分子生物学试题库

分子生物学试题库
分子生物学试题库

分子生物学试题库

第2章染色体与DNA

名词解释

原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进

化上高等保守。当原癌基因的结构或调控

区发生变异,基因产物增多或活性增强时,

使细胞过度增殖,从而形成肿瘤。

半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA

中,一条链来自亲代DNA,而另一条链则是

新合成的,这种复制方式叫半保留复制。填空题

3.在聚合酶链反应中,除了需要模板DNA外,还

需加入引物、DNA聚合酶、dNTP和镁离子。

4.引起DNA损伤的因素有自发因素、物理因素、

化学因素。

5.DNA复制时与DNA解链有关的酶和蛋白质有拓

扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋

白。

6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA

连接酶、特异的核酸内切酶。

7.在真核生物中DNA复制的主要酶是DNA聚合酶

①真核生物染色体有多个复制起点,多复制眼,呈双向复制,多复制子。原核生物的染色体只有一个复制起点,单复制子也呈双向复制。

②真核生物冈崎片段长约200bp比原核生物略短。真核生物DNA复制速度比原核慢,速度为1000~3000bp/min(仅为原核生物的1/20~1/50)。

③真核生物复制的终止在端粒处,原核生物的复制叉相遇时即终止。

④真核生物染色体在全部复制完之前起点不再重新开始复制;而在快速生长的原核生物染色体DNA复制中,起点可以连续发动复制。真核生物快速生长时,往往采用更多的复制起点。

⑤真核生物有多种DNA聚合酶,DNA 聚合酶δ是真正的复制酶,在PCNA存在下有持续的合成能力。PCNA称为增殖细胞核抗原,相当于大肠杆菌DNA聚合酶Ⅲ的β-夹子,RFC蛋白相当于夹子装配器。

原核生物的DNA聚合酶有三种DNA聚

合酶ⅢDNA的真正复制酶:多亚基酶,含十

种亚基,该酶DNA合成的持续能力强。

⑥真核生物线性染色体两端有端粒结

构,它是由许多成串的重短复序列组成,

端粒功能是稳定染色体末段结构,防止染

色体间的末端连接,并可补偿滞后链5’-

末段在消除RNA引物后造成的空缺,使染

色体保持一定长度。端粒酶是含一段RNA

的逆转录酶。

⑦RPA:真核生物的单链结合蛋白;

RNaseH1和MF-1切除RNA引物,DNA聚合

酶ε填补缺口。

简述半保留复制的生物学意义

DNA的复制过程(以大肠杆菌为例)

复制起始:

(1)、拓扑异构酶解开超螺旋。

(2)、Dna A蛋白识别并在ATP存在下结合于四个9bp的重复序列。

(3)、在类组蛋白(HU、ATP参与下, Dan A蛋白变性13个bp的重复序列,形成开链复合

物。

(4)、Dna B借助于水解ATP产生的能量在Dna

C的帮助下沿5’→3’方向移动,解开

DNA双链,形成前引发复合物。

(5)、单链结合蛋白结合于单链。

(6)、引物合成酶(Dna G蛋白)开始合成RNA 引物。

链的延长(冈崎片段的合成):

在DNA聚合酶Ш的催化下,以四种5’ -脱氧核苷三磷酸为底物,在RNA引物的3’端以磷

酸二酯键连接上脱氧核糖核苷酸并释放出

焦磷酸。DNA链的延伸同时进行前导链和滞

后链的合成。两条链方向相反。

6、PCR的基本原理?

PCR是在试管中进行的DNA复制反应,基本原理是依据细胞内DNA半保留复制的机理,以及体外DNA分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的

温度,以促使双链DNA变成单链,单链DNA与人工合成的引物退火,然后耐热DNA

聚合酶以dNTP为原料使引物沿着单链模板延伸为双链DNA。PCR全过程每一步的转换

是通过温度的改变来控制的。需要重复进行DNA模板解链、引物与模板DNA结合、DNA

聚合酶催化新生DNA的合成,即高温变性、低温退火、中温延伸3个步骤构成PCR

反应的一个循环,此循环的反复进行,就可使目的DNA得以迅速扩增。DNA模板变性:

模板双链DNA?单链DNA,94℃。退火:引物+单链DNA?杂交链,引物的Tm值。引物

的延伸:温度至70 ℃左右, Taq DNA聚合酶以4种dNTP为原料,以目的DNA为模

板,催化以引物3’末端为起点的5’→3’DNA链延伸反应,形成新生DNA链。新合

成的引物延伸链经过变性后又可作为下一轮循环反应的模板PCR,就是如此反复循

环,使目的DNA得到高效快速扩增。

第三章

启动子:是一段位于结构基因5,端上游区的DNA 序列,能活化RNA聚合酶,使之与模板DNA

准确地相结合并具有转录起始的特异性。

指RNA聚合酶识别、结合和开始转录的一

段特定的DNA序列。

增强子:能强化转录起始的序列称为增强子。转录:以DNA为模板,按照碱基配对原则合成RNA,即将DNA所含的遗传信息传给RNA,

形成一条与DNA链互补的RNA的过程。RNA的编辑:是某些RNA,特别是mRNA的一种加工方式,它导致了DNA所编码的遗传信息

的改变。

外显子(Exon) :真核细胞基因DNA中的编码序列,这些序列被转录成RNA并进而翻译为

蛋白质。

内含子(Intron) :真核细胞基因DNA中的间插序列,这些序列被转录成RNA,但随即被剪

除而不翻译。

复制子:生物体的复制单位称为复制子(replicon) ,是在同一个复制起点控制

下的一段DNA序列。

转录单元:是一段启动子开始至终止子结束的DNA序列。

转录起点:是与新生RNA链的第一个核苷酸相对应的DNA链上的碱基,通常为一个嘌呤。

转录开始时模板上的第一个碱基,在原核

中常为A或G,而且位置固定。

填空

1转录的基本过程包括:模板识别,转录起始,转录的延伸,转录的终止。

2基因表达包括:转录和翻译两个阶段。

3RNA的编辑方式:碱基突变,尿甘酸的缺失和添加。

4在原核生物中,-35区与-10区之间的距离大约是16~19bp

5帽子结构的功能:〔1〕在翻译中起识别作用〔2〕使mRNA免遭核苷酸的破坏

6原核生物只有一种RNA聚合酶而真核生物有三种,每一种都有其特定的功能。聚合酶Ⅰ

合成rRNA,聚合酶Ⅱ合成mRNA,聚合酶Ⅲ

合成tRNA和5s rRNA。三种聚合酶都是具

有多亚基的大的蛋白复合体。

7 转录因子通常具有两个独立的结构域:一个结

合DNA,一个激活转录。

8 在真核细胞mRNA的修饰中,“帽子”结构由甲

基组成,“尾”由多聚腺嘌呤组成。

9原核生物的绝大部分起启动子都存在共同的序

列,即位于-10bp处的区和-35bp处

的区,他们都是RNA聚合酶与启动

子结合的位点,能与σ因子相互识别而具

高度亲和性。真核生物中,在转录起始位

点上游-25—-35bp处有区和位于

-70--80bp处的区。

简答题

1增强子的特点

〔1〕有远距离效应〔2〕无方向性〔3〕顺势调节〔4〕无物种和基因的特异性

〔5〕具有组织的特异性〔6〕有相位性,其作用与DNA的构象有关〔7〕有的增强子可以对

外部信号产生反应。

2比较DNA复制和转录的异同点

相同点:都以DNA链作为模板,合成方向均为5,端到3,端,聚合反应均遵循碱基配对原则,

通过核苷酸之间形成的3,,5,—磷酸二酯

键使核苷酸键延长。

不同点:

复制转录

模板两条链均被复制模板链转录(不对称转录)

原料Dntp NTP

酶DNA聚合酶RNA聚合酶

产物子代双链DNA(半

保留复制)

mRNA tRNA rRNA

配对

方式

A-T G-C A-U A-T G-C 引物RNA引物不需要引物

DNA复制与转录的异同

相同点:

都需要模板

都以三磷酸核苷酸为底物(NTP或dNTP)

合成方向都是5→’3’

不同点

转录不需引物;

只转录DNA分子中的一个片段(称为转录单位或操纵子,operon);

双链DNA中只有一条链具有转录活性(称为模板链);

哪个基因被转录与特定的时间、空间、生理状态有关。

RNA聚合酶无校对功能。

原核生物与真核生物mRNA的比较

(1)、原核生物mRNA的半衰期短;

(2)、许多原核生物mRNA以多顺反子形式存在;(3)、原核生物5’端无帽子结构,3’或只有短的poly(A)。

(4)、真核生物mRNA5’端有帽子结构,

(5)、绝大多数真核生物mRNA3’具有poly(A)尾巴,是转录后加上的,是mRNA从核到质转移

所必需的形式,提高mRNA的稳定性。

大肠杆菌的转录过程:

(1)、识别阶段:RNA聚合酶在σ亚基的引导下结合于启动子上;

(2)、DNA双链局部解开;

(3)、起始阶段:在模板链上通过碱基配对合成最初RNA链;

(4)、延伸阶段:核心酶向前移动,RNA链不断生长;

(5)、终止阶段:RNA聚合酶到达终止子;(6)、RNA和RNA聚合酶从DNA上脱落。

论述题

1 真核生物转录的前体hnRNA如何加工为成熟

的mRNA?

真核生物mRNA的结构组成:5,端存在帽子结构,3,端通常具有poly(A)尾巴,无内含子,部

分碱基发生甲基化。

①5,端加帽:当RNA聚合酶Ⅱ聚合的转录产物达

到25碱基长时,在其5,端加上一个以5,

→3,方向相连的7—甲基鸟苷帽,防止5,

核苷酸外切酶的攻击,有利于剪接、转运

和翻译的进行;②3,端加尾:很多真核生

物的hnRNA的3,端经过剪切后再加上多聚

A残基即poly(A)尾巴,这有助于整个分子

的稳定;③剪接:在真核生物的mRNA加工

过程中,内含子序列被切除,两侧的外显

子片段连接。剪接反应在核内进行,需要

内含子有5,—GU,AU—3,以及一段分支点

序列。其过程是:内含子先以一个具尾的

环状分子或套索状分子形式被删除,然后

被降解,剪接包括snRNP与保守序列结合,

形成剪接体,在其内发生剪接与连接反应;

④编辑;⑤甲基化修饰:当序列为5,—

RRACX—3,时会在第6位N原子位置发生甲

基化。

2概括细菌细胞的转录过程

转录是通过RNA聚合酶的作用,以一条DNA链为模板产生一条单链RNA过程。步骤如下:⑴与RNA聚合酶全酶的结合:一个RNA聚合酶全

酶分子与待转录的DNA编码序列上游的启

动子序列松弛的结合。

⑵起始:RNA聚合酶往下游移动了几个核苷酸到

达启动子的另一段短序列—Pribnow框,紧

密地与DNA结合。DNA上的启动子区域解

链,RNA便从Pribnow框下游的几个核苷酸

处开始合成,通常是DNA的反义链作为模

板,合成几个核苷酸后,δ因子被释放并

循环使用,以下步骤不再需要δ因子。

⑶延伸:RNA聚合酶核心酶沿着DNA模板移动,

使DNA解链,与DNA模板的下一碱基互补

核苷三磷酸聚合到链上。RNA聚合酶继续在

DNA上移动,RNA链从模板链被释放出来,

DNA双螺旋重新形成。

⑷当所有编码序列被转录后,RNA聚合酶移动一

个终止序列,即终止子。转录复合体解体,

RNA聚合酶和新形成的RNA从DNA模板上脱

落下来。

3、复杂转录单位的原始转录产物的加工方式有

几种?分别是什么?

(1)剪、利用多个5’端转录起始为点或接位点产生不同的蛋白质。

(2)、利用多个加poly(A)位点和不同的剪接方式产生不同的蛋白质。

(3)、虽无剪接,但有多个转录起始位点或加poly(A)位点的基因。

第四章

.SD序列:在原核生物mRNA起始密码AUG上游,存在4~9个富含嘌呤碱的一致性序列,如

-AGGAGG-,称为S-D序列。位于原核生物

起始密码子上游7-12个核苷酸处的保守

区,该序列与16SrRNA3’端反向互补。又

称为核蛋白体结合位点(ribosomal

binding site,RBS)

正转录调控:

负转录调控:

填空题

1.tRNA的种类有:起始tRNA和延伸tRNA,同

工tRNA,校正tRNA。

2. tRNA的二级结构为三叶草型,三级结构为倒

L型。tRNA结构

3.原核生物蛋白质合成的起始tRNA是甲酰甲硫

氨酰—tRNA(fMet-tRNA fMet),它携带的氨

基酸是甲酰甲硫氨酸(fMet),而真核生物

蛋白质合成的起始tRNA是甲硫氨酰—tRNA

(Met-tRNA Met),它携带的氨基酸是甲硫氨

酸(Met)。

4.新生肽链每增加一个氨基酸单位都要经过AA-tRNA与核糖体的结合,肽键形成,移位

三步反应。

5. 核糖体的作用位点有:A位点、P位点、E位

点。

5.在真核生物中蛋白质合成起始时先形成起始因子和起始tRNA复合物,再和40S亚基形

成40S起始复合物。

6.氨酰tRNA合成酶既能识别氨基酸,又能识别相应的tRNA。

7.多肽合成的起始密码子是AUG,而UAA,UAG,UGA是终止密码子。

8.遗传密码的特点包括连续性,简并性,摆动

性,普遍性与特殊性。

9.核酸复制时,DNA聚合酶沿模板链3’→5’方向移动;转录时,RNA聚合酶沿模板链3’

→5’方向移动;翻译时,核糖体沿模板链

5’→ 3’方向移动。

10.原核生物蛋白质合成形成起始复合物时,其mRNA先与核糖体的30S亚基结合,然后再

与结合起始因子和GTP的甲酰甲硫氨酰

—tRNA结合,形成30S起始复合物,然后

再与50S形成70S起始复合物。

简答题:

1.简述核糖体的结构及功能特点:

答:核糖体的结构:①真核生物:由60S大亚基和40S小亚基组成的80S的核糖体;②原

核生物:由50S大亚基和30S小亚基组成

的70S的核糖体

功能特点:合成蛋白质。在单个核糖体上,包括至少5个功能活性中心,在蛋

白质合成过程中,各有专一的识别作用和

功能:mRNA的结合部位——小亚基,结合

或接受AA-tRNA的部位——大亚基A位,

结合或接受肽基tRNA部位——大亚基,肽

基转移部位——大亚基P位,形成肽键部

位(转肽酶中心)——大亚基E位。

2.简述氨基酸的活化过程

答:游离的氨基酸必须经过活化以获得能量,才能参与蛋白质的合成,活化反

应由氨酰tRNA合成酶催化。活化分两步:

①活化:aa + ATP+ E→氨基酰-AMP释放出

PPi

②转移:氨基酰-AMP转移到 tRNA 并释放

出 AMP。

3、论述蛋白质的翻译过程。

答:蛋白质的翻译即合成过程可分为四个阶段:氨基酸的活化、肽链合成的起始、延伸和

终止。

①氨基酸的活化:游离的氨基酸必须经过活

化以获得能量,才能参与蛋白质的合成,

活化反应由氨酰tRNA合成酶催化,最终氨

基酸连接在tRNA的3’端合成氨酰- tRNA。

②肽链合成的起始:核蛋白体大小亚基分

离,mRNA在小亚基上定位结合,起始氨基

酰tRNA与小亚基结合,核蛋白体大亚基结

合。

③肽链的延伸:肽链的延长是在核蛋白体上连续

性循环式进行,每次循环增加一个氨基酸,

分为以下三步:(一)进位:根据mRNA下一

组遗传密码指导,使相应氨基酰-tRNA进入

核蛋白体A位。(二)成肽:肽酰转移酶将

相邻的两个氨基酸相连形成肽键,该过程

不需要能量的输入;(三)转位:移位酶利

用GTP水解释放的能量使核糖体沿mRNA移

动一个密码子,释放出空载的tRNA并将新

生肽链运至P位点。

③肽链合成的的终止与释放:释放因子识别

并与终止密码子结合,水解P位上多肽链

与tRNA之间的二脂键,接着,新生肽链和

tRNA从核糖体上释放,核糖体大、小亚基

解体,蛋白质合成结束。

4、原核生物翻译的起始过程

(1)核糖体大小亚基分离

(2)30s小亚基通过SD序列与mRNA模板相结合

(3)在IF-2和GTP的帮助下fMet-tRNAfMet进入小亚基的P位,tRNA的反密码子与mRNA

上密码子配对。

(4)带有tRNA、mRNA和三个翻译起始因子的小亚基起始复合物与50s的大亚基结合,GTP

水解释放翻译起始因子。

5、以大肠杆菌为例简述蛋白质合成的过程

从以下四个方面详细论述

(1)氨基酸的活化:

(2)肽链合成的起始:

(3)肽链的延生:

(4)肽链合成的终止:

第六章

乳糖操纵子模型内容

(1)Z、Y、A基因产物由同一条多顺反子mRNA 分子所编码。

(2)乳糖操纵子mRNA分子的启动区(P)位于阻遏基因(I)与操纵区(O)之间,不能

单独起始半乳糖苷酶和透过酶基因的高效

表达。

(3)乳糖操纵子的操纵区是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。(4)当阻遏物与操纵区相结合时,lacmRNA的转录起始受到抑制。

(5)诱导物通过与阻遏物结合,改变其三维构象,使之不能与操纵区相结合,诱发lac

mRNA的合成。

乳糖操纵子(lac operon)的结构

1、结构基因

(1)lacZ:编码b -半乳糖苷酶(使乳糖水解)

(2)lacY:编码b -半乳糖苷透过酶

(使b -半乳糖苷透过细胞壁、质膜进入细胞内)

(3)lacA:编码b -半乳糖苷乙酰转移酶(将乙酰基转移到b -半乳糖苷上)

2、调节基因(regulatory gene)

(1)概念:其产物参与调控其他结构基因表达的基因

(2)特点:

a、可在结构基因群附近、也可远离结

构基因

b、不仅对同一条DNA链上的结构基因

起作用,而且能对不同DNA链上的结构基

因起作用

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

分子生物学试题及答案

生命科学系本科2010-2011学年第1学期试题分子生物学(A)答案及评分标准 一、选择题,选择一个最佳答案(每小题1分,共15分) 1、1953年Watson和Crick提出(A ) A、多核苷酸DNA链通过氢键连接成一个双螺旋 B、DNA的复制是半保留的,常常形成亲本——子代双螺旋杂合链 C、三个连续的核苷酸代表一个遗传密码 D、遗传物质通常是DNA而非RNA 2、基因组是(D ) A、一个生物体内所有基因的分子总量 B、一个二倍体细胞中的染色体数 C、遗传单位 D、生物体的一个特定细胞内所有基因的分子总量 3、下面关于DNA复制的说法正确的是(D ) A、按全保留机制进行 B、按3'→5'方向进行 C、需要4种NTP加入 D、需要DNA聚合酶的作用 4、当过量的RNA与限量的DNA杂交时(A ) A、所有的DNA均杂交 B、所有的RNA均杂交 C、50%的DNA杂交 D、50%的RNA杂交 5、以下有关大肠杆菌转录的叙述,哪一个是正确的?(B ) A、-35区和-10区序列间的间隔序列是保守的 B、-35区和-10区序列距离对转录效率非常重要 C、转录起始位点后的序列对于转录效率不重要 D、-10区序列通常正好位于转录起始位点上游10bp处 6、真核生物mRNA转录后加工不包括(A ) A、加CCA—OH B、5'端“帽子”结构 C、3'端poly(A)尾巴 D、内含子的剪接 7、翻译后的加工过程不包括(C ) A、N端fMet或Met的切除 B、二硫键的形成 C、3'末端加poly(A)尾 D、特定氨基酸的修饰

8、有关肽链合成的终止,错误的是(C ) A、释放因子RF具有GTP酶活性 B、真核细胞中只有一个终止因子 C、只要有RF因子存在,蛋白质的合成就会自动终止 D、细菌细胞内存在3种不同的终止因子:RF1、RF2、RF3 9、酵母双杂交体系被用来研究(C ) A、哺乳动物功能基因的表型分析 B、酵母细胞的功能基因 C、蛋白质的相互作用 D、基因的表达调控 10、用于分子生物学和基因工程研究的载体必须具备两个条件(B ) A、含有复制原点,抗性选择基因 B、含有复制原点,合适的酶切位点 C、抗性基因,合适的酶切位点 11、原核生物基因表达调控的意义是(D ) A、调节生长与分化 B、调节发育与分化 C、调节生长、发育与分化 D、调节代谢,适应环境 E、维持细胞特性和调节生长 12、乳糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是(E ) A、与DNA结合影响模板活性 B、与启动子结合 C、与操纵基因结合 D、与RNA聚合酶结合影响其活性 E、与蛋白质结合影响该蛋白质结合DNA 13、Lac阻遏蛋白由(D )编码 A、Z基因 B、Y基因 C、A基因 D、I基因 14、紫外线照射引起DNA损伤时,细菌DNA修复酶基因表达反应性增强,这种现象称为(A ) A、诱导 B、阻遏 C、正反馈 D、负反馈 15、ppGpp在何种情况下被合成?(A ) A、细菌缺乏氮源时 B、细菌缺乏碳源时 C、细菌在环境温度太高时 D、细菌在环境温度太低时 E、细菌在环境中氨基酸含量过高时

分子生物学笔记

分子生物学笔记 ? ?第一章基因的结构第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。蛋白质组(proteome)和蛋白质组学(proteomics)

第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类? (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.)LINES ②短散在重复序列(Short interspersed repeated segments)SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl (三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列, 三、基因家族(gene family)

分子生物学复习题

1、分子生物学的定义。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。 2、简述分子生物学的主要研究内容。 a.DNA重组技术(基因工程) (1)可被用于大量生产某些在正常细胞代谢中产量很低的多肽 ; (2)可用于定向改造某些生物的基因组结构 ; (3)可被用来进行基础研究 b.基因的表达调控 在个体生长发育过程中生物遗传信息的表达按一定时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。 c.生物大分子的结构和功能研究(结构分子生物学) 一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提: (1)拥有特定的空间结构(三维结构); (2)发挥生物学功能的过程中必定存在着结构和构象的变化。 结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。它包括3个主要研究方向: (1) 结构的测定 (2) 结构运动变化规律的探索 (3) 结构与功能相互关系 d.基因组、功能基因组与生物信息学研究 3、谈谈你对分子生物学未来发展的看法? (1)分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类认识论上的重大飞跃。生命活动的一致性,决定了二十一世纪的生物学将是真正的系统生物学,是生物学范围内所有学科在分子水平上的统一。 (2)分子生物学是目前自然学科中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。

(3)分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以及信息科学等多学科相互渗透、综合融会而产生并发展起来的,同时也推动这些学科的发展。 (4)分子生物学涉及认识生命的本质,它也就自然广泛的渗透到医学、药学各学科领域中,成为现代医药学重要的基础。 1、DNA双螺旋模型是哪年、由谁提出的?简述其基本内容。 DNA双螺旋模型在1953年由Watson和Crick提出的。 基本内容: (1) 两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手双螺旋。 (2) 嘌呤与嘧啶碱位于双螺旋的内侧,3′,5′- 磷酸与核糖在外侧,彼此通过磷酸二酯键相连接,形成DNA分子的骨架。 (3) 双螺旋的平均直径为2nm,两个相邻碱基对之间相距的高度即碱基堆积距离 为0.34nm,两个核苷酸之间的夹角为36。。 (4) 两条核苷酸链依靠彼此碱基之间形成的氢键相连系而结合在一起,A与T相配对形成两个氢键,G与C相配对形成3个氢键。 (5) 碱基在一条链上的排列顺序不受任何限制,但根据碱基互补配对原则,当一条多核苷酸的序列被确定后,即可决定另一条互补链的序列。

分子生物学笔记完全版

分子生物学笔记第一章基因的结构 第一节基因和基因组 一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控 序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划( human genome project, HGP ) 基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。 蛋白质组( proteome )和蛋白质组学( proteomics ) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如 rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生 有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。 3 .细菌DNA大部分为编码序列。 二、病毒基因组的特点 1 .每种病毒只有一种核酸,或者DNA,或者RNA ; 2 .病毒核酸大小差别很大,3X10 3 一3X106bp ; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6. 有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

分子生物学整理

1.核酸与蛋白质的结构比较表如下: 核酸(Nucleic acids) 蛋白质(Proteins) DNA RNA 一级结构Primary structure 核苷酸序列 AGTTCT 或AGUUCU 的排列顺序 3,,5,- 磷酸二酯键 氨基酸排列顺序 肽键 二级结构Secondarystructure 双螺旋 主要是氢键,碱基堆积 力 配对(茎-环结构) (同左) 有规则重复的构象 (α-helix ,β-sheet, β-turn) 氢键 三级结构Tertiary structure 超螺旋RNA空间构象 一条肽链的空间构象 范德华力氢键疏水 作用盐桥二硫键等 四级结构Quaternarystructure 多条肽链 (或不同蛋白) 3.分离和纯化核酸:聚丙烯酰胺凝胶电泳(PAGE)与琼脂糖凝胶电泳(AGE)广泛用于核酸的分离、纯化 与鉴定 基因组DNA的分离与纯化:(一)酚抽提法(二)甲酰胺解聚法(三)玻棒缠绕法(四)DNA样品的进一 步纯化:纯化的方法包括透析、层析、电泳及选择性沉淀等 4原核生物与真核生物基因信息传递过程中的差异 1. DNA的复制 原核生物真核生物 DNA聚合酶DNA聚合酶Ⅰ、Ⅱ、ⅢDNA聚合酶α、β、γ、δ、ε五种,其中δ为主要的聚合酶, γ存在于线粒体中 原核的DNA聚合酶I具有5'-3'外切酶活性。真核生物的聚合酶没有5'-3'外切酶活性,需要一种叫FEN1 的蛋白切除5'端引物 DNA聚合酶III复制时形成二聚体复合物 起始复制地点:细胞质复制地点:细胞核 复制时间:DNA合成只是发生在细胞周期的S期 有时序性,即复制子以分组方式激活而非同步启动复制起点:一个起始位点,单复制子复制起点:多个复制起始位点,多复制子 起始点长度:长起始点长度:短 延长冈崎片段:比较长冈崎片段:比原核生物要短 引物:RNA,切除引物需要DNA聚合酶I 引物:较原核生物的短,除RNA外还有DNA,所以真核生 物切除引物需要核内RNA酶,还需要核酸外切酶。 终止基因为环状的DNA,复制的终止点ter,催 化填补空隙为DNA-polⅠ,DNA连接酶连 接冈崎片段成DNA链真核生物基因为线状的DNA,其复制与核小体的装配同步进行,复制后形成染色体,DNA-polε填补空隙,存在端粒及端粒酶防止DNA的缩短(RNA引物留下的空白无法填补时出现DNA的缩短)

分子生物学期末试题

分子生物学期末试题 分子生物学期末考试试题 一、名词讲明 1、反式作用因子:能直截了当或间接地识别或结合各类顺式作用元件核心序列,参与调控靶基因转录效率的蛋白质。 2、基因家族: 3、C值矛盾:C值是指真核生物单倍体的DNA含量,一样的,真核生物的进化程度越高,C值越大,但在一些两栖类生物中,其C值却比哺乳动物大的现象。缘故是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能D NA所隔开。 4、核型:指一个物种所特有的染色体数目和每一条染色体所特有的形状特点。 5、RNA editing:转录后的RNA在编码区发生碱基的突变、加入或丢失等现象。 二、判定: 1、真核生物所有的mRNA都有polyA结构。(X ) 组蛋白的mRNA没有 2、由于密码子存在摇摆性,使得一种tRNA分子常常能够识别一种以上同一种氨基酸的密码子。 (√) 3、大肠杆菌的连接酶以ATP作为能量来源。(X )

以NAD作为能量来源 4、tRNA只在蛋白质合成中起作用。(X ) tRNA还有其它的生物学功能,如可作为逆转录酶的引物 5、DNA聚合酶和RNA聚合酶的催化反应都需要引物。(X ) RNA聚合酶的催化反应不需要引物 6、真核生物蛋白质合成的起始氨基酸是甲酰甲硫氨酸(X ) 真核生物蛋白质合成的起始氨基酸是甲硫氨酸 7、质粒不能在宿主细胞中独立自主地进行复制(X ) 质粒具有复制起始原点,能在宿主细胞中独立自主地进行复制 8、RNA因为不含有DNA基因组,因此按照分子遗传的中心法则,它必须先进行反转录,才能复制和增殖。(X )不一定,有的RNA病毒可直截了当进行RNA复制和翻译 9、细菌的RNA聚合酶全酶由核心酶和ρ因子组成。( X ) 细菌的RNA聚合酶全酶由核心酶和σ因子组成 10、核小体在复制时组蛋白八聚体以全保留的方式传递给子代。(√) 11、色氨酸操纵子中含有衰减子序列(√) 12、SOS框是所有din基因(SOS基因)的操纵子都含有的20bp的lexA结合位点。(√) 三、填空:

!!分子生物学笔记完全版

列〃一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和 3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断 裂基因(split-gene),外显子不连续。二、基因组(genome) 一 特定生物体的整套(单倍体)遗传物质的总和,基因组的大小 用全部 DNA 的碱基对总数表示。 人基因组 3X1 09(30 亿 bp),共编码约 10 万个基因。 每种真核生物的单倍体基因组中的全部 DNA 量称为 C 值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组一、真核生物基因组的特 点:, ①真核基因组 DNA 在细胞核内处于以核小体为基本单位的染色体结构中〃 ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中 DNA 序列的分类 &#8226; (一)高度重复序列(重复次数>lO5) 卫星 DNA(Satellite DNA) (二)中度重复序列 1〃中度重复序列的特点

①重复单位序列相似,但不完全一样, ②散在分布于基因组中〃 ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为 DNA 标记〃 ⑤中度重复序列可能是转座元件(返座子), 2〃中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments〃) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105〃如人 Alu 序列 LINEs:长

分子生物学课件整理朱玉贤

1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和 酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息 的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的 RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解 影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微 生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编 码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单 拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列 的长度为6~200碱基对。

分子生物学 题库汇总

名词解释: 1.基因(gene):是一段携带功能产物(多肽,蛋白质,tRNA和rRNA和某些小分子RNA)信息的DNA片段,是控制某种性状的的遗传单位。 2.基因组(genome):泛指一个有生命体、病毒或细胞器的全部遗传物质;在真核生物,基因组是指一套染色体(单倍体)DNA。 3、端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。 4、操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。 5、顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。 6、反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。在反式作用因子中,可直接或间接结合RNA聚合酶的,称为转录因子。 转录调节因子结构 DNA结合域 酸性活域 脯氨酸富含域 TF 转录激活域 谷氨酰胺富含域 蛋白质-蛋白质结合域 (二聚化结构域) 7、启动子:是RNA聚合酶特异性识别和结合的DNA序列。 8、增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。 9、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。 10、信息分子:调节细胞生命活动的化学物质。其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。 11、受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。 12、分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和 繁殖,以获得该DNA分子的大量拷贝。 13、蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。 14、蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同 构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。 15、基因工程:有目的的通过分子克隆技术,人为的操作改造基因,改变生物遗传性状的系列过程。 16、载体:能在连接酶的作用下和外源DNA片段连接并运送DNA分子进入受体细胞的DNA分子。 17、转化:指质粒DNA或以它为载体构建的重组DNA导入细菌的过程。 18、感染:以噬菌体、粘性质粒和真核细胞病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌 体颗粒,才能感染适当的细胞,并在细胞内扩增。 19、转导:指以噬菌体为载体,在细菌之间转移DNA的过程,有时也指在真核细胞之间通过逆转录病毒转移和获得细胞DNA的过程。 20、转染:指病毒或以它为载体构建的重组子导入真核细胞的过程。 21、DNA变性:在物理或化学因素的作用下,导致两条DNA链之间的氢键断裂,而核酸分子中的所有共价键则不受影响。

分子生物学题库

分子生物学备选考题 名词解释: 1.功能基因组学 2.分子生物学 3.epigenetics 4.C值矛盾 5.基因簇 6.间隔基因 7.基因芯片 8.基序(Motifs) 9.CpG岛 10.染色体重建 11.Telomerase 12.足迹分析实验 13.RNA editing 14.RNA干涉(RNA interference) 15.反义RNA 16.启动子(Promoter) 17.SD序列(SD sequence) 18.碳末端结构域(carboxyl terminal domain,CTD) 19.single nucleotide polymorphism,SNP 20.切口平移(Nick translation) 21.原位杂交 22.Expressing vector 23.Multiple cloning sites 24.同源重组 25.转座 26.密码的摆动性 27.热休克蛋白嵌套基因 28.基因家族增强子 29.终止子 30.前导肽RNAi 31.分子伴侣 32.魔斑核苷酸 33.同源域 34.引物酶 35.多顺反子mRNA 36.物理图谱、 37.载体(vector) 38.位点特异性重组 39.原癌基因(oncogene) 40.重叠基因、 41.母源影响基因、

42.抑癌基因(anti-oncogene)、 43.回文序列(palindrome sequence)、 44.熔解温度(melting temperature, Tm) 45.DNA的呼吸作用(DNA respiration) 46..增色效应(hyperchromicity)、 47.C0t曲线(C0t curve)、 48.DNA的C值(C value) 49.超螺旋(superhelix) 、 50.拓扑异构酶(topoisomerase)、 51.引发酶(primase) 、 52.引发体(primosome) 53.转录激活(transcriptional activation) 54.dna基因(dna gene)、 55.从头起始(de novo initiation) 、 56.端粒(telomere) 57.酵母人工染色体(yeast artificial chromosome, YAC)、 58.SSB蛋白(single strand binding protein)、 59.复制叉(replication fork)、 60.保留复制(semiconservative replication) 61.滚环式复制(rolling circle replication)、 62.复制原点(replication origin)、 63.切口(nick) 64.居民DNA (resident DNA) 65.有义链(sense strand) 66.反义链(antisense strand) 67.操纵子(operon) 、 68.操纵基因(operator) 69.内含子(内元intron) 70.外显子(外元exon) 、 71.突变子(muton) 、 72.密码子(codon)、、 73.同义密码(synonymous codons)、 74.GC盒(GC box) 75.增强子(enhancer) 76.沉默子(silencer) 77.终止子(terminator) 78.弱化子(衰减子)(attenuator) 79.同位酶(isoschizomers) 、 80.同尾酶(isocandamers) 81.阻抑蛋白(阻遏蛋白)(repressor) 82.诱导物(inducer)、 83.CTD尾(carboxyl-terminal domain ) 84.载体(vector)、 85.转化体(transformant)

分子生物学课件整理

注:根据课件容简单整理,为了方便大家理解,容较多;如果仅仅为了考试,可以根据自己的需要进行容的删减。 Lecture 1. Introduction 1. What is Molecular Biology? Molecular biology seeks to explain the relationships between the structure and function of biological molecules and how these relationships contribute to the operation and control of biochemical processes. Molecular biology is the study of genes and their activities at the molecular level, including transcription, translation, DNA replication, recombination and translocation. 分子生物学的研究容 Major content of molecular biology ◆ Structure and Function of nucleic acid ★conformation and function of DNA ★conformation and function of RNA ◎mRNA ◎tRNA◎rRNA ◎ ribozyme ◎antisence RNA ◎ microRNA ◎ RNA interfrence 人们开发出:RNAi、RNAa、ncRNA、SiRNA、microRNA、Antisene RNA、SatellileRNA、TelomereRNA、lincRNA、InCRNA、PiRNA、qiRNA、endoSiRNA 等等,其他还有RNA结合蛋白(RNPs)、RNA酶等成百上千种RNA相关的新成员,组成了一个庞大的RNA新世界 这些RNA不仅在基因-蛋白质的合成中发挥重要作用,它更调节和管理着—基因的转录、表达、表型等几乎所有的功能。 在细胞增殖、分化、生长、凋亡、生殖、发育、遗传、损伤、修复、炎症、感染、防治等一切生命活动中发挥着重要作用; RNA还是生命起源的“先驱’’,近年来研究证明,RNA比DNA更古老,它是地球上最早出现的生命形式;它可以携带遗传信息,能自我复制,自我进化,自我编译,又具有催化分子功能------,以后才有了DNA和蛋白质,才有了今天的生物世界。 RNA更是人类生命健康的维护者,它不仅调节和管理着人类的一切生命活动,而且它还是防治许多重大的疾病和开发新药物的靶分子和预警分子,并可直接和间接的发挥防治疾病的作用。 ◆Functional Genomics ◎As the Human Genome Project has mostly determined the genetic sequence, the next step is functional genomics, which will reveal each gene's functions and controls ◎ Human Genome Diversity Project ◎ Environmental Genome Project ◎Pharmacogenomics ◎Comparative Genomics Artificial life 人工生命是通过人工模拟生命系统,来研究生命的领域。人工生命的概念,包括两个方面容 1.属于计算机科学领域的虚拟生命系统,涉及计算机软件工程与人工智能技术,以及 2.基因工程技术人工改造生物的工程生物系统,涉及合成生物学技术。 分子生物学与医学 ◆人体发育调控和人体功能调控的分子生物学基础 ◎发育、分化与衰老的分子生物学基础 ◎细胞增殖调控的分子生物学基础 ◎神经、分泌和免疫调控的分子生物学基础 ◆基因与疾病 ◎疾病的分子机理 致病基因的克隆 复杂疾病的分子基础 ◎基因诊断 ◎基因治疗 Lecture 2 structure and function of gene 第一节基因的概念及其发展 一基因(gene)(一)基因的概念的产生和发展 2、Morgan 基因的物质载体是染色体 3、G.Beadle & R.Tatum 基因是决定蛋白质一级结构的遗传物质单位 5、O. Avery 基因的化学本质是DNA 6、Jacob & Monod 基因是在特定的遗传调控系统的调节下和控制下表达其功能的遗传物质单位 7、现代的基因概念 基因是核酸分子中储存遗传信息的遗传单位,是指储存有功能的蛋白质多肽链或RNA序列信息所必需的全部核苷酸序列 二、基因组(genomic) The genome is the entirety of an organism's hereditary information. It is encoded either in DNA or, for many types of virus, in RNA. The genome includes both the genes and the non-coding sequences of the DNA 细胞或生物体中,一套完整单倍体的遗传物质的总和。 人类基因组包含24条染色体以及线粒体上的全部的遗传物质。 第二节真核生物基因组 一、基因分类 1、结构基因(strutual gene)可被转录形成mRNA并进而翻译位多肽链,构成各种结构蛋白的基因 2、调节基因(regulatory gene)可调节、控制结构基因表达的基因。其突变可能会影响一个或多个结构基因的功能,导致一个(或多个)蛋白质的改变。 3、rRNA基因和tRNA基因 二、基因的结构 enhancer pr omoter e xon 5UTR, 3UTR intron (一)编码区 1 、外显子(exon) 2、含子(intron) ★GT—AG规则: 含子多是以GT开始,并以AG结尾 ★一个基因的含子可以是另一个基因的外显子。 ★外显子的数量是描述基因结构特征的重要指标。 三、调控元件(acting elements) (二)前导区: 位于编码区的上游,相当于mRNA5端的非编码区 (三)调节区: 包括启动子、增强子等基因编码区的两侧,也称侧翼序列 ◎顺式调控元件(cis-acting elements):与结构基因表达调控相关。能够被基因调控蛋白特异性识别和结合的DNA序列。 ◎反式调控元件(trans-acting elements):一些可以通过结合顺式元件而调节基因转录活性的蛋白因子。 (一)启动子(promoter) 启动子是DNA分子可以与RNA聚合酶特异结合的部位,也就是使转录开始的部位。在基因表达的调控中,转录的起始是个关键。常常某个基因是否应当表达决定于在特定的启动子起始过程。 2 启动子的类型 (1)一类是RNA聚合酶可以直接识别的启动子这类启动子应当总是能被转录。 但实际上也不都如此,外来蛋白质可对其有影响,即该蛋白质可直接阻断启动子,也可间接作用于邻近的DNA结构,使聚合酶不能和启动子结合 (2)另一类启动子在和聚合酶结合时需要有蛋白质辅助因子的存在。这种蛋白质因子能够识别与该启动子顺序相邻或甚至重叠的DNA顺序。 3 启动子的共同顺序 ⑴真核生物基因启动子位于RNA合成开始位点的上游大约10bp和35bp处有两个共同的顺序,称为-10和-35序列。这两个序列的共同顺序如下, -35区“AATGTGTGGAAT”, -10区“TTGACATATATT”。 -10序列又称为Pribnow盒(原核生物)。是RNA聚合酶所结合和作用必需的顺序

相关文档
最新文档