无源逆变的应用实例

无源逆变的应用实例
无源逆变的应用实例

无源逆变的应用实例

材料0906 田鹏200912010615

摘要逆变是把直流电能变换成交流电能,实现这种功能的装置叫做逆变器。无源逆变是指逆变器输出的交流电能直接供给负载而不松往交流电网。

关键词逆变无源逆变应用

正文视应用场合的不同,逆变器输出电压的频率的差异会很大。有时变频器输出频率低于交流市电电源频率,如交流电动调速系统;有时又会达到几KHz到几十KHz甚至更高,如感应加热系统。无源逆变电路多与其它电力电子变换电路组合形成具有特殊功能的电力电子设备。如无源逆变器与整流器组合为交-直-交变频器,来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经

无源逆变器输出可调频率的交流电供给负载。

一、概论

1.无缘逆变器的概念及其作用[1]

逆变是把直流电能变换成交流电能,实现这种功能的装置叫做逆变器。无源逆变是指逆变器输出的交流电能直接供给负载而不松往交流电网。其工作原理可用图3-1描述。

图3-1无源逆变框图[2]

前面已讨论过有源逆变的概念,有源逆变是将逆变器输出的交流电能回送到交流电网,因此逆变器输出的电压的幅度、频率以及相位都必须与电网电压相统一。而无源逆变输出电压的上述参数一般与电网电压都不相同,而许多应用场合正是需要与交流电网不同的交流电压时才使用无源逆变器。视应用场合的不同,逆变器输出电压的频率的差异会很大。有时变频器输出频率低于交流市电电源频率,如交流电动调速系统;有时又会达到几KHz到几十KHz甚至更高,如感应加热系统。无源逆变电路多与其它电力电子变换电路组合形成具有特殊功能的电力电子设备。如无源逆变器与整流器组合为交-直-交变频器,来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载。其框图如图3-2 所示。

图3-2 交-直-交变频器框图

整流和无源逆变的另一种组合是开关电源,其框图如图3-3 所示。来自交流电网的电压先经整流器A 整流,得到与市电电压幅度相当的直流电压,这一电压又经其中的无源逆变电路变成高频交流电压,然后经高频变压器将电压的幅度变成适合负载要求的电压等级,最后通过整流器B 变成直流供给负载。开关电源省去了传统电源设备中的工频变压器,使电源设备体积和重量都大大地减小,同时电压的调节和稳定范围也大大地提高。

图3-3 开关电源框图

二、辅助电源电路[3]。

逆变器除了功率变换回路外,还包含了小信号部分的供电,例如PWM 信号芯片的12V 供电,运放的单电源或双电源供电,单片机的5V 或3.3V 供电等。对上述电路提供一个稳定的纯净的电源供电在逆变器中也显得很重要。

1.12V电池输入的辅助电源电路

对于12V 电池供电的逆变器,一般经过一级RC 滤波给PWM 芯片如

TL494,SG3525 等供电即可。需要注意的是R 的压降控制在0.5V-1V 比较合适,因为一般PWM 芯片最低工作电压在8V 左右,为了使电池在10V 电压时还能工作,R 上的压降不能过大。还有PWM 芯片供电电压过低容易引起不工作或对功率MOS 管驱动不足。

在要求比较高的情况下可以先把10-15V 的电池电压升压到15V,再用

L7812 降压到稳定的12V 给PWM 芯片供电,电路如下:

上图中BT 为来自12V 电池,电压变动范围为10-15V.采用了MC34063 单片DCDC 芯片比较简单经济地实现了上述功能。

2. 24V-48V电池输入的辅助电源电路

在输入24V 以上的逆变器中,要是用L7812,LM317 之类的线性降压会造成比较大的发热损耗,因此本人设计了一个自激开关式降压电路,现在介绍给大家:在这个电路中,BT 输入电压范围可以达到15-60V,而输出稳定在12V.Q6 也可以用P型的MOS 管。下面来讲一下这个电路的工作原理,电路起动的瞬间,电源通过R13 提供Q6 足够大的基极电流,Q6 饱和导通,其集电极电流一部分通过L1 给C15 充电供给负载,一部分储存在L1 里。当C15 两端的电压超过15V 时Q7 导通,Q5 也导通导致Q6 的基极电位上升,电流减小,C11 的上端的电位下降,由于C11 两端的电压不能突变,Q5 基极的电位继续迅速下降,Q6 的

基极电位迅速上升直到快速关断,Q6 关断后L1 的储能通过续流二极管D2 释放

给C15 和负载,然后开始下一个周期的循环。

三、高频逆变器后级电路[4]

后级电路的基本功能就是把前级升压的高压直流电逆变成交流电。从结构来说全桥结构用得最多。下面以单相正弦波逆变器的后级电路为例讲解下,部分电路如下图:

1.米勒电容[5]对高压MOS 管安全的影响及其解决办法:

我们先来分析一下MOS 管GD 结电容,也叫米勒电容对半桥上下两管开关的影响。供分析的电路如下:

图中C1,C2 分别是Q1,Q2 的GD 结电容,左边上下两个波形分别是Q1,Q2 的栅极驱动波形。我们先从t1-t2 死区时刻开始分析,从图中可以看出这段时间为死区时间,也就是说这段时间内两管都不导通,半桥中点电压为母线电压的一半,也就是说C1,C2 充电也是母线电压的一半。当驱动信号运行到t2 时刻时,Q1 的栅极变为高电平,Q1 开始导通,半桥中点的电位急剧上升,C2 通过母线电压充电,充电电流通过驱动电阻Rg 和驱动电路放电管Q4,这个充电电流会在驱动电阻Rg 和驱动电路放电管Q4 上产生一个毛刺电压,请看图中t2 时刻那条红色的竖线。如果这个毛刺电压的幅值超过了Q2 的开启电压Qth,半桥的上

下两管就共通了。有时候上下两管轻微共通并不一定会炸管,但会造成功率管发热,在母线上用示波器观察也会看到很明显的干扰毛刺。只有共通比较严重的时候才会炸管。还有一个特性就是母线电压越高毛刺电压也越高,也越会引起炸管。

大家知道了这个毛刺电压产生的原理,我想就很容易解决这个问提了,主要有三种解决办法:

1)采用栅极有源钳位电路[6]。可以在MOS 管的栅极直接用一个低阻的

MOS 管下拉,让它在死区时导通;

2)采用RC 或RCD 吸收电路;

3)栅极加负压关断,这是效果最好的办法,它可以通过电平平移使毛刺电

压平移到源极电平以下,但电路比较复杂。

2. IR2110应用中需要注意的问题

IR2110 是IR 公司早期推出的半桥驱动器,具有功耗小,电路简单,开关速

度快等优点,广泛应用于逆变器的全桥驱动中。对于DIP16 封装的IR2110 在正弦波逆变器的应用中主要要注意以下几点:

1). 13 脚的逻辑地和2 脚的驱动地在布线时要分开来走,逻辑地一般要接到

5V 滤波电容的负端,再到高压滤波电容的负端,驱动地一般要接到12-15V 驱

动电源的滤波电容的负端,再到两个低端高压MOS 管中较远的那个MOS 的源

极。如下图:

2). 在正弦波逆变器中因为载波的频率较高,母线电压也较高,自举二极管要使用高频高压的二极管。因为载波占空比接近100%,自举电容的容量要按照基波计算,一般需要取到47-100uF,最好并一个小的高频电容。

3.正弦波逆变器LC滤波器参数的计算[7]

要准确计算正弦波逆变器LC 滤波器的参数确实是件繁琐的事,这里我介绍一套近似的简便计算方法,在实际的检验中也证明是可行的。我的想法是SPWM 的滤波电感和正激类的开关电源的输出滤波电感类似,只是SPWM 的脉宽是变化的,滤波后的电压是正弦波不是直流电压。如果在半个正弦周期内我们按电感纹波电流最大的一点来计算我想是可行的。下面以输出1000W220V 正弦波逆变器为例进行LC 滤波器的参数的计算,先引入以下几个物理量:Udc:输入逆变H 桥的电压,变化范围约为320V-420V;

Uo:输出电压,0-311V 变化,有效值为220V;

D:SPWM 载波的占空比,是按正弦规律不断变化的;

fsw: SPWM 的开关频率,以20kHz 为例;

Io:输出电流,电感的峰值电流约为1.4 Io;

Ton:开关管的导通时间,实际是按正弦规律不断变化的;

L: LC 滤波器所需的电感量;

R:逆变器的负载电阻。

于是有:

L=( Udc- Uo) Ton/(1.4 Io) (1)

D= Uo/ Udc (2)

Ton=D/ fsw= Uo/(Udc* fsw)( 3)

Io=Uo/R (4)

综合(1),(3),(4)有:

L=(Udc- Uo)* Uo/(1.4 Io* Udc* fsw)=R(1-Uo/Udc)/(1.4 fsw)

例如,一台输出功率1000W 的逆变器,假设最小负载为满载的15%则,

R=220*220/(1000*15%)=323Ω

从L= R(1-Uo/Udc)/(1.4 fsw)可以看出,Uo=Udc 的瞬间L=0,不需要电感;Uo 越小需要

的L 越大我们可以折中取当Uo=0.5Udc 时的L=323*(1-0.5)/(1.4 *20000)=5.8 mH

这个值是按照输出15% Io 时电感电流依然连续计算的,所以比较大,可以根据逆变器

的最小负载修正,如最小负载是半载500W,L 只要1.7 mH 了。

确定了滤波电感我们就可以确定滤波电容C 了,滤波电容C 的确定相对就比较容易,

基本就按滤波器的截止频率为基波的5-10 倍计算就可以了。其计算公式为

f =1/ 2πLC

四、逆变器的部分保护电路

1. 防反接保护电路:

如果逆变器没有防反接电路,在输入电池接反的情况下往往会造成灾难性的后果,轻则烧毁保险丝,重则烧毁大部分电路。在逆变器中防反接保护电路主要有三种:

1). 反并肖特基二极管组成的防反接保护电路,基本电路如下图

由图中可以看出,当电池接反时,肖特基二极管D 导通,F 被烧毁。如果

后面是推挽结构的主变换电路,两推挽开关MOS 管的寄生二极管的也相当于和D 并联,但压降比肖特基大得多,耐瞬间电流的冲击能力也低于肖特基二极管D,这样就避免了大电流通过MOS管的寄生二极管,从而保护了两推挽开关MOS 管。这种防反接保护电路结构简单,不会影响效率,但保护后会烧毁保险丝F,

需要重新更换才能恢复正常工作。

2).采用继电器的防反接保护电路,基本电路如下图:

由图中可以看出,如果电池接反,D 反偏,继电器K 的线圈没有电流通过,触点不能吸合,逆变器供电被切断。这种防反接保护电路效果比较好,不会烧毁保险丝F,但体积比较大,继电器的触点的寿命有限。

3).采用MOS管的防反接保护电路,基本电路如下图:

图中 D 为防反接MOS 的寄生二极管,便于分析原理画出来了。当电池极性未接反时,D 正偏导通,Q 的GS 极由电池正极经过F,R1,D 回到电池负极得到正偏而导通。Q 导通后的压降比D 的压降小得多,所以Q 导通后会使D 得不到足够的正向电压而截至;当电池极性接反时,D 会由于反偏而截至,Q 也会由于GS 反偏而截至,逆变器不能启动。

这种防反接保护电路由于没有采用机械触点开关而具有比较长的使用寿命,也不会像反并肖特基二极管组成的防反接保护电路那样烧毁保险丝F.因而得到

广泛应用,缺点是MOS导通时具有一定的损耗。但是随着半导体技术的发展,低导通内阻的MOS 管层出不穷,像我们锐骏半导体新出的RU4099,40V 的耐压,200A 的电流容量,低到2.8mΩ的导通内阻,足够畅通无阻地通过比较大的电流还保持比较低的损耗。

2. 电池欠压保护:

为了防止电池过度放电而损坏电池,我们需要让电池在电压放电到一定电压的时候逆变器停止工作,需要指出的一点是,电池欠压保护太灵敏的话会在启动冲击性负载时保护。这样逆变器就难以起动这类负载了,尤其在电池电量不是很充足的情况下。请看下面的电池欠压保护电路。

可以看出这个电路由于加入了D1,C1 能够使电池取样电压快速建立,延时保护。

五、结论

总的来说,无源逆变器与其他逆变器一样,用途可分为两大类,如下:

逆变器是商业电网或地方电网的关键组件。

随着经济社会的发展,人类社会对能源的需求量越来越大,石油资源的紧缺及其价格的日益攀升,以及传统能源使用面临污染环境等诸多问题使人们转向对清洁能源(国内资源丰富的太阳能/风能)的发展。逆变器是整个太阳能/风能系统的关键组件,可将由太阳能/风能获得的可变直流输出转换成清洁正弦50 或60Hz 电流,从而满足我们对在日常环境中不可或缺的220伏交流电,非常适用于为商业电网或地方电网提供电源。

第二,满足“移动”时代的需求

随着现在人们生活方式的改变,高节奏,高快捷的生活需求在日益的扩大,于是现在的3C产品,更多的数码产品都在朝着这样的方向发展着,于是我们处了一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐的生活中。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。

参考文献:

[1] 林忠岳主编.电力电子变换技术.重庆:重庆大学出版社,1991. 41~50

[2] 黄俊主编.半导体变流技术(第二版).北京:机械工业出版社,1986

[3] 叶家金编著.现代电力电子器件—大功率晶体管的原理和应用.北京:中国铁道出版社,1992

[4] 吴麒等著.自动控制原理与系统.北京:国防工业出版社,1979

[5] 张明勋主编.电力电子设备设计和应用手册.北京:机械工业出版社,1992

[6] 阎石主编.数学电子技术基础.第3版.北京:高等教育出版社,1989188~93

[7] 赵家瑞.逆变焊接与切割电源.北京:机械工业出版社,1996

2014年光伏逆变器行业分析报告

2014年光伏逆变器行业分析报告 2014年7月

目录 一、全球逆变器行业集中度提高,技术创新不断 (3) 1、亚洲厂商市场占有率上升 (3) 2、全球市场并购重组不断 (6) 3、高电压、智能化是两大技术趋势 (7) 4、新能源与互联网跨界,物联网终端不是梦想 (9) 二、中国:中国国情决定集中型未来两年的优势地位 (10) 1、中国政策影响下游市场的类型偏好 (12) 2、价格竞争的结果是毛利率下降和集中度提高 (14) 3、集装箱解决方案在近两年被广泛使用在地面电站 (15) 三、海外:技术趋势多元化,多种机型长期共存 (16) 1、日本:两雄进入全球前五两席 (17) 2、北美:微型逆变器累加出货量超过1GW (20) 3、欧洲:英国市场是欧洲未来两年的重点 (21) 3、印度:欧美逆变器厂商是主要参与者 (23) 四、集中型逆变器未来两年仍处在增量市场 (24) 1、阳光电源:领跑国内,扩张海外 (24) 2、华为:以技术创新推动产业发展 (26) 3、易事特:UPS市场稳定,光伏继续发力 (27) 4、科士达:充电桩是新亮点 (28)

一、全球逆变器行业集中度提高,技术创新不断 1、亚洲厂商市场占有率上升 2013 年全球前十大逆变器厂商中有四个来自中国和日本市场。根据光伏行业咨询公司IHS 的报告,来自日本的Omron、TMEIC、Tabuchi 和来自中国的阳光电源都在全球前十大逆变器厂商的名单上。其他上榜的厂商包括来自欧洲的SMA、ABB、Schneider Electric、Kaco,和来自美国的Advanced Energy、Enphase Energy。全球前十大逆变器厂商的销售收入总和达到了37 亿美金,占据全球逆变器市场58%的市场份额。来自中国和日本的逆变器厂商的上榜,是亚洲厂商的市场占有率上升的缩影。 快速成长的亚太光伏市场和日益萎缩的欧洲市场,极大地改变了全球逆变器市场的既有格局。值得一提的是,中国市场和日本市场上都几乎没有外国逆变器品牌的身影,中日市场对本土品牌的偏爱程度很高。

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

逆变器制作全过程

逆变器制作全过程 制作600W的正弦波逆变器, 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。

1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

光伏逆变器行业调研分析报告

光伏逆变器行业调研分析报告 摘要—— 该光伏逆变器行业调研报告仅针对xx区域分析,时间2016-2017年度。 目前,区域内拥有各类光伏逆变器企业794家,从业人员39700人。截至2017年底,区域内光伏逆变器产值184937.75万元,较2016年160550.18万元增长15.19%。产值前十位企业合计收入77866.50万元,较去年65007.93万元同比增长19.78%。 ...... 经过长期追赶的沉淀和积累,当今我国在相当一些领域与世界前沿科技的差距都处于历史最小时期,已经有能力并行跟进这一轮科技革命和产业变革,加速实现制造业转型升级和创新发展。《中国制造2025》始终贯穿一个主题,就是加快新一代信息通信技术与制造业的深度融合。与发达国家在工业3.0基础上迈向4.0不同,我国制造业还有相当一部分停留在3.0甚至2.0,只有部分领先行业可比肩4.0。实施《中国制造2025》,必须处理好2.0普及、3.0补课和4.0赶超的关系,强化工业基础能力,提高综合集成水平,以推广智能制造为切入点,培育新型生产方式,推动制造业数字化网络化智能化。

第一章宏观环境分析 一、宏观经济分析 1、制造业是振兴实体经济的主战场。新一轮科技革命和产业变革浪潮之下,数字经济、共享经济、产业协作正在重塑传统实体经济形态,全球制造业都处于转换发展理念、调整失衡结构、重构竞争优势的关键节点,我国制造业提质升级的任务十分紧迫。综合来看,我国的高铁、核电、信息通信等领域已经具备了全球竞争力,但其他多数领域在技术创新、质量品牌、环境友好等方面落后于发达国家,离制造强国的建设目标还有很大差距。我们务必彻底摒弃旧的思维观念和方式方法,着眼解决深层次矛盾和问题,深化供给侧结构性改革,淘汰落后产能,加快创新驱动,优化升级传统产业,培育壮大战略性新兴产业,发展更多适应市场需求的新技术、新业态、新模式,促进“中国制造”上升为“中国高端制造”。 2、2018年是贯彻党的十九大精神的开局之年,是实施“十三五”规划承上启下的关键一年。同时2018年也是改革开放40周年。我国经济发展取得历史性成就、发生历史性变革。要审视复杂局势,科学判断,正确决策,把握战略窗口期。在此背景下,要继续加快推进制造强国、网络强国建设,深入实施推进中国制造建设,解决深层次矛

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

PWM-逆变器设计与仿真

PWM-逆变器设计与仿真

摘要 随着电力电子技术的不断发展,电力电子技术的各种装置在国民经济各行各业中得到了广泛应用。从电能转换的观点,电力电子的装置涵盖交流——直流变换、直流——交流变换、直流——直流变换、交流——交流变换。比如在可控电路直流电动机控制,可变直流电源等方面都得到了广泛的应用,而这些都是以逆变电路为核心。由于电力电子技术中有关电能的变换与控制过程,内容大多涉及电力电子各种装置的分析与大量的计算、电能变幻的波形分析、测量与绘制等,这些工作特别适合Matlab的使用。本次设计的题目是基于PWM逆变器的设计与仿真,所以在此次仿真就用的是Matlab软件,建立了基于Matlab的单相桥式SPWM逆变电路,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的simulink/simupowersystems对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块,分别用单极性SPWM和双极性SPWM的动态模型给出了仿真的实例与仿真结果,验证了模型的正确性,并展现了Matlab仿真具有的快捷,灵活,方便,直观的以及Matlab绘制的图形准确、清晰、优美的优点,从而进一步展示了Matlab的优越性。 关键字:PWM逆变器单极性SPWM 双极性SPWM MATLAB仿真

目录 摘要 绪论 (1) 第1章 MATLAB软件 (3) 1.1软件的介绍 (3) 1.2 电力电子电路的Matlab仿真 (4) 1.2.1实验系统总体设计 (5) 1.2.2电力电子电路Simulink仿真d特点 (5) 第2章逆变主电路的方案论证与选择 (6) 第3章 PWM逆变器的工作原理 (9) 3.1 PWM控制理论基础 (9) 3.1.1面积等效原理 (9) 3.2 PWM逆变电路及其控制方法 (11) 3.2.1计算法…………………………………………………… 11 3.2.2调制法…………………………………………………… 11 3.2.3 SPWM控制方式………………………………………… 15 第4章单相桥式PWM逆变器的仿真 (18) 4.1单相桥式PWM逆变器调制电路的Simulink模型 (18) 4.1.1单极性SPWM仿真模型图 (18)

单相电压型全桥逆变电路及其simulink仿真(含开题报告书)

电力电子技术课程设计单相电压型全桥逆变电路及其simulink仿真

开题报告 课题名称:单相电压型全桥逆变电路及其simulink仿真 完成时间:2012.12.14 指导老师:刘彬 (一)简要背景说明 随着电力电子技术的发展,逆变电路具有广泛的应用范围。交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。由于电压型逆变电路具有直流侧为电压源或并联大电容,直流侧电压基本无脉动;输出电压为矩形波,输出电流因负载阻抗不同而不同;阻感负载时需要提供无功功率,为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管等特点而具有广泛的应用范围。电压型逆变电路主要用于两方面:①笼式交流电动机变频调速系统。由于逆变电路只具有单方向传递电能的功能,故比较适用于稳态运行、无需频繁起制动和加、减速的场合。②不停电电源。该电源在逆变输入端并接蓄电池,类似于电压源。 图1 单相电压型全桥逆变电路

(二)研究的目的及其意义 在教学及实验基础上,设计单相电压型全桥逆变电路及其控制与保护电路,并通过使用simulink对课程中理论对电路进行仿真实现,进一步了解单相电压型全桥逆变电路的工作原理、波形及计算。 培养学生运用所学知识综合分析问题解决问题的能力。 在电力电子技术的应用中,逆变电路是通用变频器核心部件之一,起着非常重要的作用。逆变电路是与整流电路相对应,把直流电变成交流电的电路。逆变电路的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。无源逆变电路的应用非常广泛。在已有的各种电源中,蓄电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,需要通过无源逆变电路;无源逆变电路与其它电力电子变换电路组合形成具有特殊功能的电力电子设备,如无源逆变器与整流器组合为交-直-交变频器(来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载)。当电网提供的50 Hz 工频电源不能满足负载的需要,就需要用交-直-交变频电路进行电能交换。如感应加热需要较高频率的电源;交流电动机为了获得良好的调速特性需要频率可变的电源。 (三)研究的主要内容 1单相电压型全桥逆变电路的原理。 2单相电压型全桥逆变电路的结构。 3单相电压型全桥逆变电路及其控制电路、保护电路的设计(画出原理图,标明器件的选择)。 4完成单相电压型全桥逆变电路的数学模型的设计。 5建立simulink仿真系统进行建模,并对模型参数进行设置。 6仿真结果与分析。 (四)研究的主要方法和手段 首先建立单相电压型全桥逆变电路的电路拓扑图,在MATLAB中使用simulink工具箱建立相关控制模型,设置模型参数后,通过仿真得到电路的电压、电流结果,并对该结果进行分析。

逆变器初学者必看制作秘笈(全部资料)

逆变器初学者必看制作秘笈(全部资料) 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信,提这样那样的问题,很多都是象我这样的初学者。为此,我花了近一个月的时间,制作了这台600W的正弦波逆变器,并将此台机器的制作过程和各位好友在此分享,谨此献给曾经和我一样的逆变器初学者,如您能有所收获,并举一反三,将是我此次分享的最大的收获。 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯 硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的 PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你 要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形: 一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”; “SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方

PWM_逆变器设计与仿真

摘要 随着电力电子技术的不断发展,电力电子技术的各种装置在国民经济各行各业中得到了广泛应用。从电能转换的观点,电力电子的装置涵盖交流——直流变换、直流——交流变换、直流——直流变换、交流——交流变换。比如在可控电路直流电动机控制,可变直流电源等方面都得到了广泛的应用,而这些都是以逆变电路为核心。由于电力电子技术中有关电能的变换与控制过程,内容大多涉及电力电子各种装置的分析与大量的计算、电能变幻的波形分析、测量与绘制等,这些工作特别适合Matlab的使用。本次设计的题目是基于PWM逆变器的设计与仿真,所以在此次仿真就用的是Matlab软件,建立了基于Matlab的单相桥式SPWM逆变电路,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的simulink/simupowersystems对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块,分别用单极性SPWM和双极性SPWM的动态模型给出了仿真的实例与仿真结果,验证了模型的正确性,并展现了Matlab仿真具有的快捷,灵活,方便,直观的以及Matlab绘制的图形准确、清晰、优美的优点,从而进一步展示了Matlab的优越性。 关键字:PWM逆变器单极性SPWM 双极性SPWM MATLAB仿真

目录 摘要 绪论 (1) 第1章 MATLAB软件 (3) 1.1软件的介绍 (3) 1.2 电力电子电路的Matlab仿真 (4) 1.2.1实验系统总体设计 (5) 1.2.2电力电子电路Simulink仿真d特点 (5) 第2章逆变主电路的方案论证与选择 (6) 第3章 PWM逆变器的工作原理 (9) 3.1 PWM控制理论基础 (9) 3.1.1面积等效原理 (9) 3.2 PWM逆变电路及其控制方法 (11) 3.2.1计算法 (11) 3.2.2调制法 (11) 3.2.3 SPWM控制方式 (15) 第4章单相桥式PWM逆变器的仿真 (18) 4.1单相桥式PWM逆变器调制电路的Simulink模型 (18) 4.1.1单极性SPWM仿真模型图 (18) 4.1.2 双极性SPWM仿真模型图 (19) 4.2 仿真参数的设定及仿真图的分析 (19) 4.2.1 单极性SPWM的仿真及分析 (19)

单相半桥无源逆变器设计

电气与电子信息工程学院计算机控制课程设计

单相半桥无源逆变电路设计设计题目:(专升本)班专业班级:电气工程及其自动化2010 学号: 2 勇姓名:朱 组人:严康孙希凯同黄松柏指导教师:南光群 2011/11/21 设计时间:2011/11/13~ 电力电子室设计地点:课程设计成绩评定表电力电子 学勇 2 姓名朱单相半桥无源逆变电路设计课程设计题 26 / 1

26 / 2 指导教师签字: 日20 12 月2011年 《电力电子课程设计》课程设计任务书 1学期2012 学年第~2011 2010电气工程及其自动化勇专业班级学生姓名:朱

专升本 工作部门:电气学院电气自动化教指导教师:南光群、黄松柏研室 一、课程设计题目: 单相桥式晶闸管整流电路设计1. 2. 三相半波晶闸管整流电路设计 3. 三相桥式晶闸管整流电路设计降压斩波电路设计 4. 升压斩波电路设计5. 单相半桥无源逆变电路设计6. 7. 单相桥式无源逆变电路设计单相交流调压电路设计8. 逆变器设计SPWM9. 三相桥式26 / 3 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。

注:详细要求和技术指标见附录。 三、进度安排 1.时间安排 .执行要求2电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。 四、基本要求 (1)参考毕业设计论文要求的格式书写,所有的内容一律打印;

3520与IR2110的逆变器

随着PWM技术在变频、逆变频等领域的运用越来越广泛,以及IGBT、PowerMOSFET 等功率性开关器件的快速发展,使得PWM控制的高压大功率电源向着小型化、高频化、智能化、高效率方向发展。 本文采用电压脉宽型PWM控制芯片SG3525A,以及高压悬浮驱动器IR2110,用功率开关器件IGBT模块方案实现高频逆变电源。另外,用单片机控制技术对此电源进行控制,使整个系统结构简单,并实现了系统的数字智能化。 SG3525A性能和结构 SG3525A是电压型PWM集成控制器,外接元器件少,性能好,包括开关稳压所需的全部控制电路。其主要特性包括:外同步、软启动功能;死区调节、欠压锁定功能;误差放大以及关闭输出驱动信号等功能;输出级采用推挽式电路结构,关断速度快,输出电流±400mA;可提供精密度为5V±1%的基准电压;开关频率范围100Hz~400KHz。 其内部结构主要包括基准电压源、欠压锁定电路、锯齿波振荡器、误差放大器等,如图1所示。 图1 SG3525A内部框图及引脚功能 IR2110性能和结构 IR2110是美国IR公司生产的高压、高速PMOSFET和IGBT的理想驱动器。该芯片采用HVIC和闩锁抗干扰制造工艺,集成DIP、SOIC封装。其主要特性包括:悬浮通道电源采用自举电路,其电压最高可达500V;功率器件栅极驱动电压范围10V~20V;输出电流峰值为2A; 逻辑电源范围5V~20V,而且逻辑电源地和功率地之间允许+5V的偏移量;带有下拉电阻的COMS施密特输入端,可以方便地与LSTTL和CMOS电平匹配;独立的低端和高端输入通道,具有欠电压同时锁定

两通道功能; 两通道的匹配延时为10ns;开关通断延时小,分别为120ns和90ns;工作频率达500kHz。 其内部结构主要包括逻辑输入,电平转换及输出保护等,如图2所示。 图2 IR2110内部框图及引脚功能 设计原理 高压侧悬浮驱动的自举原理 IR2110用于驱动半桥的电路如图3所示。图中C1、VD1分别为自举电容和二极管,C2为VCC的滤波电容。假定在S1关断期间,C1已充到足够的电压VC1≈VCC。当HIN为高电平时,VM1开通,VM2关断,VC1加到S1的门极和发射极之间,C1通过VM1、Rg1和S1门极栅极电容Cgc1放电,Cgc1被充电。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅极电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC 经VD1、S2给C1充电,迅速为C1补充能量。如此循环反复。

电力电子课程设计-IGBT单相电压型全桥无源逆变电路

1引言 本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。 2工作原理概论 2. 1 IGBT的简述 绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。它是一种典型的全控器件。它综合了GTR和MOSFET的优点,因而具有良好的特性。现已成为中、大功率电力电子设备的主导器件。IGBT是三端器件,具有栅极G、集电极C和发射极E。它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。其等效电路和电气符号如下: 图1 IGBT等效电路和电气图形符号

它的开通和关断是由栅极和发射极间的电压所决定的。当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。 2.2 电压型逆变电路的特点及主要类型 根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。 由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。 当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。又称为续流二极管。 逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。 2.3 IGBT单相电压型全桥无源逆变电路原理分析 单相逆变电路主要采用桥式接法。它的电路结构主要由四个桥臂组成,其中每 个桥臂都有一个全控器件IGBT和一个反向并接的续流二极管,在直流侧并联有大 电容而负载接在桥臂之间。其中桥臂1,4为一对,桥臂2,3为一对。可以看成由 两个半桥电路组合而成。其基本电路连接图如下所示:

2020年逆变器行业分析报告

2020年逆变器行业分 析报告 2020年9月

目录 一、逆变器:价差缩小+MPPT赋能,组串式性价比凸显 (6) 1、逆变器简介 (6) (1)逆变器:将光伏直流电转换为交流的工具 (6) (2)逆变器分类:集中、组串、微型逆变器 (7) (3)逆变器赛道好,轻资产高ROE高周转 (8) (4)盈利能力:组串式>集中式 (8) (5)逆变器工作原理 (9) 2、价差缩小+MPPT赋能,组串式性价比凸显 (10) (1)组串式和集中式核心差异:MPPT (10) (2)组串式和集中式核心差异:运维方便性 (14) (3)组串式和集中式核心差异:组串式品类多,技术迭代快 (14) 3、渗透电站+分布式比例提升,组串崛起 (15) (1)组串式逆变器是最适合分布式光伏应用的逆变器 (15) (2)渗透电站+分布式光伏比例提升双因素驱动组串式占比进一步提升 (16) (3)预计未来组串式占比提升至80%+ (17) (4)户用新秀崭露头角 (17) 二、行业拐点:国内厂商加速海外渗透 (18) 1、逆变器格局演变:欧州垄断打破,全球一超多强 (18) (1)欧洲垄断时期(2012年之前) (19) (2)中欧竞赛时期(2013-2015年) (20) (3)一超多强(2016年以后) (21) 2、逆变器趋势:国内厂商加速海外渗透 (23) (1)集中度不断提升,头部稳定,腰部竞争激烈 (23) (2)全球看:国内龙头出海是必然趋势 (24) (3)成本+技术双优势助力国产替代 (27)

(4)渗透全球,中国企业优势强化 (28) (5)海外市场:国内龙头加速脱颖而出 (29) (6)欧美龙头逐步退出,让出市场份额 (30) (7)华为被迫让出市场份额 (31) (8)以价换量策略,中国企业加速抢占海外市场 (33) (9)预计国内逆变器龙头海外收入持续高增长 (34) 3、需求持续增长,新增+替换潜力十足 (35) (1)光伏行业,星辰大海 (35) (2)新增+替换,潜力十足 (35) (3)海外高价值量高增速,带动行业高增长 (36) 三、中国逆变器龙头加冕之时 (37) 1、阳光电源:逆变器+EPC龙头,积极布局储能业务 (37) (1)逆变器+EPC龙头,积极布局储能业务 (37) (2)收入、利润迅速增长 (37) (3)现金流大幅改善 (39) (4)主营业务及毛利率 (40) (5)海外销量迅速增长、单价降幅趋缓 (41) (6)出口市占率提升 (42) (7)储能业务高增长 (43) 2、锦浪科技:小而美的组串式龙头企业 (44) (1)组串式逆变器全球领先企业 (44) (2)20H收入、利润明显增长 (45) (3)现金流改善明显 (46) (4)主业逆变器,毛利率稳定 (47) (5)销量快速增长 (48) (6)海外毛利率,高占比 (49) (7)出口市占率提升 (50) 3、固德威:组串+储能逆变器双龙头 (51)

单相桥式整流逆变电路的设计及仿真

单相桥式整流逆变电路的设计及仿真 辽宁工业大学 电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真 院(系):电气工程学院 专业班级:自动化111班 学号: 110302030 学生姓名: 指导教师:(签字) 起止时间:2013.12.30-2014.1.10

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 整流电路是把交流电转换为直流电的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。逆变电路是把直流电变成交流电的电路,与整流电路相对应。无源逆变电路则是将交流侧直接和负载连接的电路。 此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。 关键词:交直流转换;桥式整流;无源逆变电路;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成方案 (2) 2.2.1单相桥式整流电路的结构 (2) 2.2.2单相桥式无源逆变电路的结构 (3) 第3章主电路设计 (4) 3.1单相桥式整流主电路 (4) 3.1.1单相桥式整流主电路图 (4) 3.1.2工作原理 (4) 3.2单相桥式无源逆变电路主电路 (5) 3.2.1单相桥式整流电路主电路图 (5) 3.2.2工作原理 (6) 第4章控制电路设计 (7) 4.1单相桥式整流电路控制 (7) 4.1.1触发电路 (7) 4.1.2保护电路 (8) 4.2单相桥式无源逆变电路控制电路 (9) 4.2.1驱动电路 (9) 4.2.2保护电路 (10) 第5章 MATLAB仿真 (12) 5.1单相桥式整流电路的仿真 (12) 5.2单相桥式无源逆变电路的仿真 (15) 第6章课程设计总结 (17) 参考文献 (18)

逆变器制作全过程(新手必看)

制作600W的正弦波逆变器 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。如果PCB 没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了PCB图的。该板布板时,曾得到好友的提示帮助,特在此表示感谢。

相关文档
最新文档