲法(Biuret法)灵敏度低1~20mg 中速

20~30分钟多肽键+碱性Cu2+?紫色络合物硫酸铵;

Tris缓冲液;某些氨基酸用于快速测定,但不太灵敏;不同蛋白质显色相似紫外吸收法较为灵敏50~100mg 快速5~10分钟蛋白质中的酪氨酸和色氨酸残基在280nm处的光吸收各种嘌吟和嘧啶;各种核苷酸用于层析柱流出液的检测;核酸的吸收可以校正Folin-酚试剂法(Lowry法)灵敏度高~5mg 慢速40~60分钟双缩脲反应;磷钼酸-磷钨酸试剂被Tyr和Phe还原硫酸铵;Tris缓冲液;甘氨酸;各种硫醇耗费时间长;操作要严格计时;颜色深浅随不同蛋白质变化

考马斯亮蓝法(Bradford法) 灵敏度最高1~5mg 快速5~15分钟考马斯亮蓝染料与蛋白质结合时,其lmax由465nm变为595nm 强碱性缓冲液;TritonX-100;SDS 最好的方法;干扰物质少;颜色稳定;颜色深浅随不同蛋白质变化

二、双缩脲法(Biuret法)

(一)实验原理

双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris 缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材

1. 试剂:

(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/ml 的标准蛋白溶液,可用BSA浓度1mg/ml的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05N NaOH配制。(2)双缩脲试剂:称以 1.50克硫酸铜(CuSO4?5H2O)和 6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。

2. 器材:

可见光分光光度计、大试管15支、旋涡混合器等。

(三)操作方法

1. 标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。

三、Folin—酚试剂法(Lowry法)

(一)实验原理

这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即Folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。这两种显色反应产生深兰色的原因是: 在碱性条件下,蛋白质中的肽键与铜结合生成复合物。?Folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。在一定的条件下,兰色深度与蛋白的量成正比。

Folin—酚试剂法最早由Lowry确定了蛋白质浓度测定的基本步骤。以后在生物化学领域得到广泛的应用。这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,

要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。对双缩脲反应发生干扰的离子,同样容易干扰Lowry反应。而且对后者的影响还要大得多。酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。

进行测定时,加F olin—酚试剂时要特别小心,因为该试剂仅在酸性pH条件下稳定,但上述还原反应只在pH=10的情况下发生,故当Folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂被破坏之前,还原反应即能发生。

此法也适用于酪氨酸和色氨酸的定量测定。

此法可检测的最低蛋白质量达5mg。通常测定范围是20~250mg。

(二)试剂与器材

1.试剂

(1)试剂甲:

(A)10克Na2CO3,2克NaOH和0.25克酒石酸钾钠(KNaC4H4O6?4H2O)。溶解于500毫升蒸馏水中。

(B)0.5克硫酸铜(CuSO4?5H2O)溶解于100毫升蒸馏水中,每次使用前,将50份(A)与1份(B)混合,即为试剂甲。

(2)试剂乙:

在2升磨口回流瓶中,加入100克钨酸钠(Na2WO4?2H2O),25克钼酸钠(Na2MoO4?2H2O)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫酸锂(Li2SO4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。稀释至1升,过滤,滤液置于棕色试剂瓶中保存。使用时用标准NaOH滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1N左右。(3)标准蛋白质溶液:

精确称取结晶牛血清清蛋白或g—球蛋白,溶于蒸馏水,浓度为250 mg/ml左右。牛血清清蛋白溶于水若混浊,可改用0.9 % NaCl溶液。

2. 器材

(1)可见光分光光度计(2)旋涡混合器

(3)秒表(4)试管16支

(三)操作方法

1. 标准曲线的测定:取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。再逐管加入0.5毫升试剂乙(Folin—酚试剂),同样立即混匀。这一步混合速度要快,否则会使显色程度减弱。然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。

注意:因Lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余

此类推。待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。每分钟测一个样品。

进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。

Folin—酚试剂法实验表格:

管号 1 2 3 4 5 6 7 8 9 10 标准蛋白质0 0.1 0.2 0.4 0.6 0.8 1.0 (250mg/ml)

未知蛋白质0.2 0.4 0.6(约250mg/ml)

蒸馏水 1.0 0.9 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4

试剂甲 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

试剂乙0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

每管中蛋白质的量(mg)

吸光度值(A700)

2. 样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。通常样品的测定也可与标准曲线的测定放在一起,同时进行。即在标准曲线测定的各试管后面,再增加3个试管。如上表中的8、9、10试管。根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。

注意,由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。

四、改良的简易Folin—酚试剂法

(一)试剂

1. 试剂甲:碱性铜试剂溶液中,含0.5N NaOH、10%Na2CO3、0.1%酒石酸钾和0.05%硫酸铜,配制时注意硫酸铜用少量蒸馏水溶解后,最后加入。

2. 试剂乙:与前面的基本法相同。临用时加蒸馏水稀释8倍。

3. 标准蛋白质溶液:同基本法。

(二)操作步骤

测定标准曲线与样品溶液的操作方法与基本法相同。只是试剂甲改为1毫升,室温放置10分钟后,试剂乙改为4毫升。在55℃恒温水浴中保温5分钟。用流动水冷却后,在660nm 下测定其吸光度值。

改良的快速简易法,可获得与Folin—酚试剂法(即Lowry基本法)相接近的结果。

五、考马斯亮兰法(Bradford法)

(一)实验原理

双缩脲法(Biuret法)和Folin—酚试剂法(Lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。

1976年由Bradford建立的考马斯亮兰法(Bradford法),是根据蛋白质与染料相结合的原理设计的。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。这一方法是目前灵敏度最高的蛋白质测定法。

考马斯亮兰G-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由465nm变为595nm,溶液的颜色也由棕黑色变为兰色。经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。

在595nm下测定的吸光度值A595,与蛋白质浓度成正比。

Bradford法的突出优点是:

(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。这是因为蛋

白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大的多。

(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要5分钟左右。由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。因而完全不用像Lowry法那样费时和严格地控制时间。

(3)干扰物质少。如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。

此法的缺点是:

(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此Bradford法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用g—球蛋白为标准蛋白质,以减少这方面的偏差。

(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、Triton X-100、十二烷基硫酸钠(SDS)和0.1N的NaOH。(如同0.1N的酸干扰Lowary法一样)。

(3)标准曲线也有轻微的非线性,因而不能用Beer定律进行计算,而只能用标准曲线来测定未知蛋白质的浓度。

(二)试剂与器材

1. 试剂:

(1)标准蛋白质溶液,用g—球蛋白或牛血清清蛋白(BSA),配制成1.0mg/ml和0.1mg/ml 的标准蛋白质溶液。

(2)考马斯亮兰G—250染料试剂:称100mg考马斯亮兰G—250,溶于50ml 95%的乙醇后,再加入120ml 85%的磷酸,用水稀释至1升。

2. 器材:

(1)可见光分光光度计

(2)旋涡混合器

(3)试管16支

(三)操作方法

1. 标准方法

(1)取16支试管,1支作空白,3支留作未知样品,其余试管分为两组按表中顺序,分别加入样品、水和试剂,即用1.0mg/ml的标准蛋白质溶液给各试管分别加入:0、0.01、0.02、0.04、0.06、0.08、0.1ml,然后用无离子水补充到0.1ml。最后各试管中分别加入5.0ml考马斯亮兰G—250试剂,每加完一管,立即在旋涡混合器上混合(注意不要太剧烈,以免产生大量气泡而难于消除)。未知样品的加样量见下表中的第8、9、10管。

(2)加完试剂2~5分钟后,即可开始用比色皿,在分光光度计上测定各样品在595nm处的光吸收值A595,空白对照为第1号试管,即0.1mlH2O加5.0mlG—250试剂。

注意:不可使用石英比色皿(因不易洗去染色),可用塑料或玻璃比色皿,使用后立即用少量95%的乙醇荡洗,以洗去染色。塑料比色皿决不可用乙醇或丙酮长时间浸泡。

考马斯亮兰法实验表格:

管号 1 2 3 4 5 6 7 8 9 10 标准蛋白质0 0.01 0.02 0.04 0.06 0.08 0.10 (1.0mg/ml)

未知蛋白质0.02 0.04 0.06 (约1.0mg/ml)

蒸馏水0.1 0.09 0.08 0.06 0.04 0.02 0 0.08 0.06 0.04

考马斯亮蓝G-250试剂 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 每管中的蛋白质量(mg)

光吸收值(A595)

(3)用标准蛋白质量(mg)为横座标,用吸光度值A595为纵座标,作图,即得到一条标

准曲线。由此标准曲线,根据测出的未知样品的A595值,即可查出未知样品的蛋白质含量。

0.5mg牛血清蛋白/ml溶液的A595约为0.50。

2. 微量法

当样品中蛋白质浓度较稀时(10-100mg/ml),可将取样量(包括补加的水)加大到0.5ml 或1.0ml, 空白对照则分别为0.5ml或1.0ml H2O, 考马斯亮蓝G-250试剂仍加5.0ml, 同时作相应的标准曲线,测定595nm的光吸收值。

0.05mg牛血清蛋白/ml溶液的A595约为0.29。

六、紫外吸收法

蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。

紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。

此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。

此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。

下面介绍四种紫外吸收法:

1. 280nm的光吸收法

因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。

测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值A280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,A280约为1.0左右。由此可立即计算出蛋白质的大致浓度。

许多蛋白质在一定浓度和一定波长下的光吸收值(A1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(A1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值A1%1cm,λ称为百分吸收系数或比吸收系数。

蛋白质浓度= (A280′10 )/ A1%1cm,280nm (mg/ml)

(Q 1%浓度?10mg/ml)

例:牛血清清蛋白:A1%1cm=6.3 (280nm)

溶菌酶:A1%1cm=22.8 (280nm)

若查不到待测蛋白质的A1%1cm值,则可选用一种与待测蛋白质的酪氨酸和色氨酸含量相近的蛋白质作为标准蛋白质,用标准曲线法进行测定。标准蛋白质溶液配制的浓度为1.0mg/ml。常用的标准蛋白质为牛血清清蛋白(BSA)。

标准曲线的测定:取6支试管,按下表编号并加入试剂:

管号 1 2 3 4 5 6 BSA(1.0mg/ml)0 1.0 2.0 3.0 4.0 5.0 H2O 5.0 4.0 3.0 2.0 1.0 0 A280

用第1管为空白对照,各管溶液混匀后在紫外分光光度计上测定吸光度A280,以A280为纵座标,各管的蛋白质浓度或蛋白质量(mg)为横座标作图,标准曲线应为直线,利用此标准曲线,根据测出的未知样品的A280值,即可查出未知样品的蛋白质含量,也可以用2至6管A280值与相应的试管中的蛋白质浓度计算出该蛋白质的A1%1cm,280nm

2. 280nm和260nm的吸收差法

核酸对紫外光有很强的吸收,在280nm处的吸收比蛋白质强10倍(每克),但核酸在260nm 处的吸收更强,其吸收高峰在260nm附近。核酸260nm处的消光系数是280nm处的2倍,而蛋白质则相反,280nm紫外吸收值大于260nm的吸收值。通常:

纯蛋白质的光吸收比值:A280/A260 ? 1.8

纯核酸的光吸收比值:A280/A260 ? 0.5

含有核酸的蛋白质溶液,可分别测定其A280和A260,由此吸收差值,用下面的经验公式,即可算出蛋白质的浓度。

蛋白质浓度=1.45×A280-0.74×A260 (mg/ml)

此经验公式是通过一系列已知不同浓度比例的蛋白质(酵母烯醇化酶)和核酸(酵母核酸)的混合液所测定的数据来建立的。

3. 215nm与225nm的吸收差法

蛋白质的稀溶液由于含量低而不能使用280nm的光吸收测定时,可用215nm与225nm吸收值之差,通过标准曲线法来测定蛋白质稀溶液的浓度。

用已知浓度的标准蛋白质,配制成20~100 mg/ml的一系列5.0ml的蛋白质溶液,分别测定215nm和225nm的吸光度值,并计算出吸收差:

吸收差D= A215 -A225

以吸收差D为纵座标,蛋白质浓度为横座标,绘出标准曲线。再测出未知样品的吸收差,即可由标准曲线上查出未知样品的蛋白质浓度。

本方法在蛋白质浓度20~100mg/ml范围内,蛋白质浓度与吸光度成正比,NaCl、(NH4)2SO4以及0.1M磷酸、硼酸和Tris等缓冲液,都无显著干扰作用,但是0.1N NaOH, 0.1M乙酸、琥珀酸、邻苯二甲酸、巴比妥等缓冲液的215nm光吸收值较大,必须将其浓度降到0.005M 以下才无显著影响。

4. 肽键测定法

蛋白质溶液在238nm处的光吸收的强弱,与肽键的多少成正比。因此可以用标准蛋白质溶液配制一系列50~500mg/ml已知浓度的5.0ml蛋白质溶液,测定238nm的光吸收值A238,以A238为纵座标, 蛋白质含量为横座标,绘制出标准曲线。未知样品的浓度即可由标准曲线求得。

进行蛋白质溶液的柱层析分离时,洗脱液也可以用238nm检测蛋白质的峰位。

本方法比280nm吸收法灵敏。但多种有机物,如醇、酮、醛、醚、有机酸、酰胺类和过氧化物等都有干扰作用。所以最好用无机盐,无机碱和水溶液进行测定。若含有有机溶剂,可先将样品蒸干,或用其他方法除去干扰物质,然后用水、稀酸和稀碱溶解后再作测定。

研究蛋白质与蛋白质相互作用方法总结-实验步骤

研究蛋白质与蛋白质相互作用方法总结-实验步骤 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。

第四章 蛋白质化学题答案

第四章蛋白质化学 一、单项选择题 1.蛋白质分子的元素组成特点是 A.含大量的碳B.含大量的糖C.含少量的硫D.含少量的铜E.含氮量约16% 2.一血清标本的含氮量为5g/L,则该标本的蛋白质浓度是 A.15g/L B.20g/L C.31g/L D.45g/L E.55g/L 3.下列哪种氨基酸是碱性氨基酸? A.亮氨酸B.赖氨酸C.甘氨酸D.谷氨酸E.脯氨酸 4.下列哪种氨基酸是酸性氨基酸? A.天冬氨酸B.丙氨酸C.脯氨酸D.精氨酸E.甘氨酸 5.含有两个羧基的氨基酸是 A.丝氨酸B.苏氨酸C.酪氨酸D.谷氨酸E.赖氨酸 6.在pH6.0的缓冲液中电泳,哪种氨基酸基本不移动? A.丙氨酸B.精氨酸C.谷氨酸D.赖氨酸E.天冬氨酸 7.在pH7.0时,哪种氨基酸带正电荷? A.精氨酸B.亮氨酸C.谷氨酸D.赖氨酸

E.苏氨酸 8.蛋氨酸是 A.支链氨基酸B.酸性氨基酸 C.碱性氨基酸D.芳香族氨酸 E.含硫氨基酸 9.构成蛋白质的标准氨基酸有多少种? A.8种B.15种 C.20种D.25种 E.30种 10.构成天然蛋白质的氨基酸 A.除甘氨酸外,氨基酸的α碳原子均非手性碳原子 B.除甘氨酸外,均为L-构型C.只含α羧基和α氨基D.均为极性侧链E.有些没有遗传密码11.天然蛋白质中不存在的氨基酸是 A.瓜氨酸B.蛋氨酸 C.丝氨酸D.半胱氨酸 E.丙氨酸 12.在中性条件下大部分氨基酸以什么形式存在? A.疏水分子B.非极性分子 C.负离子D.正离子 E.兼性离子 13.所有氨基酸共有的显色反应是 A.双缩脲反应B.茚三酮反应 C.酚试剂反应D.米伦反应 E.考马斯亮蓝反应 14.蛋白质分子中的肽键 A.氨基酸的各种氨基和各种羧基均可形成肽键 B.某一氨基酸的γ-羧基与另一氨基酸的α氨基脱水形成 C.一个氨基酸的α-羧基与另一氨基酸的α氨基脱水形成 D.肽键无双键性质

实验三 蛋白质的两性反应和等电点的测定

实验三蛋白质的两性反应和等电点的测定 一、目的和要求 1.了解蛋白质的两性解离性质。 2.初步学会测定蛋白质等电点的方法。 二、原理 蛋白质由许多氨基酸组成,虽然绝大多数的氨基与羧基成肽键结合,但是总有一定数量自由的氨基与羧基,以及酚基等酸碱基团,因此蛋白质和氨基酸一样时两性电解质。调节溶液的酸碱度达到一定的氢离子浓度时,蛋白质分子所带的正电荷和负电荷相等,以兼性离子状态存在,在电场内该蛋白质分子既不向阴极移动,也不向阳极移动,这时溶液的PH值称为该蛋白质的等电点(PI)。当溶液的PH低于蛋白质等电点时,即在氢离子较多的条件下,蛋白质分子带正电荷成为阳离子;当溶液的PH高于蛋白质等电点时,即在氢氧根离子较多的条件下,蛋白质分子带负电荷成为阴离子。 在等电点时蛋白质溶解度最小,容易沉淀析出。 三、试剂和器材 1.试剂 0.5%酪蛋白溶液;酪蛋白醋酸钠溶液; 0.04%溴甲酚绿指示剂; 0.02N盐酸; 0.1N醋酸溶液; 0.01N醋酸溶液;1N醋酸溶液; 0.02N氢氧化钠溶液 2.器材

试管及试管架;滴管;吸量管( 1、5ml) 四、操作方法 1.蛋白质的两性反应 (1)取1支试管,加 0.5%酪蛋白溶液20滴和 0.04%溴甲酚绿指示剂5-7滴,混匀。观察溶液呈观的颜色,并说明原因。 (2)用细滴管缓慢加入 0.02N盐酸溶液,随滴随摇,直至有明显的大量沉淀发生,此时溶液的PH 接近与酪蛋白的等电点。观察溶液颜色的变化。 (3)继续滴入 0.02N盐酸溶液,观察沉淀和溶液颜色的变化,并说明原因。 (4)再滴入 0.02N氢氧化钠溶液进行中和,观察是否出现沉淀,解释其原因。 继续滴入 0.02N氢氧化钠溶液,为什么沉淀又会溶液?溶液的颜色如何变化?说明了什么问题? 2.酪蛋白等电点的测定 (1)取9支粗细相近的干燥试管,编号后按下表的顺序准确地加入各种试剂。 加入每种试剂后应混合均匀。 试管编号9

检测蛋白质与蛋白质之间相互作用的实验技术

一、检测蛋白质与蛋白质相互作用 ①FRET技术(in vivo) FRET,Fluorescence resonanceenergy transfer,即荧光共振能量转移技术。该技术得原理就是用一种波长得光激发某种荧光蛋白后,它释放得荧光刚好又能激发另一种荧光蛋白,使其释放另一波长得荧光,如下图所示: 以下图为例,若要利用FRET检测两种蛋白就是否有相互作用,需将两种蛋白得基因分别与这两种荧光蛋白得基因融合,并在细胞内表达出两种融合蛋白。然后只需用紫外光对CFP进行激发,并检测GFP就是否放出绿色荧光.如果能检测到绿色荧光,那么可以说明这两种蛋白可能有相互作用;反之,则就是这两种蛋白没有相互作用。 ②酵母双、三杂交技术(in vivo) 酵母双杂交系统主要用于考察两种蛋白就是否有相互作用,其原理就是典型得真核生长转录因子,如GAL4、GCN4等都含有二个不同得结构域,即AD与BD.这些转录因子只有同时具有这两个结构域时才能起始转录.由此,设计不同得两个载体,一个含有AD基因(假设为A载体),另一个含有BD基因(假设为B载体)。 一般将一个已知蛋白得基因连在B载体上,作为诱饵(Bait),将未知蛋白得基因连在A载体上,将这两个载体都转到特定得酵母细胞内,瞧未知蛋白与已知蛋白就是否有相互作用.如果两者有相互作用,那么就可以启动报告基因得转录,从而使这个酵母细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在择培养基上显现出来或者生存下来,如下图所示:

由于酵母双杂交系统不能鉴定膜蛋白间得相互作用,因此又发展出了分离泛素酵母双杂交系统。该系统得原理如下图所示: 如图所示,将泛素蛋白拆分为两个片段,即C端段(Cub)与N端段(NubG),并在C端段得N端接上一个LexA—VP16转录因子,此时它并不能激活基因转录(因为它被限制在了C端段上,不能进入细胞核发挥作用)。 将该C端段连到一个膜蛋白上,将N端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠近时会使泛素蛋白得N端段与C端段靠近结合,形成一个完整得泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记得片段降解,那么连接C端段得LexA-VP16转录因子掉落,即可进入细胞核启动标记基因得表达。 酵母三杂交得原理与双杂交一样,只就是它研究得就是两个蛋白与第三个成分间得相互作用,通过第三个成分使两个蛋白相互靠近。第三个成分可以就是:蛋白、RNA或小分子,如下图所示: 如上图所示,在加入第三种成分前,蛋白X与蛋白Y之间并无直接相互作用,因此无法使BD与AD靠近,报告基因不能表达;当加入第三种成分后,蛋白X与蛋白Y得距离被拉近,BD与AD靠近,报告基因表达,从而可以被检测到。 ③ Pulldown技术(invitro) Pulldown,即蛋白沉降技术,它就是建立在蛋白质亲与层析得基础上得一种检测蛋白质间相互作用得分析方法.亲与层析得原理如下图所示,不同蛋白对配体得亲与程度不同,因此可以先将非特异结合得蛋白用低浓度缓冲液给清洗出去,只剩目得蛋白与层析柱结合,然后再用洗脱液将目得蛋白洗脱下来,达到纯化目得蛋白得作用。

蛋白提取步骤

提蛋白及WB得步骤 整个过程细胞或蛋白都必须放冰上 准备工作:前一天准备:借钥匙、检查细胞裂解液相关试剂就是否充足、 当天准备:洗玻璃板、开紫外,冰块、碎冰、标记1.5ml 离心管及0。6ml离心 管、细胞刮板、开低温高速离心机 细胞裂解液配制: 1ml celllysis 10ul NP-40(离心机后) 25ul 焦磷酸钠 40ul NaF 1ul β—甘油磷酸 2 ul Na3VO4 1ul 蛋白酶抑制剂(用完即放回冰箱) 10ul PMSF(最后加,随加随用,有毒) 细胞裂解与收集 1.观察细胞状态,并准备提蛋白:吸走培养基、用PBS洗细胞两次(倾斜贴壁加PBS,左右轻轻 摇),倾斜贴壁吸走PBS。 2.将细胞盘拿到外间冰上,加裂解液(体积网上推荐:一般106加0。1ml ),冰上静置1-2min。 3.刮细胞:细胞刮板每次用之前拿水涮一涮,甩干,然后从中间到外面打圈刮,再从下往上,从 上往下全面刮,(刮得时候要迅速),最后用枪吸取裂解液至离心管、 细胞破碎 4.超声波破碎细胞:准备三个小烧杯,加满冰块,三个小夹子。(超声波破碎仪得铁棒不要碰到 离心管得壁与底部) 超声波设置: 工作功率5% 工作时间3min 开机时间15s,关机时间30s 温度0度, 报警温度1度 5.4℃、13000r/min,离心15min、(离心机用后一直保持打开得状态,) 蛋白保存 6.蛋白保存及分装:吸上清液至0。6ml离心管,涡旋、吸一半至另一个管中,涡旋。-80℃保 存。 注意事项:PMSF一定要现用现加,PMSF在水溶液中不稳定,30min内就会降解一半。样品处理超过1h,补加一次。 BCA测定蛋白浓度 1、测空白板,选差异较小得孔。 BCA测定法波长570,Bracford:595 2、标准蛋白得稀释(5mg/ul):分装1ml PBS来使用,稀释标准蛋白至0.5mg/ul。 取5ul标准蛋白+45ul PBS

蛋白质的性质实验(二)

蛋白质的性质实验(二) 蛋白质的等电点测定和沉淀反应 一、蛋白质等电点的测定 1.目的 (1)了解蛋白质的两性解离性质。 (2)学习测定蛋白质等电点的一种方法。 2.原理 蛋白质是两性电解质。在蛋白质溶液中存在下列平衡: 蛋白质分子的解离状态和解离程度受溶液的酸碱度影响。当溶液的pH达到一定数值时,蛋白质颗粒上正负电荷的数目相等,在电场中,蛋白质既不向阴极移动,也不向阳极移动,此时溶液的pH值称为此种蛋白质的等电点。不同蛋白质各有其特异的等电点。在等电点时,蛋白质的理化性质都有变化,可利用此种性质的变化测定各种蛋白质的等电点。最常用的方法是测其溶解度最低时的溶液pH值。 本实验借观察在不同pH溶液中的溶解度以测定酪蛋白的等电点。用醋酸和醋酸钠(醋酸钠混合在酪蛋白溶液中)配制成各种不同pH值的缓冲液。向诸缓冲溶液中加入酪蛋白后,沉淀出现最多的缓冲液的pH值即为酪蛋白的等电点。 3.器材 4.试剂 (1)0.4%酪蛋白醋酸钠溶液 200mL 取0.4g酪蛋白,加少量水在乳钵中仔细地研磨,将所得的蛋白质悬胶液移入200 mL锥形瓶内,用少量40~50 ℃的温水洗涤乳钵,将洗涤液也移入锥形瓶内。加入10 mL1 mol/L醋酸钠溶液。把锥形瓶放到50℃水浴中,并小心地旋转锥形瓶,直到酪蛋白完全溶解为止。将锥形瓶内的溶液全部移至 100 mL容量瓶内,加水至刻度,塞紧玻塞,混匀。 5.操作 (1)取同样规格的试管4支,按下表顺序分别精确地加入各试剂,然后混匀。

(2)向以上试管中各加酪蛋白的醋酸钠溶液1mL,加一管,摇匀一管。此时1、2、3、4 管的pH依次为5.9、5.3、4.7、3.5。观察其混浊度。静置10分钟后,再观察其混浊度。最混浊的一管的pH即为酪蛋白的等电点。 二、蛋白质的沉淀及变性 1.目的 (1)加深对蛋白质胶体溶液稳定因素的认识。 (2)了解沉淀蛋白质的几种方法及其实用意义。 (3)了解蛋白质变性和沉淀的关系。 2.原理 在水溶液中的蛋白质分子由于表面生成水化层和双电层而成为稳定的亲水胶 体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水而沉淀。 蛋白质的沉淀反应可分为两类。 (1)可逆的沉淀反应此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,蛋白质的沉淀仍能溶解于原来的溶剂中,并保持其天然性质而不变性。如大多数蛋白质的盐析作用或在低温下用乙醇(或丙酮)短时间作用于蛋白质。提纯蛋白质时,常利用此类反应。 (2)不可逆沉淀反应此时蛋白质分子内部结构发生重大改变,蛋白质常变性而沉淀,不再溶于原来溶剂中。加热引起的蛋白质沉淀和凝固,蛋白质和重金属离子或某些有机酸的反应都属于此类。 蛋白质变性后,有时由于维持溶液稳定的条件仍然存在(如电荷),并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已变性。

Western blot步骤实验蛋白提取及定量、相关试剂配制、电泳转膜及显色过程(全) (1)

Western blot实验蛋白提取及定量、相关试剂配制、电泳、转膜及显色过程步骤 高征 2014年6月

第一部分 细胞核蛋白与细胞浆蛋白抽提过程(碧云天试剂盒) 一、原理 在研究细胞时经常要研究细胞的不同组份,而研究得最多的两个细胞组份就是细胞核和细胞浆。分离细胞核蛋白和细胞浆蛋白,不仅可以用于研究蛋白在细胞内的定位,而且很多时候分离出来的核蛋白可以用于转录调控方面的研究,例如EMSA(也称gel shift),footprinting等。 细胞核蛋白与细胞浆蛋白抽提试剂盒(Nuclear and Cytoplasmic Protein Extraction Kit)提供了一种比较简单、方便的从培养细胞或新鲜组织中抽提细胞核蛋白与细胞浆蛋白的方法。约90分钟就可以完成培养细胞的细胞核蛋白与细胞浆蛋白的分离。抽提得到的蛋白可以用于Western,EMSA,footprinting,报告基因检测以及酶活力测定等后续操作。 本试剂盒是通过细胞浆蛋白抽提试剂A和B,在低渗透压条件下,使细胞充分膨胀,然后破坏细胞膜,释放出细胞浆蛋白,然后通过离心得到细胞核沉淀。最后通过高盐的细胞核蛋白抽提试剂抽提得到细胞核蛋白。本试剂盒可以抽提50个样品,如果每个样品的数量为约二百万细胞或约30-50毫克组织。 二、注意事项 1.需自备PMSF。PMSF一定要在抽提试剂加入到样品中前2-3分钟内加入,以免PMSF在水溶液中很快失效。 2.抽提蛋白的所有步骤都需在冰上或4℃进行。 3.本试剂盒对于组织样品,仅适合于新鲜组织,对冻存过的组织抽提效果很差。可以抽提的组织样品数通常不足100个。 4.使用本试剂盒抽提到的细胞核蛋白与细胞浆蛋白均可直接用碧云天生产 的BCA蛋白浓度测定试剂盒(P0009/P0010/P0010S/P0011/P0012/P0012S)测定蛋白浓度。但不适合用Bradford法测定蛋白浓度。 5.为了您的安全和健康,请穿实验服并戴一次性手套操作。 三、使用说明 1. 准备溶液:室温融解试剂盒中的三种试剂,溶解后立即放置在冰上,混匀。取适当量的细胞浆蛋白抽提试剂A备用,在使用前数分钟内加入PMSF,使PMSF 的最终浓度为1mM。取适当量的细胞核蛋白抽提试剂备用,在使用前数分钟内加入PMSF,使PMSF的最终浓度为1mM。(蛋白酶抑制剂可酌情翻倍) 2. 对于贴壁细胞:用PBS洗一遍,用细胞刮子刮下细胞,或用EDTA溶液(0.5%

蛋白质功能性质的检测实验报告

华南农业大学实验报告 专业班次 13食工1班组别 题目蛋白质功能性质的检测姓名黄俊怡日期 一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 二、实验原理 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即对食品的加工、贮藏、销售过程中发生作用的那些性质,这些性质对食品的质量和风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型,主要包括有吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。 三、实验材料、试剂和仪器 1. 实验材料 (1)2%蛋清蛋白溶液:取2g蛋清加98ml蒸馏水稀释,过滤取清夜。 (2)卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 2. 试剂 (1) 硫酸铵、饱和硫酸铵溶液 (2) 氯化钠、饱和氯化钠溶液 (3) 花生油 (4) 酒石酸 3. 仪器 (1) 刻度试管 (2) 100ml烧杯

(3) 冰箱 四、实验步骤 1. 蛋白质水溶性的测定 在10ml刻度试管中加入蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3ml,加入3ml饱和硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 2. 蛋白质乳化性的测定 取卵黄蛋白于10ml刻度试管中,加入水和5滴花生油;另取5ml水于10ml刻度试管中,加入5滴花生油;再将两支试管用力振摇2~3min,然后将两支试管放在试管架上,每隔15min观察一次,共观察4次,观察油水是否分离。 3. 蛋白质起泡性的测定 (1) 在二个100ml的烧杯中,各加入2%的蛋清蛋白溶液30ml,一份用玻璃棒不断搅打1~2min;另一份用吸管不断吹入空气泡1~2min,观察泡沫的生成、泡沫的多少及泡沫稳定时间的长短。 (2) 在二支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,一支放入冰箱中冷至10℃,另一支保持常温(30~35℃),以相同的方式振摇1~2min,观察泡沫产生的数量及泡沫稳定性有何不同。 (3) 在三支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,其中一支试管加入酒石酸,一支加入氯化钠;另一支作对照用,以相同的方式振摇1~2min,观察泡沫的多少及泡沫稳定性有何不同。 4. 蛋白质凝胶作用的测定 在试管中加入1ml蛋清蛋白,再加1ml水和几滴饱和食盐水至溶解澄清,放入沸水中,加热片刻观察凝胶的形成。

蛋白提取实验步骤51063

蛋白提取实验步骤: 1、细胞总蛋白提取 A、对于悬浮细胞: 离心收集细胞,每106细胞加250 ul RIPA (在使用前数分钟内加入蛋白酶抑制剂),振荡。如果需要提高蛋白浓度,可以适当减少细胞总蛋白提取试剂体积。 B、对于贴壁细胞: a、用TBS冲洗细胞2-3次。最后一次彻底吸干残留液。 b、加入适当体积的 RIPA(使用前数分内加入蛋白酶抑制剂)于培养板、瓶内3-5分钟。期间反复晃动培养板、瓶,使试剂与细胞充分接触。 c、用细胞刮刀将细胞及试剂刮下,收集到1.5ml离心管中。 C、冰浴30min,期间用移液器反复吹打,确保细胞完全裂解。 D、12000g离心5min,收集上清,即为总蛋白溶液。 2、组织蛋白提取: A、组织块用冷TBS洗涤2-3次,去除血污,剪成小块置于匀浆器。加入10倍组织体积本试剂(使用前数分钟内加入蛋白酶抑制剂)冰上彻底匀浆。如果需要提高蛋白浓度,可以适量减少该试剂体积。 B、将匀浆液转移至1.5ml离心管中,振荡。冰浴30min,期间用移液器反复吹打,确保细胞完全裂解。 C、12000g离心5min,收集上清,即为总蛋白溶液。 注意事项 1、组织尽可能新鲜,若不能及时提蛋白,组织标本应保存在-80℃冰箱,并避免反复冻融。 2、全程必须在冰上进行,避免蛋白降解。 3、蛋白酶抑制剂在水溶液中不稳定,需在RIPA使用前数分钟加入蛋白酶抑制剂。

4、裂解过程中如有溶液粘稠现象可用移液器(200μl)反复吹打, 或再加入适量裂解液以保证充分裂解。 5、总蛋白溶液不稳定(蛋白酶依旧有活性)可在-80℃短时间保 存,建议立即加入蛋白上样缓冲液变性后与-20℃保存,避免反复 冻融。 如有侵权请联系告知删除,感谢你们的配合!

检测蛋白质与蛋白质之间相互作用的实验技术

一、检测蛋白质与蛋白质相互作用 ① FRET技术(in vivo) FRET,Fluorescence resonance energy transfer,即荧光共振能量转移技术。该技术的原理是用一种波长的光激发某种荧光蛋白后,它释放的荧光刚好又能激发另一种荧光蛋白,使其释放另一波长的荧光,如下图所示: 以下图为例,若要利用FRET检测两种蛋白是否有相互作用,需将两种蛋白的基因分别与这两种荧光蛋白的基因融合,并在细胞内表达出两种融合蛋白。然后只需用紫外光对CFP进行激发,并检测GFP是否放出绿色荧光。如果能检测到绿色荧光,那么可以说明这两种蛋白可能有相互作用;反之,则是这两种蛋白没有相互作用。 ②酵母双、三杂交技术(in vivo) 酵母双杂交系统主要用于考察两种蛋白是否有相互作用,其原理是典型的真核生长转录因子,如GAL4、GCN4等都含有二个不同的结构域,即AD和BD。这些转录因子只有同时具有这两个结构域时才能起始转录。由此,设计不同的两个载体,一个含有AD基因(假设为A载体),另一个含有BD基因(假设为B载体)。 一般将一个已知蛋白的基因连在B载体上,作为诱饵(Bait),将未知蛋白的基因连在A载体上,将这两个载体都转到特定的酵母细胞内,看未知蛋白与已知蛋白是否有相互作用。如果两者有相互作用,那么就可以启动报告基因的转录,从而使这个酵母细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在择培养基上显现出来或者生存下来,如下图所示:

由于酵母双杂交系统不能鉴定膜蛋白间的相互作用,因此又发展出了分离泛素酵母双杂交系统。该系统的原理如下图所示: 如图所示,将泛素蛋白拆分为两个片段,即C端段(Cub)和N端段(NubG),并在C端段的N端接上一个LexA-VP16转录因子,此时它并不能激活基因转录(因为它被限制在了C端段上,不能进入细胞核发挥作用)。 将该C端段连到一个膜蛋白上,将N端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠近时会使泛素蛋白的N端段和C端段靠近结合,形成一个完整的泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记的片段降解,那么连接C端段的LexA-VP16转录因子掉落,即可进入细胞核启动标记基因的表达。 酵母三杂交的原理与双杂交一样,只是它研究的是两个蛋白和第三个成分间的相互作用,通过第三个成分使两个蛋白相互靠近。第三个成分可以是:蛋白、RNA或小分子,如下图所示: 如上图所示,在加入第三种成分前,蛋白X与蛋白Y之间并无直接相互作用,因此无法使BD和AD靠近,报告基因不能表达;当加入第三种成分后,蛋白X与蛋白Y的距离被拉近,BD和AD靠近,报告基因表达,从而可以被检测到。 ③ Pulldown技术(in vitro) Pulldown,即蛋白沉降技术,它是建立在蛋白质亲和层析的基础上的一种检测蛋白质间相互作用的分析方法。亲和层析的原理如下图所示,不同蛋白对配体的亲和程度不同,因此可以先将非特异结合的蛋白用低浓度缓冲液给清洗出去,只剩目的蛋白与层析柱结合,然后再用洗脱液将目的蛋白洗脱下来,达到纯化目的蛋白的作用。

组成细胞的化学成分(蛋白质)(三)

第 1 页 共 3 页 细胞的化学成分(二) Ⅰ。教学目标: 一. 知识目标: 1. 了解蛋白质的含量和元素组成; 2. 掌握蛋白质的基本结构组成单位的结构通式和共同特点; 3. 掌握蛋白质的形成过程------缩合反应及图解; 4. 理解二肽、三肽及多肽,肽键和肽链的定义; 5. 理解和掌握蛋白质分子的功能; 二.能力目标: 1. 通过蛋白质的有关知识的学习,培养学生对生物和化学知识的综合能力; 2. 通过蛋白质分子结构多样性和功能关系学习,培养分析问题和推理的思维能力; 三.情感目标: 通过生物和化学知识、蛋白质和核酸知识的综合学习,培养学生认识到事物之间都具有联系的观点。 Ⅱ。重点和难点: 1. 氨基酸的结构通式及共同特点; 2. 缩合反应图解; 3. 蛋白质的结构和功能的多样性; 难点: 1. 蛋白质的结构和功能; 2. 有关氨基酸缩合反应的计算。 Ⅲ。教学环节: 复 习: 评讲<课时练习一> 讲授新课: 五.蛋白质: 自学提纲: 1. 含量: 鲜重:7—10% (第二) 干重:50%以上(第一) 2. 元素组成:

第 2 页 共 3 页 都有:C 、H 、O 、N 四种元素,有的还有: S (胰岛素)、F e (血红蛋白)、I (甲状腺激素)、C u (血蓝蛋白)等等。 3. 基本组成单位----(1) 种类: 约20种 (2) R (侧链基团、R 基) H 2N C COOH 氨基 羧基 H (氢原子) (3) 共同特点: Ⅰ。每种氨基酸都至少含有一个氨基和一个羧基; Ⅱ。在每一个氨基酸中都至少有一个氨基和羧基连在同一个α碳原子上; 说明: 1. 在一个氨基酸中除了在α碳原子上一定有一个氨基和一个羧基外,在R 基上也 有可能存在着氨基和羧基; 如:HOOC---CH 2---CH 2--- CH---COOH 谷氨酸,在R 基上有一个羧基 NH 2 CH 3---CH 2---CH 2---CH---COOH 赖氨酸,在R 基上有一个氨基; NH 2 NH 2 2. 在每一个氨基酸中都必须有一个氨基和一个羧基连在同一个而且必须是α碳 原子上;否则就不是构成生物体的氨基酸。 3. 在计算时一定要引导学生记住:除了在α碳原子上有一个氨基和一个羧基以 外,其它的氨基和羧基都在R 基上。 例题一:根据氨基酸的结构特点,判断下列的是否属于构成生物体的氨基酸,并说明理由: 例题二:某氨基酸有三个氨基和二个羧基,问:连在α碳原子上和R 基上的氨基和羧基各 有多少个? 例题三:谷氨酸的R 基是 C 3H 5O 2 ,问谷氨酸中含有的碳原子和氧原子各有多少个? A. 4, 4 B. 5, 5 C. 5, 4 D. 4, 5 例题四:构成生物体的氨基酸的R 基有多少种? 4. 蛋白质的形成过程:

实验一 蛋白质的两性性质和酪蛋白等电点的测定

实验一蛋白质的两性性质和酪蛋白等电点的测定 一、实验目的与要求 1.掌握蛋白质的两性解离性质; 2.熟练掌握测定蛋白质等电点的基本方法。 二、实验原理 蛋白质是由氨基酸组成的高分子化合物。虽然大多数的α-氨基和α-羧基成肽键结合,但仍有N末端的氨基和C末端的羧基存在,同时侧链上还有一些可解离基团。因此,蛋白质和氨基酸一样是两性电解质。调节蛋白质溶液的pH,可使蛋白质带上正电荷或负电荷;在某一pH时,其分子中所带的正电荷和负电荷相等,此时溶液中蛋白质以兼性离子形式存在。 在外加电场中蛋白质分子既不向正极移动也不向负极移动,此时溶液的pH 称为该蛋白质的等电点,蛋白质的溶解度最小。不同的蛋白质,因氨基酸的组成不同有不同的等电点。 三、实验材料、试剂与仪器 1.材料与试剂 NaOH、HCl、乙酸、溴甲酚绿、酪蛋白、精密pH试纸等。 0.5 %酪蛋白溶液: 0.5 g酪蛋白,先加入几滴1 mol/L的NaOH使其湿润,用玻璃棒搅拌研磨使成浆糊状,逐滴加入 0.01 mol/L的NaOH使其完全溶解后定容到100 mL.酪蛋白—乙酸钠溶液:将0.25 g酪蛋白加5 mL 1 mol/L的NaOH溶解,加20 mL水温热使其完全溶解后,再加入5 mL 1 mol/L的乙酸,混合后转入50 mL的容量瓶内,加水到刻度,混匀备用(pH应为8~ 8.5);

0.01%的溴甲酚绿溶液:将0.01g溴甲酚绿溶解于100mL含有 0.57mL 0.1mol/LNaOH的水中。该指示剂的变色范围是: 酸性(pH 3.8)为黄色,pH 5.4为蓝色; 0.02 mol/L的HCl溶液:将0.8 mL浓盐酸用蒸馏水稀释到480 mL即可; 0.02 mol/L的NaOH溶液:将0.8 g NaOH溶解于100 mL水中,最终加入到1000 mL; 0.1 mol/L的乙酸溶液: 将1 mL冰醋酸用水稀释到170 mL; 0.01 mol/L的乙酸溶液:将0.1 mL冰醋酸用水稀释到170 mL; 1 mol/L的乙酸溶液:1 mL冰醋酸(17 mol/L)加水到17 mL即可。 2.仪器 试管、滴管、移液管、pH试纸等。 四、实验方法与步骤 1.蛋白质的两性反应 1)取一支干净的试管,加入20滴 0.5 %的酪蛋白溶液,逐滴加入 0.01 %的溴甲酚绿溶液(约5~7滴),充分混合,观察溶液的颜色并解释(蓝色)。

【实验操作】蛋白质的提取和分离实验操作

优选精品资源欢迎下载选用 实验操作 蛋白质的提取和分离一般分为四步:样品处理、粗分离、纯化和纯度鉴定。 (1)样品处理 ①红细胞的洗涤洗涤红细胞的目的:去除杂蛋白,以利于后续步骤的分离纯化。采集的血样要及时分离红细胞,分离时采用低速短时间离心,如500r/min离心2min,然后用胶头吸管吸出上层透明的黄色血浆,将下层暗红色的红细胞液体倒入烧杯,再加入五倍体积的生理盐水,缓慢搅拌10min,低速短时间离心,如此重复洗涤三次,直至上清液中没有黄色,表明红细胞已洗涤干净。洗涤次数、离心速度与离心时间十分重要。洗涤次数过少,无法除去血浆蛋白;离心速度过高和时间过长会使白细胞等一同沉淀,达不到分离的效果。 ②血红蛋白的释放将洗涤好的红细胞倒人烧杯中,加蒸馏水到原血液的体积,再加40%体积的甲苯,置于磁力搅拌器上充分搅拌10min。蒸馏水和甲苯作用:使红细胞破裂释放出血红蛋白。 ③分离血红蛋白溶液将搅拌好的混合液转移到离心管中,以20**r/min的速度离心10min后,可以明显看到试管中的液体分为4层。第1层为无色透明的甲苯层,第2层为白色薄层固体,是脂溶性物质的沉淀层,第3层是红色透明液体,这是血红蛋白的水溶液,第4层是其他杂质的暗红色沉淀物。将试管中的液体用滤纸过滤,除去脂溶性沉淀层,于分液漏斗中静置片刻后,分出下层的红色透明液体。 ④透析取lmL的血红蛋白溶液装入透析袋中,将透析袋故人盛有300mL的物质的量浓度为20mmol/L的磷酸缓冲液中(pH为7.0),透析12h。 (2)凝胶色谱操作 ①凝胶色谱柱的制作 ②凝胶色谱柱的装填将色谱柱垂直固定在支架上。计算所用凝胶量,并称量。凝胶用蒸馏水充分溶胀后,配成凝胶悬浮液,在与色谱柱下端连接的尼龙臂打开的情况下,一次性缓慢倒入色谱柱内,装填时可轻轻敲动色谱柱,使凝胶装填均匀。色谱柱内不能有气泡存在,一旦发现有气泡,必须重装。装填完后,立即连接缓冲液洗脱瓶,在约50cm高的操作压下,用300ml的物质的量浓度为20mmol/L的磷酸缓冲液充分洗涤平衡凝胶12h,使凝胶装填紧密。 ③样品的加入和洗脱打开色谱柱下端的流出口。使柱内凝胶面上的缓冲液缓慢下降到与凝胶面平齐,关闭出口。用吸管小心地将lmL透析后的样品加到色谱柱的顶端,加样时使吸管管口沿管壁环绕移动,注意不要破坏凝胶面。加样后,打开下端出口,使样品渗入凝胶床内。等样品完全进入凝胶层后,关闭下端出口。小心加入物质的量浓度为20mmol/L 的磷酸缓冲液(pH为7.0)到适当高度,连接缓冲液洗脱瓶,打开下端出口,进行洗脱。待红色的蛋白质接近色谱柱底端时,用试管收集流出液,每5mL收集一管,连续收集。

探究实验:蛋白质的性质

探究蛋白质的性质实验 一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 实验准备:鸡蛋白溶液的配制:把一只鸡蛋的两端各扎一个小孔。从上面的孔吹气,使鸡蛋白从下面的孔流入量筒中。取5毫升蛋白,放入烧杯中,加30毫升蒸馏水,即成1:6的鸡蛋白胶体溶液。 二、实验步骤与实验方法 (一)、蛋白质的盐析 实验用品:鸡蛋白溶液、饱和硫酸铵或硫酸钠溶液、试管、胶头滴管等。 实验方法: 1、取一只试管注入2毫升的鸡蛋白溶液,慢慢的沿着试管壁加入2~4毫升饱和硫酸铵溶液,便有乳白色的沉淀析出。(为什么?因为盐析作用)说明:向蛋白质溶液中加入某些浓的无机盐溶液后,可以使蛋白质凝聚而从溶液中析出,只种作用叫做盐析。 2、将2毫升的带沉淀的溶液加入6~8毫升的蒸馏水中,沉淀逐渐溶解,证明盐析是个可逆过程。 实验结论:盐析出的蛋白质仍然可以溶解在水中,说明蛋白质盐析后并不影响原来蛋白质的性质。 (二)蛋白质的变性 实验用品:鸡蛋白溶液、硫酸铜、甲醛、酒精灯、试管夹等 实验方法: 1、加热:取一只试管加入2毫升鸡蛋白,把试管放在酒精灯上加热,看到 的现象是蛋白质凝结。把凝结的蛋白质放入盛有蒸馏水的试管中,凝结 的蛋白不溶解。说明:蛋白质受热后会发生变性;受热作用下蛋白质的 变性是不可逆的。 2、加入重金属盐:取一只试管加入2毫升鸡蛋白,用滴管滴入重金属盐如 硫酸铜,试管中的蛋白质凝结。把凝结的蛋白质放入盛蒸馏水的试管中,凝结的蛋白质不溶解。说明:在重金属盐的作用下的蛋白质的变性是不 可逆的。 3、加入有机化合物:取一只试管加入2毫升鸡蛋白,用滴管加入2毫升的 甲醛溶液,看到的现象是试管中的蛋白质凝结。把凝结的蛋白质放入盛 蒸馏水的试管中,凝结的蛋白质不溶解。

蛋白质的提取和分离实验操作

实验操作 蛋白质的提取和分离一般分为四步:样品处理、粗分离、纯化和纯度鉴定。 (1)样品处理 ①红细胞的洗涤洗涤红细胞的目的:去除杂蛋白,以利于后续步骤的分离纯化。采集的血样要及时分离红细胞,分离时采用低速短时间离心,如500r/min离心2min,然后用胶头吸管吸出上层透明的黄色血浆,将下层暗红色的红细胞液体倒入烧杯,再加入五倍体积的生理盐水,缓慢搅拌10min,低速短时间离心,如此重复洗涤三次,直至上清液中没有黄色,表明红细胞已洗涤干净。洗涤次数、离心速度与离心时间十分重要。洗涤次数过少,无法除去血浆蛋白;离心速度过高和时间过长会使白细胞等一同沉淀,达不到分离的效果。 ②血红蛋白的释放将洗涤好的红细胞倒人烧杯中,加蒸馏水到原血液的体积,再加40%体积的甲苯,置于磁力搅拌器上充分搅拌10min。蒸馏水和甲苯作用:使红细胞破裂释放出血红蛋白。 ③分离血红蛋白溶液将搅拌好的混合液转移到离心管中,以2000r/min的速度离心10min后,可以明显看到试管中的液体分为4层。第1层为无色透明的甲苯层,第2层为白色薄层固体,是脂溶性物质的沉淀层,第3层是红色透明液体,这是血红蛋白的水溶液,第4层是其他杂质的暗红色沉淀物。将试管中的液体用滤纸过滤,除去脂溶性沉淀层,于分液漏斗中静置片刻后,分出下层的红色透明液体。 ④透析取lmL的血红蛋白溶液装入透析袋中,将透析袋故人盛有300mL的物质的量浓度为20mmol/L的磷酸缓冲液中(pH为7.0),透析12h。 (2)凝胶色谱操作 ①凝胶色谱柱的制作 ②凝胶色谱柱的装填将色谱柱垂直固定在支架上。计算所用凝胶量,并称量。凝胶用蒸馏水充分溶胀后,配成凝胶悬浮液,在与色谱柱下端连接的尼龙臂打开的情况下,一次性缓慢倒入色谱柱内,装填时可轻轻敲动色谱柱,使凝胶装填均匀。色谱柱内不能有气泡存在,一旦发现有气泡,必须重装。装填完后,立即连接缓冲液洗脱瓶,在约50cm高的操作压下,用300ml的物质的量浓度为20mmol/L的磷酸缓冲液充分洗涤平衡凝胶12h,使凝胶装填紧密。 ③样品的加入和洗脱打开色谱柱下端的流出口。使柱内凝胶面上的缓冲液缓慢下降到与凝胶面平齐,关闭出口。用吸管小心地将lmL透析后的样品加到色谱柱的顶端,加样时使吸管管口沿管壁环绕移动,注意不要破坏凝胶面。加样后,打开下端出口,使样品渗入凝胶床内。等样品完全进入凝胶层后,关闭下端出口。小心加入物质的量浓度为20mmol/L的磷酸缓冲液(pH为7.0)到适当高度,连接缓冲液洗脱瓶,打开下端出口,进行洗脱。待红色的蛋白质接近色谱柱底端时,用试管收集流出液,每5mL收集一管,连续收集。

检测蛋白质与蛋白质之间相互作用的实验技术讲课教案

检测蛋白质与蛋白质之间相互作用的实验 技术

一、检测蛋白质与蛋白质相互作用 ① FRET技术(in vivo) FRET,Fluorescence resonance energy transfer,即荧光共振能量转移技术。该技术的原理是用一种波长的光激发某种荧光蛋白后,它释放的荧光刚好又能激发另一种荧光蛋白,使其释放另一波长的荧光,如下图所示: 以下图为例,若要利用FRET检测两种蛋白是否有相互作用,需将两种蛋白的基因分别与这两种荧光蛋白的基因融合,并在细胞内表达出两种融合蛋白。然后只需用紫外光对CFP进行激发,并检测GFP是否放出绿色荧光。如果能检测到绿色荧光,那么可以说明这两种蛋白可能有相互作用;反之,则是这两种蛋白没有相互作用。 ②酵母双、三杂交技术(in vivo) 酵母双杂交系统主要用于考察两种蛋白是否有相互作用,其原理是典型的真核生长转录因子,如GAL4、GCN4等都含有二个不同的结构域,即AD和BD。这些转录因子只有同时具有这两个结构域时才能起始转录。由此,设计不同的两个载体,一个含有AD基因(假设为A载体),另一个含有BD基因(假设为B载体)。 一般将一个已知蛋白的基因连在B载体上,作为诱饵(Bait),将未知蛋白的基因连在A载体上,将这两个载体都转到特定的酵母细胞内,看未知蛋白与已知蛋白是否有相互作用。如果两者有相互作用,那么就可以启动报告基因的转录,从而使这个酵母细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在择培养基上显现出来或者生存下来,如下图所示:

由于酵母双杂交系统不能鉴定膜蛋白间的相互作用,因此又发展出了分离泛素酵母双杂交系统。该系统的原理如下图所示: 如图所示,将泛素蛋白拆分为两个片段,即C端段(Cub)和N端段(NubG),并在C端段的N端接上一个LexA-VP16转录因子,此时它并不能激活基因转录(因为它被限制在了C端段上,不能进入细胞核发挥作用)。 将该C端段连到一个膜蛋白上,将N端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠近时会使泛素蛋白的N端段和C端段靠近结合,形成一个完整的泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记的片段降解,那么连接C端段的LexA-VP16转录因子掉落,即可进入细胞核启动标记基因的表达。 酵母三杂交的原理与双杂交一样,只是它研究的是两个蛋白和第三个成分间的相互作用,通过第三个成分使两个蛋白相互靠近。第三个成分可以是:蛋白、RNA或小分子,如下图所示: 如上图所示,在加入第三种成分前,蛋白X与蛋白Y之间并无直接相互作用,因此无法使BD和AD靠近,报告基因不能表达;当加入第三种成分后,蛋白X与蛋白Y的距离被拉近,BD和AD靠近,报告基因表达,从而可以被检测到。 ③ Pulldown技术(in vitro) Pulldown,即蛋白沉降技术,它是建立在蛋白质亲和层析的基础上的一种检测蛋白质间相互作用的分析方法。亲和层析的原理如下图所示,不同蛋白对配体的亲和程度不同,因此可以先将非特异结合的蛋白用低浓度缓冲液给清洗出去,只剩目的蛋白与层析柱结合,然后再用洗脱液将目的蛋白洗脱下来,达到纯化目的蛋白的作用。

蛋白提取实验步骤

蛋白提取实验步骤: 1、细胞总蛋白提取 A对于悬浮细胞:离心收集细胞,每106细胞加250 Ul RlPA (在使用前数分钟内加入蛋白酶抑制剂),振荡。如果需要提高 蛋白浓度,可以适当减少细胞总蛋白提取试剂体积。 B对于贴壁细胞: a用TBS冲洗细胞2-3次。最后一次彻底吸干残留液。 b加入适当体积的RIPA (使用前数分内加入蛋白酶抑制剂)于培养板、瓶内3-5分钟。期间反复晃动培养板、瓶,使试剂与细胞充分接触。 c、用细胞刮刀将细胞及试剂刮下,收集到1.5ml离心管中。C冰浴30min,期间用移液器反复吹打,确保细胞完全裂解。 D 12000g离心5min,收集上清,即为总蛋白溶液。 2、组织蛋白提取: A组织块用冷TBS洗涤2-3次,去除血污,剪成小块置于匀浆器。加入10倍组织体积本试剂(使用前数分钟内加入蛋白酶抑制剂)冰上彻底匀浆。如果需要提高蛋白浓度,可以适量减少该试剂体积。 B将匀浆液转移至1.5ml离心管中,振荡。冰浴30min,期间用移液器反复吹打,确保细胞完全裂解。 C 12000g离心5min,收集上清,即为总蛋白溶液。 1、组织尽可能新鲜,若不能及时提蛋白,组织标本应保存在-80 C 冰箱,并避免反复冻融。 2、全程必须在冰上进行,避免蛋白降解。 3、蛋白酶抑制剂在水溶液中不稳定,需在RIPA使用前数分钟加入蛋白酶抑制剂。 4、裂解过程中如有溶液粘稠现象可用移液器(200 μ l )反复吹打,或再加

入适量裂解液以保证充分裂解。 5、总蛋白溶液不稳定(蛋白酶依旧有活性)可在-80 C短时间保存,建议立即加入蛋白上样缓冲液变性后与-20 C保存,避免反复精品佳作,安心下载,放心使用冻融。

蛋白质的性质实验(一)

蛋白质的性质实验(一) 蛋白质及氨基酸的呈色反应 一、目的 1.了解构成蛋白质的基本结构单位及主要连接方式。 2.了解蛋白质和某些氨基酸的呈色反应原理。 3.学习几种常用的鉴定蛋白质和氨基酸的方法。 二、呈色反应 (一)双缩脲反应 1.原理 尿素加热至180℃左右,生成双缩脲并放出一分子氨。双缩脲在碱性环境中能与Cu2+结合生成紫红色化合物,此反应称为双缩脲反应。蛋白质分子中有肽键,其结构与双缩脲相似,也能发生此反应。可用于蛋白质的定性或定量测定。 双缩脲反应不仅为含有两个以上肽键的物质所有。含有 一个肽键和一个—CS—NH2,—CH2—NH2,—CRH—NH2,—CH2—NH2—CHNH2—CH2OH 或—CHOHCH2NH2等基团的物质以及 一切蛋白质或二肽以上的多肽都有双缩脲反应,但有双缩脲反应的物质不一定都是蛋白质或多肽。 2.试剂 3.操作

取少量尿素结晶,放在干燥试管中。用微火加热使尿素熔化。熔化的尿素开始硬化时,停止加热,尿素放出氨,形成双缩脲。冷后,加10%氢氧化钠溶液约1mL,振荡混匀,再加1%硫酸铜溶液1滴,再振荡。观察出现的粉红颜色。要避免添加过量硫酸铜,否则,生成的蓝色氢氧化铜能掩盖粉红色。 向另一试管加卵清蛋白溶液约1mL和10%氢氧化钠溶液约 2 mL,摇匀,再加1%硫酸铜溶液2滴,随加随摇。观察紫玫瑰色的出现。 (二)茚三酮反应 1.原理 除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外,所有α-氨基酸及一切蛋白质都能和茚三酮反应生成蓝紫色物质。 β-丙氨酸、氨和许多一级胺都呈正反应。尿素、马尿酸、二酮吡嗪和肽键上的亚氨基不呈现此反应。因此,虽然蛋白质和氨基酸均有茚三酮反应,但能与茚三酮呈阳性反应的不一定就是蛋白质或氨基酸。在定性、定量测定中,应严防干扰物存在。 该反应十分灵敏,1∶1500000浓度的氨基酸水溶液即能给出反应,是一种常用的氨基酸定量测定方法。 茚三酮反应分为两步,第一步是氨基酸被氧化形成CO2、NH3和醛,水合茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮同另一个水合茚三酮分子和氨缩合生成有色物质。 此反应的适宜pH为5~7,同一浓度的蛋白质或氨基酸在不同pH条件下的颜色深浅不同,酸度过大时甚至不显色。 2.试剂 3.操作 (1)取2支试管分别加入蛋白质溶液和甘氨酸溶液mL,再各加 0.5 mL 0.1%茚三酮水溶液,混匀,在沸水浴中加热1~2分钟,观察颜色由粉色变紫红色再变蓝。 (2)在一小块滤纸上滴一滴0.5%甘氨酸溶液,风干后再在原处滴一滴0.1%茚三酮乙醇溶液,在微火旁烘干显色观察紫红色斑点的出现。 (三)黄色反应 1.原理

相关文档
最新文档