细胞蛋白水平与mRNA丰度间的依赖关系

细胞蛋白水平与mRNA丰度间的依赖关系
细胞蛋白水平与mRNA丰度间的依赖关系

细胞蛋白水平与mRNA丰度间的依赖关系近20年来,高通量技术的发展支持了大规模的基因组、转录组和蛋白质组定量分析。这些数据被用来分析在不同系统和条件下转录组与蛋白质组的定量关系。这些研究有时候会导致一些冲突的结论,尤其是究竟在何种程度上mRNA 的量控制了蛋白质的量。

基础生命科学研究和转化生命科学研究的一个核心问题是:基因组信息是如何通过自身的表达来决定表型的。中心法则将DNA、RNA和蛋白质这三种分子紧紧联系在了一起。来源于同一基因座的转录本的量与蛋白的量之间的关系并不简单。蛋白的表达水平除了被转录本的量调控以外,还存在其他许多重要的调控途径。这些途径包括(1)翻译率:翻译率受到mRNA序列的显著影响,比如上游的开放阅读框,内部的核糖体结合位点;(2)翻译率的调控:调控的方式有蛋白结合到转录本上的调控原件,非编码RNA的结合,转录本与核糖体的结合能力;

(3)蛋白质的半衰期:泛素化途径的降解或者细胞自噬不依赖于转录本的量;(4)蛋白质合成的延迟:蛋白合成需要时间,因此转录的改变需要在一个短暂的延迟后才能影响蛋白的水平;(5)蛋白的转运:蛋白在空间上被转运出了它所合成的地方。因此直接比较蛋白的丰度与mRNA的丰度是不可取的。

蛋白与mRNA的相互比较有两种不同的形式。一种是(Figure 1A)在不同的个体、条件或者时间点,比较来源于同一个基因的蛋白与mRNA的量,这样做是为了研究mRNA水平的变化在何种程度上影响了蛋白量的变化。另一种(Figure 1B)是比较多个不同的蛋白和与之对应的mRNA的量,这样做是为了研究在何种程度上蛋白水平能反应mRNA的不同。

Figure 1. 不同形式的蛋白与mRNA相互比较

Y Liu,A Beyer,R Aebersold.On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell.

技术的进步加深了我们对mRNA与蛋白水平关系的理解。基因组层面的研究需要高精度、高灵敏度和高准确度的技术(Figure 2)。

Figure 2. 控制基因表达的一系列机制和与之相应的定量手段

Y Liu,A Beyer,R Aebersold. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell.

过去20年来,质谱技术已经成为研究蛋白定性和定量的重要方法。作为一种全面的工具,质谱支持大规模的相对和绝对定量,而且不需要抗体(Table 1)。

Table1 质谱技术总结和用其研究mRNA与蛋白质关系的代表性文献

Y Liu,A Beyer,R Aebersold. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell.

在稳定状态的时候,mRNA的水平决定了蛋白质的水平,而且蛋白质的合成会有延迟(Figures 3A and 3B)。很难严格地定义“稳定的状态”,姑且认为我们通常做组学实验时收集的细胞,如果在某个时间段内(通常几小时)的蛋白或者mRNA水平保持相对恒定,则被看做是“稳定的状态”。

在短暂的适应期,转录后的调控非常重要。如果改变细胞的生存环境和条件,细胞需要短暂的适应期。这时如果仅仅只改变转录水平则太慢了,因此就需要转录后的调控机制。提高现有转录本的翻译速率能快速地合成新的所需蛋白,同时目标性地降解蛋白质,例如通过泛素途径,可以加速清除无用蛋白甚至毒性蛋白(Figures 3B–3D)。按需表达的机制可以保证在信号刺激时细胞快速地响应合成所需蛋白,而不是组成型地表达蛋白(Figures 3B)。另一方面,众所周知,翻译后修饰(也可以认为是一种转录后调控)在短暂适应期也非常重要。

由于能量和浓度的限制,细胞内蛋白的合成和降解是平衡的。蛋白合成受到多方面的限制。一方面是能量和营养;另一方面是催化蛋白合成的调节机制。合成蛋白的代价要比合成mRNA的代价大得多,因此细胞要选择最经济的办法来解决蛋白合成的问题。尽管处在各种限制下,细胞都努力使蛋白保持在恒定水

平,无论稳态还是动态环境。这种物理的限制可以被用来优化蛋白的扩散速度、蛋白在细胞器间的转运和生化反应速率(Figures 3E–3G)。在细胞内,蛋白的拷贝数比mRNA的拷贝数多得多。一项研究表明,裂殖酵母在增殖期转换到平衡期时,mRNA的拷贝数减少了将近70%,而蛋白拷贝数只减少了9.5%。

Figures 3 mRNA与蛋白质动态关系的重要性

Y Liu,A Beyer,R Aebersold. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell.

蛋白质的合成需要细胞分配资源,这种分配由转录调控开始。细胞生产一

种蛋白的代价主要由蛋白的前体,蛋白的组成(比如分子量)和蛋白合成速率决定。研究表明在细菌代谢途径中,合成高代价的酶通常受到多个转录速率调节;与之相反,合成低代价的酶仅受到几个关键反应的控制,通常这种通路都是组成型表达。因此,合成高代价的酶受到严格的调控以避免“浪费”,低代价的酶即使它不被需要,依然可以被表达。转录调控反应了最小代价合成蛋白与最大化功能之间的平衡。研究表明,在一个特定的细胞周期,如果想激活或者失活某个蛋白复合体,不必合成或者降解这个复合体的每个成员,只需调节一些关键的成员就足够了。运用这种经济的原则,细胞用最小的代价调控了蛋白复合体。但是,在多细胞生物中,这种优化的机制可能不同。

细胞通过核糖体的使用来分配资源。细胞不得不灵活地利用翻译机器原件,比如翻译因子,tRNA,氨酰tRNA合成酶和核糖体。酵母蛋白翻译的主要限制

可能是竞争游离的核糖体,而非竞争氨酰tRNA。

高丰度蛋白的绝对与相对量的调节。上调高丰度蛋白的倍数比上调低丰度蛋

白的倍数,需要更多的拷贝数,因此代价要大得多。高丰度蛋白通常通过高mRNA 绝对水平和高效地翻译产生。换言之,mRNA的量和翻译速率与蛋白丰度正相关。但是,高表达蛋白的生产速率貌似已经饱和,这种情况表明整体的翻译已成为大多数高丰度蛋白的限制。这种限制很可能由于mRNA上核糖体饱和引起。因此,那些高丰度蛋白通常只有最低的蛋白变化率,通常执行持家蛋白的功能。

另一方面,近期的研究表明蛋白合成速率的不同是决定蛋白拷贝数不同的主要因素(Figures 3F)。这种情况表明,mRNA的变化可以决定蛋白相对量的变化,转录后调控更多的导致蛋白绝对水平变化。因此,尽管翻译后调控可能显著地影响蛋白拷贝数,但是它可能不根本性地影响蛋白间的相对变化。

不同的空间,蛋白质与mRNA的关系不同。不同的空间,比如细胞群和组织与单细胞,单细胞与亚细胞单位,同样显著地决定了蛋白量究竟在何种程度上反映了转录本的量。在组织里如果不对细胞类型加以区分,会导致对蛋白质与mRNA的关系进行错误的评估。单细胞内蛋白质与相对应的mRNA的相关性会降低,整个细胞水平与亚细胞水平的相关性也不同。

总而言之,在稳定状态蛋白水平很大程度上由转录本的量决定;而在动态阶段,比如细胞分化或者应激,转录后的过程可能会导致更多的改变。在很多场景中仅仅只依据转录水平无法充分地预测蛋白水平。因此要解释清楚基因型与表型的关系,高质量多层次基因表达的数据对完整地理解生物学过程必不可少。蛋白质组学的发展为此提供了可能,iTRAQ、SILAC、SWATH等技术已广泛用于农业、工业、医学等行业的研究。

参考文献

Y Liu,A Beyer,R Aebersold.On the Dependency of CellularProtein Levels on mRNA Abundance.Cell, 2016, 165(3):535-550

蛋白质组学期末作业

蛋白质组学期末作业

1、一、常用的样品制备技术: 1、高丰度蛋白去除技术(抗体亲和法:通过抗原抗体反应原理,用针对样品中多种高丰度蛋白的单克隆或多克隆抗体来特异性去除样品中的高丰度蛋白;染料亲和法:通过高丰度蛋白与染料环结构之间复杂的静电、疏水及氢键相互作用去除样品中的高丰度蛋白,其特异性相对较低。) 2、自由流电泳技术(FFE)(FFE分离原理-IEF (等电聚焦)条件下:根据等电点的不同进行样品分离,主要用于分离蛋白质。ZE(区带电泳)条件下:根据样品表面电荷密度不同进行分离,主要用于分离细胞器。FFE的特点:1、是基于液体的样品分离/制备技术,与所有下游分离技术兼容;2、分离非常快; 3、液相分离保证初始样品具有很高的回收率; 4、采用连续模式,上样和分离连续同时进行; 5、分析对象广泛; 6、分离条件温和,适合活性生物材料的分离纯化。 二、2-DE技术,即双向电泳,是当前蛋白质组学研究中分辨率最高、信息量最大的分离技术。它的优点有:1. 可以将上千种不同的蛋白质分离开来,并得到每种蛋白质的等电点、表观

质膜的纯度鉴定方法 11、形态学方法(常规透射电镜、免疫电镜观察其切片,纯细胞膜成空的膜泡或片状结构)2免疫印迹法(常用抗体:抗caveolin、Na+--K+--ATPase、flotillin、5`-nucleotidase 等) 3、酶活测定法(测 AP、ADP、Na+-K+-ATPase、5`-nucleotidase的活性) 4、膜组分分析法(分析脂质与蛋白质的比例) 由于细胞器在细胞内结构上与许多其他亚细胞组分相关联,和细胞器组成的动态性,所以分离得到的细胞器很难达到100% 的纯度。所以,亚细胞组分的纯度问题和亚细胞组分生物学功能的深入挖掘是亚细胞蛋白质组研究所面临的挑战。现在已经有一些研究策略来解决这一难点问题,如Schirmer等提出的差减蛋白质组学方法来解决核膜的内质网污染问题;Andersen 等提出的蛋白质校正谱图分析法(protein correlation profiling,PCP)来分析可能定位

细胞周期依赖性激酶CDKs介绍

热门靶点-细胞周期依赖性激酶CDKs介绍细胞周期是细胞生命活动的基本过程,它控制着细胞从静止期转向生长增殖期。细细胞周期蛋白依赖激酶(CDKs)和细胞周期蛋白(Cyclins)是整个细胞周期调控机制中的核心分子。细胞周期失调是人类癌症的一个共同特征,细胞周期蛋白依赖性激酶(CDKs)抑制剂对细胞周期控制起着至关重要的作用,也是一个最有前景的癌症治疗领域。细胞周期蛋白依赖性激酶属于丝氨酸/苏氨酸激酶家族成员之一,是一种由细胞周期催化激酶亚基和调节亚基组成的二聚体复合物,目前已经发现11个CDK成员。CDK调节机制依靠正向磷酸化(CDK激动激酶,CAK)和负向磷酸化(Weel,Myt1),以及相关的具有驱动细胞周期的CDK-细胞周期蛋白复合物组装成的高度互连的调节机制。 抗肿瘤细胞周期药物治疗目前已知的机制有如下四个。 阻滞细胞周期从G1期进入S期。cyclin-CDKs负责调节细胞周期来完成细胞的分裂。cyclin D和CDK4/6在细胞周期进程中发挥着关键的作用,可使Rb蛋白磷酸化和失活,阻滞细胞增殖周期进入S 期。特异性ATP 竞争性CDK4/6抑制剂可诱

导Rb 蛋白阳性肿瘤不可逆的细胞周期G1期阻滞。选择性CDK4/6抑制剂包括ribociclib、abemaciclib和palbociclib,阻滞细胞从G1期进入S期,提高抗肿瘤效果。诸多的细胞周期治疗药物中,批准临床应用只有CDK4/6抑制剂ribociclib、abemaciclib、palbociclib,阻滞细胞周期从G1期进入S期,激活抗肿瘤免疫,控制代谢功能和调节转录水平。 调节转录水平有丝分裂期间细胞转录保持在低水平状态,只有当丝分裂结束后转录才会重新激活。CDK9 和CDK12可调控细胞转录。细胞周期治疗领域的研究主要是寻找转录CDKs的抑制剂。 激活抗肿瘤免疫研究证实,CDK4/6抑制剂不仅能诱导肿瘤细胞周期阻滞,还促抗肿瘤免疫:首先,CDK4/6抑制剂激活肿瘤细胞内源性逆转录病毒成分表达,增加细胞内双链RNA水平,进而刺激产生Ⅲ 型干扰素并增加肿瘤抗原递呈;其次,CDK4/6抑制剂显著抑制调节性T细胞的增殖,促进细胞毒性T细胞对肿瘤细胞的清除。此为CDK4/6抑制剂联合肿瘤免疫治疗的理论基础。 控制细胞代谢功能细胞分裂需cyclin和CDKs这类关键的细胞周期调节蛋白,cyclin-CDKs复合体能够调节细胞代谢从而引起肿瘤消退。Wang等研究显示,cyclin D3- CDK6激酶可以磷酸化糖代谢通路中的两个关键酶(6-磷酸果糖激酶和丙酮酸激酶M2)并抑制其代谢活性,这直接激活糖代谢的磷酸戊糖通路和丝氨酸通路。研究提示,cyclin D3-CDK6可能成为人类肿瘤亚型的分层因子,cyclin D3-CDK6抑制剂通过调节细胞周期和细胞代谢而成为新的肿瘤治疗方法。 CDK家族蛋白在细胞周期中调控关键的检查点,是充分被验证可用于各种疾病治疗的靶点。主要的药物发现集中在经典的ATP竞争性抑制剂,而新技术的出现也推动了非经典的CDK抑制剂的研究,如变构位点抑制剂、共价抑制剂和非ATP竞争的多肽模拟物。MMD37K是第一个非ATP 竞争性的CDK4/6抑制剂,目前正在开展临床研究。它的出现将引起非经典的CDK抑制剂与存在的ATP竞争性CDK 抑制剂的对比,推动新一代CDK抑制剂的发展。帕博西布(Palbociclib),abemaciclib和ribocicilib都是CDK4/6选择性抑制剂,目前已经被FAD批准或者上

血清Western Blot去除白蛋白(Albumin)

血清Western Blot去除白蛋白(Albumin) 应用Western Blotting的方法检测血清中某种蛋白的含量是,最关键的问题是要将血清做怎样的电泳前处理. 一般的处理方式: 1.常规分离血清,即取血后常温放置,使其凝固,然后3000 rpm 15 min离心,取上清即可。 2.测血清蛋白浓度。 3.用Laemmli buffer(蛋白裂解液)稀释至所需浓度,我一般为5ug/ul. 4.加入适量loading buffer,100℃煮5分钟。注意:有时会出现水煮后,蛋白液变得 非常粘稠,这时可以在65℃煮10-20 minutes以替代沸水煮。 PS:对于目标蛋白在血清中含量很低,或者目标蛋白分子量与白蛋白或球蛋白分子量相近的情况下,必烦要去除血清中的白蛋白和/或球蛋白,以下是知名厂商 G-Biosciences提供的试剂盒,使用较为简便,同时价格也不贵哦。 美国G-Biosciences-AlbuminOUT?白蛋白去除试剂盒 血浆和脑脊髓液等样本中,包含大量的白蛋白,从而封闭掉在二维凝胶电泳中发现和鉴定其他低丰度蛋白的可能。AlbuminOUT?白蛋白去除试剂盒被设计用来在这种样本中大量去除白蛋白。 这种白蛋白去除方法是基于白蛋白和Cibachron蓝色染料的结合。AlbuminOUT?被优化从样本中去除人的白蛋白。AlbuminOUT?使用快速离心柱方法,每个柱子含有0.2ml的染料结合树脂,从而可以结合大于2mg的人白蛋白。AlbuminOUT?可以从5-50微升人血浆中去除大于98%的白蛋白。 离心柱形式可以在10分钟内去除白蛋白。高结合力的蓝色染料结合树脂可以从人,猪,羊,狗,兔,大鼠和牛样本中达到瞬间的结合和去除白蛋白。AlbuminOUT?或许也可以从其他物种中去除白蛋白。适用于处理25或50个样本。 Figure 1: 2D analysis of whole human serum before (left) and after (right) treatment with AlbminOUT?. 产品特点: ●从样本中不到10分钟的时间内去除白蛋白 ●基于白蛋白和Cibachron蓝色染料的结合 ●每个柱子的结合力大于2mg的人白蛋白 ●从5-50微升人血浆中去除大于98%的白蛋白

细胞周期蛋白依赖性激酶

细胞周期蛋白依赖性激酶 周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)在调控纺锤体聚合检查点中起重要作用,其功能是启动、促进和完成细胞周期事件 细胞周期蛋白Β1与CDK1形成复合物并磷酸化有丝分裂过程所必需的酶,引发有丝分裂的开始。细胞一旦进入有丝分裂期,促分裂后期复合物(an2aphase-promoting complex,APC)对细胞周期蛋白Β1进行酶解,阻止细胞周期蛋白Β1与CDK1形成复合物,灭活已形成的CDK1-细胞周期蛋白Β1复合物,促使有丝分裂结束诱导细胞进入分裂后期。纺锤体聚合检查点激活后使APC的活性受到抑制,致使细胞周期蛋白Β1不间断地表达,阻滞细胞在分裂中期。在紫杉醇处理的细胞中,因细胞周期蛋白Β1连续表达引起的CDK1-细胞周期蛋白Β1活性增强与紫杉醇诱导的有丝分裂阻滞和细胞凋亡同时存在,而且CDK1显性负突变导致对紫杉醇诱导凋亡的抗性[8]。Zhao JS, Kim JE, Reed E, et al·Molecular mechanism of antitumor activity of taxanes in lung cancer (Review)·International Journal of Oncology, 2005, 27:247~256·细胞分裂周期的调控由内在和外在的2类途径通过细胞周期关卡进行控制。通过关卡实现时相的过渡受到细胞周期蛋白依赖性激酶(cyclin-depend-entkinases, CDKs)的激活、CDKs 的失活、细胞周期蛋白依赖性激酶抑制蛋白(cyclin-dependent kinase inhibitors, CKIs)的激活以及泛蛋白介导的蛋白水解等因素的影响。肿瘤细胞生长表现为细胞增殖失控、细胞周期和关卡调控失控。因此, CDK可作为抗肿瘤药物的靶点。 Bcl-2Bcl-2、Bax均为Βcl-2家族的成员,前者是从小鼠B细胞淋巴瘤中分离出来的一种由239个氨基酸组成的细胞凋亡抑制因子,可抑制射线、药物、癌基因等多种原因诱导的细胞凋亡;后者是细胞凋亡促进因子。Bcl-2蛋白通常与Bax蛋白形成异二聚体,阻止具有促凋亡活性的Bax蛋白同二聚体的形成,从而达到抑制细胞凋亡的作用 JNK/SAPK有丝分裂原激活蛋白激酶(mitogen-acti2vated protein kinases,MAPKs)超家族亚科的JNK/SAPK(c-Jun N- terminal kinases/stress - activated protein ki2nase),是与细胞凋亡密切相关的细胞内信号转导酶,通过一系列磷酸化级联放大反应将细胞外各种刺激性信号传入细胞内,调节着细胞分裂周期及细胞凋亡。JNK活性提高不是微管蛋白抑制剂引起肿瘤细胞凋亡所必需的,但JNK的激活有利于细胞的凋亡[6]。Sudo T, Nitta M, Saya H, et al·Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint·Cancer Res, 2004, 64(7):2502~2508· caspase caspase家族涉及凋亡启动,是哺乳动物中的一类半胱氨酸蛋白酶家族。caspase 家族现有caspase-1~11个成员,某一个成员的激活将引起家族中其他成员一系列酶的级联反应[6]。紫杉醇通过激活caspase-3诱导U-2OS细胞死亡,进而引起细胞周期阻滞[13] p53p53是研究最为广泛的抑癌基因,被认为是基因组的守护者,有野生型和突变型。野生型p53的过表达往往能够激活一系列基因的表达从而产生两个结果:细胞分裂周期阻滞和细胞凋亡。p53是遗传毒性压力的紧急制动器,阻止基因组中过多突变的蓄积。Yang等发现微管相关蛋白as2trin的沉默可以诱导p53依赖的细胞凋亡,同时伴随着促凋亡bax蛋白表达的提高和caspase-3活性的增加[15][15]Yang YC, Hsu YT, Wu CC, et al·Silencing of astrin induces the p53-dependent apoptosis by suppression of HPV18 E6 expression and sensitizes cells to paclitaxel treatment in HeLa cells·Biochem Biophys Res Commun,2006, 343(2):428~434· 微管由α和β两种微管蛋白的异二聚体组成,其聚合和解聚的动力学特性,在细胞有丝分裂过程中发挥着重要作用。药物结合到微管或者微管蛋白的特定位点,干扰微管的聚合和解

人钙调素依赖蛋白激酶II

人钙调素依赖蛋白激酶II(elisa)试剂盒 使用说明 详细介绍: 人钙调素依赖蛋白激酶II(elisa)试剂盒使用说明 检测范围:96T 4pg/ml-200pg/ml 使用目的: 本试剂盒用于测定人血清、血浆及相关液体样本中钙调素依赖蛋白激酶II(CaMKII)含量。 实验原理 本试剂盒应用双抗体夹心法测定标本中人钙调素依赖蛋白激酶II(CaMKII)水平。用纯化的人钙调素依赖蛋白激酶II (CaMKII)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入钙调素依赖蛋白激酶II(CaMKII),再与HRP 标记的钙调素依赖蛋白激酶II(CaMKII)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB 在HRP 酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的钙调素依赖蛋白激酶II(CaMKII)呈正相关。用酶标仪在450nm 波长下测定吸光度(OD 值),通过标准曲线计算样品中人钙调素依赖蛋白激酶II(CaMKII)浓度。 试剂盒组成

1 30 倍浓缩洗涤液20ml×1 瓶7 终止液6ml×1 瓶 2 酶标试剂6ml×1 瓶8 标准品(320pg/ml)0.5ml×1 瓶 3 酶标包被板12 孔×8 条9 标准品稀释液1.5ml×1 瓶 4 样品稀释液6ml×1 瓶10 说明书1 份 5 显色剂A 液6ml×1 瓶11 封板膜2 张 6 显色剂B 液6ml×1/瓶12 密封袋1 个 标本要求 1.标本采集后尽早进行提取,提取按相关文献进行,提取后应尽快进行实验。若不能马上进行试验,可将标本放于-20℃保存,但应避免反复冻融 2.不能检测含NaN3 的样品,因NaN3 抑制辣根过氧化物酶的(HRP)活性。 操作步骤 1. 标准品的稀释:本试剂盒提供原倍标准品一支,用户可按照下列图表在小试管中进行稀释。 160pg/ml 5 号标准品150μl 的原倍标准品加入150μl 标准品稀释液 80pg/ml 4 号标准品150μl 的5 号标准品加入150μl 标准品稀释液 40pg/ml 3 号标准品150μl 的4 号标准品加入150μl 标准品稀释液

双向凝胶电泳比较三种常用蛋白质提取方法

ISS N 100727626 C N 1123870ΠQ 中国生物化学与分子生物学报 Chinese Journal of Biochemistry and M olecular Biology 2005年10月 21(5):691~694 ?技术与方法? 双向凝胶电泳比较三种常用蛋白质提取方法 翁 瑜1),2), 曾群力2),3), 姜 槐2), 许正平2),3)3 (1)浙江大学生命科学学院;2)浙江大学医学院浙江省生物电磁学重点研究实验室;3)浙江大学医学院环境基因组学研究中心,杭州 310031) 摘要 组织(或细胞)的蛋白质提取效率直接影响蛋白质双向凝胶电泳(22DE)的分辨率.为探索建立适用于人乳腺癌细胞株MCF27蛋白质提取的最佳条件,比较目前在双向凝胶电泳中常用的3种蛋白质提取方法对MCF27细胞总蛋白的提取效率.MCF27细胞经培养后,分别采用M2PER试剂、标准裂解液或含硫脲裂解液提取其总蛋白质,然后进行双向凝胶电泳,并根据凝胶上蛋白质斑点的丰度和分布特点判断所得双向电泳图谱的质量,以确定MCF27细胞蛋白质提取的相对最佳方法.结果显示,M2PER试剂法得到的图谱分辨率较低,蛋白质主要集中分布在分子量15~70kD,pH417~613的范围内;标准裂解液法得到的图谱分辨率有所提高,蛋白质分布比M2PER试剂法得到的图谱广;硫脲裂解液法得到的图谱是三者中分辨率最高的,尤其是高丰度蛋白和高分子量蛋白分离效果比前两者好.结果表明,在3种常用的蛋白质提取方法中,硫脲裂解液对细胞蛋白质的溶解性最佳,相对更适合于提取MCF27细胞的蛋白质,并与双向凝胶电泳条件更兼容. 关键词 蛋白质提取,双向凝胶电泳,MCF27,条件优化 中图分类号 Q503 Comparison of Three Protein Extraction Methods by Tw o2 Dimensional E lectrophoresis WE NG Y u1),2),ZE NG Qun2Li2),3),J I ANG Huai2),X U Zheng2Ping2),3)3 (1)College o f Life Sciences,2)Bioelectromagnetics Laboratory,3)Research Center for Environmental G enomics, Zhejiang Univer sity School o f Medicine,Hangzhou 310031,China) Abstract Protein extraction from tissue or cells is a key step to achieve high2res olution protein separation in tw o dimensional electrophoresis(22DE).Three routine cellular total protein extraction methods were com pared in order to determine an optimal one for human breast cancer cell line MCF27.The cultured MCF27cells were lysed by M2PER kit,standard lysis buffer or im proved lysis buffer,respectively.Then the extracted total proteins were subjected to22DE,and the best extraction method was determined by the indexes of protein distribution and abundance on corresponding silver2stained gel.Data showed that use of M2PER kit gave the lowest res olution,in which m ost proteins were distributed in the pI ranging from417to613with m olecular weight between15kD and70kD.Standard lysis bu ffer im proved protein res olution with broader protein distribution pattern.Im proved lysis bu ffer generated the best res olution am ong these three methods,especially for the high2abundance and high m olecular weight proteins.Based on above results,we concluded that the im proved lysis bu ffer has the best protein s olubilization ability,which renders it much m ore suitable for cellular protein extraction from MCF27,and is m ore com patible with the conditions of22DE. K ey w ords protein extraction,tw o dimensional electrophoresis,MCF27,optimization 收稿日期:2004212203,接收日期:2005203221 国家自然科学基金项目(N o.50137030,30170792),浙江省自然科学基金项目(N o.301524)和浙江省卫生厅重点项目(N o.2004Z D006)资助 3联系人 T el:0571287217386,Fax:0571287217410,E2mail:zpxu@https://www.360docs.net/doc/f23344443.html, Received:December3,2004;Accepted:M arch21,2005 Supported by National Natural Science F oundation of China(N o.50137030,30170792),and Natural Science F oundation of Zhejiang Province(N o.301524),and K ey Program of Health Bureau of Zhejiang Province(N o.2004Z D006) 3C orresponding author T el:0571287217386,Fax:0571287217410,E2mail:zpxu@https://www.360docs.net/doc/f23344443.html,

细胞周期调控的研究进展(精)

细胞周期调控的研究进展 高燕,林莉萍,丁健 * (中国科学院上海生命科学研究院药物研究所,国家新药研究重点实验室, 中国科学院研究生院,上海 201203 摘要 :细胞周期是一种非常复杂和精细的调节过程,有大量调节蛋白参与其中。此过程的核心是细 胞周期依赖性蛋白激酶 (CDKs。 CDKs 的激活又依赖于另一类呈细胞周期特异性或时相性表达的细胞周期蛋白 (cyclins,而 CDKs 调节的关键步骤是细胞周期检查点。 PLKs 是多种细胞周期检查点的主要调节因子, Aurora 蛋白激酶主要在细胞有丝分裂期起作用。本文就上述因素在细胞周期进程中的作用作一综述。 关键词 :细胞周期;调控;细胞周期检查点中图分类号:Q253文献标识码:A A review: cell cycle regulation GAO Yan, LIN Li-Ping, DING Jian* (State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institues for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, China

Abstract: The cell cycle is a complex and elaborate process involving numerous regulatory proteins as directors.Central to this process are the cyclin-dependent kinases (CDKs, which are activated in a cyclin-dependentmanner at special points of the cell cycle. Cyclin protein levels rise and fall during the cell cycle and in the waythey periodically activate CDKs. Furthermore, the cell cycle checkpoint is also discussed as a key process inthe regulation of CDKs. PLKs are important mediators for various cell cycle checkpoints, while Aurora kinaseshave emerged as essential regulators of cell division. Here, we reviewed the effects of above factors on cellcycle regulation. Key words: cell cycle; regulation; cell cycle checkpoint 收稿日期 :2005-01-22; 修回日期 :2005-03-09 作者简介 :高燕 (1974— ,女,博士研究生;林莉萍 (1962— ,女,博士,副研究员;丁健 (1953— ,男, 研究员,博士生导师, *通讯作者。 文章编号 :1004-0374(200504-0318-05 1概述 细胞周期是指一次有丝分裂结束到下一次有丝分裂的结束 , 细胞由一个分裂为两个子细胞。细胞的分裂由两个连续的过程组成, 即 DNA 复制及染色体的分离。一个细胞周期包括准备阶段的间期和有丝分裂期 (图 1 。间期包括 G 1、 S 和 G 2期。 G 1期时,细胞为遗传物质 DNA 的合成作准备,而 DNA 的合成是在 S 期完成。 G 2期主要完成蛋白质的合成,为细胞进入有丝分裂期作准备。有丝分裂期 (M期又分为前期、中期、后期和末期,以完成染色体的凝集,中心粒移至细胞核对立的两极,核仁解体,核膜消失 (前期 ; 纺锤体形成和染色体排列于其间 (中期 ; 姐妹染色单体分开并移向两极 (后期 ; 子核形成和胞质分裂 (末期。另外, G 1期的 319

蛋白样品制备中各类杂质和杂蛋白的去除

蛋白样品制备中各类杂质和杂蛋白的去除 蛋白样品制备中,在细胞破碎之后,既可以利用特定蛋白质的特性来分离某一类蛋白质,比如亲和纯化,比如前面介绍的磷酸化蛋白富集,或者膜蛋白富集;另外一个考虑方向是去除杂质----去掉样品中某些非目标高丰度蛋白或者杂质的干扰,同样可以达到简化样本的目的。当然要小心“倒洗脚水的时候别把婴儿也倒掉了”,一定要选择可靠的产品。 比如,潜在疾病标志物的最好样本来源就是血清或其他体液,此类样本可以提供人蛋白质组中绝大部分组份。然而用蛋白质组分析方法鉴定疾病标志物最大的挑战来自于血清中大量的高丰度蛋白对检测的干扰,血清中有大约55%的蛋白为白蛋白,而IgG大约占血清中蛋白总量的10-25%,这些高丰度蛋白的存在会增加低丰度蛋白检测的难度,去除占血清总蛋白近75%的白蛋白和IgG将有助于更好地鉴定其他的蛋白。G-Biosciences的AlbuminOUT?白蛋白去除试剂盒堪称白蛋白去除神器。血浆和脑脊髓液等样本中,包含大量的白蛋白,从而封闭掉在二维凝胶电泳中发现和鉴定其他低丰度蛋白的可能。AlbuminOUT?白蛋白去除试剂盒被设计用来在这种样本中大量去除白蛋白。 这种白蛋白去除方法是基于白蛋白和Cibachron蓝色染料的结合。AlbuminOUT?被优化从样本中去除人的白蛋白。AlbuminOUT?使用快速离心柱方法,每个柱子含有0.2ml的染料结合树脂,从而可以结合大于2mg的人白蛋白。AlbuminOUT?可以从5-50微升人血浆中去除大于98%的白蛋白。 离心柱形式可以在10分钟内去除白蛋白。高结合力的蓝色染料结合树脂可以从人,猪,羊,狗,兔,大鼠和牛样本中达到瞬间的结合和去除白蛋白。AlbuminOUT?或许也可以从其他物种中去除白蛋白。适用于处理25或50个样本。 Figure 1: 2D analysis of whole human serum before (left) and after (right) treatment with AlbminOUT?. 产品特点: ●从样本中不到10分钟的时间内去除白蛋白 ●基于白蛋白和Cibachron蓝色染料的结合 ●每个柱子的结合力大于2mg的人白蛋白 ●从5-50微升人血浆中去除大于98%的白蛋白 去垢剂如SDS、Tween、Tritonde等是蛋白样品处理过程中常用的组分。去污剂在蛋白提取和样本制备过程中是很重要的物质,特别是研究疏水蛋白时。蛋白样本中高浓度去污剂的存在能够影响ELISA,IEF和蛋白的蛋白酶消化,以及用质谱进行分析时抑制肽的离子化。 所谓请神容易送神难。要除掉这些去垢剂?G-Biosciences推出的DetergentOUT? GB-S10 去污剂去除柱子和树脂专门设计用来除于蛋白或其他生物样本中所含有的去污剂,树脂能够

DNA依赖性蛋白激酶在妇科肿瘤中的研究进展

?1028? DNA依赖性蛋白激酶在妇科肿瘤中的研究进展 刘双胡A(综述),卢玉波※,祝英杰(审校) (昆明医学院第三附属医院妇瘤科,昆明650118) 中围分类号:11.737.3文献标识码:A文章编号:1006-2084(2010)07-1028-03 摘要:DNA依赖蛋白激酶(DNA-PK)是哺乳动物细胞DNA损伤修复的关键酶。研究表明, 妇科肿瘤,如宫颈癌、卵巢癌中普遍存在DNA-PK表达的变化,提示该酶在妇科肿瘤的发生、发 展过程中发挥着重要的作用,并与肿瘤的临床分期、放射敏感性和预后有重要关系。近年来, 关于DNA-PK的结构与功能、在肿瘤细胞株中的活性、在肿瘤组织中表达的研究日益深入,以 DNA—PK为靶点的DNA修复抑制剂作为肿瘤放化疗增敏药已陆续研发并进入临床前试验,有 望成为肿瘤诊断和治疗的新靶点。 关键词:DNA依赖蛋白激酶;DNA双链断裂;宫颈癌;卵巢癌 TheLatestDevelopmentofDim-PKinGynecologicOncologyHUShva.g-y.e,LU沌一bo,朋U n增l】!e.(DepartmentofCg'necologicalOncology,theThirdHo印tmlAffdiatedtol6,nminaMedwalCol— lege,Kunming650118,China) Abstract:DNAdependentproteinkinase(DNA—PK)isakeyDNAdamagerepairenzymesof MammalianeeUs.Studieshaveshownthatgynecologiconcology.suchascervicalandovari∞cancer. expressedDNAdependentproteinkinaseubiquitously.Enzymeinthesegynecologicaltumorsplayed∞ importantroleinthe tumorigenesisand tumordevelopment,andrelatedwithtumorclinicalstage,radia- tionsensitivityandprognosis.Intm,entyears,concerningwiththestructure,function,activityandtumorexpressionofDNA.PKhasbeenreseacheddeep.WithDNA.PK∞thetargetoftheDNArepairinhibi.10tsandcancerchemotherapy—sensitizingdrugshavebeengraduallydevelopedandenteredthepre-elin??icaltrials.Itisexpectedtobeanewtargetofcancerdiagnosisandtreatment. Keywords:DNAdependentproteinkinase;DNAdoublestrandbreak;Uterine ce盹emleer; Ovariancancer 多种因素如电离辐射、DNA代谢以及活性氧损 伤等都可以引起细胞DNA双链断裂(DNAdouble strandbreak,DSB),这是基因突变、染色体断裂的主 要原因之一,DNA依赖性蛋白激酶(DNAdependent proteinki—nase,DNA—PK)是DNA损伤修复的关键 酶,决定着受损肿瘤细胞的转归。辐射损伤可被体 内的化学反应迅速修饰,而细胞内残存的DNA损伤 则通过损伤监视系统纠正,此监视系统包括DNA损 伤的识别、损伤信号传递、基因转录以及细胞反应。 研究发现DNA-PK参与了DNA损伤的直接识别,并 且对于DSB修复、基因重组、基因转录以及基因调控 等具有重要作用。近年来其在肿瘤的发生、发展、诊 断和治疗等研究中引起人们越来越多的重视。现就 DNA-PK的生物学作用及其在妇科肿瘤组织内的异 常表达、与放射敏感性的关系、肿瘤放射增敏作用等 有关方面的研究进展予以综述。 lDNA?PK的分子生物学特征 1.1DNA-PK的结构DNA-PK是由双链DNA激 活的1个丝氨酸/苏氨酸蛋白激酶,DNA.PK由一个 催化亚基(DNA-PKcs)和2个调节亚基Ku70/Ku80 异二聚体组成(Ku蛋白最初是作为一种自身抗原在 一名患有多发性肌炎-硬皮病重叠综合征自身免疫性 疾病的El本患者血清内被发现的,其命名是源于第1个患者姓名的前2个字母Ku)。哺乳动物细胞中,Ku蛋白由2条相对分子质量分别为70和86的多肽链组成异源二聚体,分别称为Ku70和Ku86(也称Ku80),人Ku70基因位于22q13,编码609个氨基酸,Ku80基因位于2q33~34,编码723个氨基酸,DNA-PKcs基因位于8q11,DN-PKcs蛋白由4127个氨基酸组成,相对分子质量约47011I。 1.2DNA-PK的功能DSB是一种最严重的DNA损伤,根据DNA末端连接是否需要同源性, 将DNA双链断裂修复可分为同源重组和非同源重 组(DNAnonhomologousend-joining,NHEJ),在2条 修复途径当中,NHEJ修复是人类最主要的修复途 径旧'3J。DNA-PK是NHEJ修复系统中最重要的组成 部分,也是这一过程的关键酶,它参与细胞DSB的修 复,并且可以通过磷酸化多种蛋白底物而广泛参与 转录和细胞凋亡过程,在维持细胞的遗传稳定性方 面具有重要意义。DSB修复过程如下:DSB发生后, 首先KuS0和Ku70识别并结合于每一条DNA链末 端,Ku蛋白本身具有的解螺旋酶活性使2个断端局 部解链,其次Ku-DNA复合物吸引DNA.PKcs到损伤 部位与之结合并被激活,完成修复后DNA-PK即发生 自身磷酸化DNA—PK复合体从DNA链上解离【3,4】。 DNA双链发生断裂后,DNA-PK缺陷的细胞可 能因染色体断裂不能修复而死亡,也可能发生不合 理的重组导致染色体异常,甚至不修复而导致遗传 信息丧失,这些细胞携带异常的遗传信息继续存活, 可能成为癌变发生的根本原因【5J。DNA—PK功能的 丧失必然导致细胞损伤修复能力的降低,DNA损伤 在细胞内累积造成基因组的不稳定性及突变率增 加。有研究证实,DNA.PK具有防止肿瘤发生和发展 的作用,损伤修复功能缺陷者易患各种恶性肿瘤,几 乎所有癌症患者的损伤修复能力均低于正常人旧。。万方数据

蛋白激酶与癌症

蛋白激酶 1、按底物蛋白被磷酸化的氨基酸残基种类(5类) ①.丝氨酸/苏氨酸(Ser/Thr)蛋白激酶 ②.酪氨酸(Tyr)蛋白激酶: 1.EGFR(EGFR、HER2/ErbB2、ErbB3、ErbB4):表皮生长因子受体 2.PDGFR(PDGFRα、PDGFRβ):血小板衍生生长因子受体 CSF1R: 集落刺激因子1受体 c-Kit:干细胞生长因子受体 Flk2:胎肝激酶2 3.InsR:胰岛素受体 IGF-1R:类胰岛素生长因子受体 IRR:胰岛素相关受体 4.NGFR:神经生长因子受体 5.FGFR(FGFR1、FGFR2、FGFR3、FGFR4):成纤维细胞生长因子受体 6.VEGFR(VEGFR1、VEGFR2/FLK-1、VEGFR3/FLT4):血管内皮生长因子受体 7.HGFR:肝细胞生长因子受体 8.c-Met Ron sea 9.Ltk Alk 10.c-RET 11.Ros 12.Eph、Eck、Eek、Erk、Elk 13.Tie、Tie-2 Src家族 Tec家族(Btk、Itk/Tsk/Emt、Tec、Txk和Bmx等) ZAP70家族 、TYK1)等 Abl Wee等 ③.组氨酸蛋白激酶(组氨酸、精氨酸或赖氨酸的碱性残基被磷酸化,见于双组分信号系统) ④.色氨酸蛋白激酶 ⑤.天冬氨酰基/谷氨酰基蛋白激酶 2、按序列相似性及功能(7类) ①.AGC组:核苷酸依赖家族(PKA、PKG、PKC家族) ②.CaMK组:Ca2+/钙调素调节的蛋白激酶家族、snfl/AMPK家族 ③.CMGC组:CDK、MAPK、GSK3、CLK家族

④.CKI:酪氨酸激酶家族I ⑤.TK:酪氨酸蛋白激酶 ⑥.TKL:类似酪氨酸激酶 ⑦.STE 癌症 1、癌症主要有四种: 1、癌瘤:影响皮肤、粘膜、腺体及其他器官; 2、血癌:即血液方面的癌; 3、肉瘤:影响肌肉、结缔组织及骨头; 4、淋巴瘤:影响淋巴系统。 常见的癌症有血癌(白血病)、骨癌、淋巴癌(包括淋巴细胞瘤)、肠癌、肝癌、胃癌、盆腔癌(包括子宫癌,宫颈癌)、肺癌(包括纵隔癌)、脑癌、神经癌、乳腺癌、食道癌、肾癌等。

细胞周期的划分及各个时期的特点(新)

细胞周期的划分及各期特点 【摘要】本文主要是对细胞周期的划分进行简单描述,对细胞周期各个时期的特点进行归纳整理。 【关键词】细胞周期;蛋白质; DNA; 细胞增殖周期,简称细胞周期(cell cycle),是指连续分裂的细胞从一次有丝分裂结束到下一次有丝分裂完成所经历的整个过程。一个细胞周期包括两个阶段:分裂间期和分裂期,分裂间期分G1、S和G2期。分裂期又分为分裂前期、分裂中期、分裂后期和分裂末期。细胞在分列前,必须进行一定的物质准备。在细胞分裂期中,不仅要进行DNA复制,还要进行RNA和蛋白质的合成。 1.分裂间期 间期分为DNA合成前期(G1期)、DNA合成期(S期)、DNA合成后期(G2期)三个阶段。 1.1 G1期 是指从有丝分裂完成到DNA复制之前的这段时间,又称DNA合成前期。G1期是一个生长期,在这一时期主要进行RNA和蛋白质的生物合成,并且为下阶段S期的DNA合成做准备。 在这一时期mRNA、rRNA、tRNA的合成加速,导致结构蛋白和酶蛋白的形成。G1期又分为G1早期和G1晚期两个阶段;细胞在G1早期中合成各种在G1期内所特有的RNA和蛋白质,而在G1晚期至S期则转为合成DNA复制所需要的若干前体物和酶分子,包括胸腺嘧啶激酶、胸腺嘧啶核苷酸激酶、脱氧胸腺嘧啶核苷酸合成酶等,特别是DNA聚合酶急剧增高。这些酶活性的增高对于充分利用核酸底物,在S期合成DNA是不可少的条件。 在此期中,细胞要发生一系列生物化学变化,其中最主要的是要合成一定数量的RNA和某些专一性的蛋白质。有些学者把这种蛋白质称为触发蛋白(trigger protein),触发蛋白的积累有助于细胞通过G1期的限制点进入S期。这种蛋白又称为不稳定蛋白,简称U蛋白。此外,在G1期中还有Hl组蛋白的磷酸化,脱氧核苷的库存增加等变化。Groppi和Coffino发现,G1期也有组蛋白的合成。在G1期中产生了一种称为抑素的物质,与细胞停留在G1期有关。抑素是一种水溶性物质,具有不可透析性、热不稳定性和能为乙醇沉淀等性质,Honk等人为,肿瘤细胞之所以无节制的加速繁殖,是由于对抑素的敏感性降低了。 1.2 S期

蛋白质组学期末作业

1、一、常用的样品制备技术: 1、高丰度蛋白去除技术(抗体亲和法:通过抗原抗体反应原理,用针对样品中多种高丰度蛋白的单克隆或多克隆抗体来特异性去除样品中的高丰度蛋白;染料亲和法:通过高丰度蛋白与染料环结构之间复杂的静电、疏水及氢键相互作用去除样品中的高丰度蛋白,其特异性相对较低。) 2、自由流电泳技术(FFE)(FFE分离原理-IEF(等电聚焦)条件下:根据等电点的不同进行样品分离,主要用于分离蛋白质。ZE(区带电泳)条件下:根据样品表面电荷密度不同进行分离,主要用于分离细胞器。FFE的特点:1、是基于液体的样品分离/制备技术,与所有下游分离技术兼容;2、分离非常快; 3、液相分离保证初始样品具有很高的回收率; 4、采用连续模式,上样和分离连续同时进行; 5、分析对象广泛; 6、分离条件温和,适合活性生物材料的分离纯化。 二、2-DE技术,即双向电泳,是当前蛋白质组学研究中分辨率最高、信息量最大的分离技术。 它的优点有:1. 可以将上千种不同的蛋白质分离开来,并得到每种蛋白质的等电点、表观分子量和含量等信息。2.如果双向电泳后续接一系列自动化操控,就能大大增加蛋白质分析与鉴定的能力。3.可检测翻译后和翻译过程的蛋白质修饰。 缺点有:1、不能进行可完全的2-DE分析。 2、许多较大的疏水蛋白质在IEF分析中的结果不理想。3、对相对分子质量过大()100000)的蛋白质分离分析能力差 4、双向电泳不易实现自动化操作,不能适应大规模蛋白质组分析的需要5、双向电泳首先由的主要染色技术(考马斯亮兰染色、银染色)的检测灵敏度较差,且局限在越100倍的动态范围,而细胞中蛋白质表达的动力学范围为百万倍,而且从胶上切割下的蛋白点消化后所产生的肽的回收率常常低于60%,这更会妨碍MS对低丰度蛋白的鉴定。 二亚细胞组份的分离与鉴定。分离:最好的分级分离方法是亚细胞器的分离,然后对各细胞器的蛋白质组进行单独研究。一般从三个方面对亚细胞器的纯度进行评价:1.电子显微镜检测 2.标志酶活性测定 3.Western blot 质膜的纯度鉴定方法: 质膜的纯度鉴定方法 11、形态学方法(常规透射电镜、免疫电镜观察其切片,纯细胞膜成空的膜泡或片状结构) 2免疫印迹法(常用抗体:抗caveolin、Na+--K+--ATPase、flotillin、5`-nucleotidase 等)

14 细胞周期(二)

细胞生物学 第十四章细胞周期(二) The Cell Cycle Control System ?The cell cycle control system is regulated by both internal and external controls. ?The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received. 2

细胞周期调控 一、细胞周期调控因子的发现 二、细胞周期调控因子 三、细胞周期调控的机制 四、其他 3 一、细胞周期调控因子的发现 1、有丝分裂促进因子(mitosis promoting factor,MPF) 2、成熟促进因子(maturation promoting factor,MPF) 3、细胞分裂周期基因(cell division cycle gene,cdc) 4、细胞周期蛋白(cyclin) 4

1、MPF 的发现 5 G1期PCC S 期PCC G2期PCC 1970年,Johnson RT 和Rao PN 发现M 期HeLa 细胞与间期细胞融合形成早熟染色体凝集(PCC )。这一现象提示在M 期细胞中存在诱导染色体凝集的因子,称为有丝分裂促进因子(mitosis promoting factor ,MPF )。 ?1971年,Masui Y 和Markert CL 通过非洲爪蟾卵实验发现成熟卵母细胞细胞质中含有促卵母细胞成熟的因子,称为成熟促进因子(maturation promoting factor ,MPF )。 卵细胞成熟示意图:细胞质移植实验发现MPF : MPF 的发现

相关文档
最新文档