有机催化剂种类及其应用

有机催化剂种类及其应用
有机催化剂种类及其应用

有机催化剂及其应用概述

摘要:本文通过查阅大量文献,对现今国内外有机催化剂的研究现状以及在各种有机反应中的应用作出了一个总体概述。同时,还重点对不对称合成中比较新式的有机催化剂进行了简单介绍。最后,对今后有机催化剂的发展前景进行了展望。关键词:金属有机催化剂非金属有机催化剂不对称合成:非MAO-茂金属催化剂

Abstract :Through an extensive literature on the current situation at home and abroad as well as organic catalysts in organic reactions to a general overview. At the same time, also focused on the more modern asymmetric synthesis of organic catalysts were brief. Finally, the catalyst for future development of organic prospect.

Keyword: Organometallic-catalysts Non-metallic-organic-catalyst Asymmetric-Synthesis Non-MAO-metallocene-catalyst

催化剂在现代有机合成化学及化工中有着举足轻重的地位.现代化学工业产品的85%都是通过催化过程生产的。每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。众所周知,有机催化剂中主要分为金属有机催化剂和非金属有机催化剂。金属有机催化剂凭借其优异的催化性能成为有机反应催化剂的主流.在金属有机催化剂蓬勃发展的同时,催化剂的另一个新分支——非金属有机催化剂引起了人们的浓厚兴趣,越来越多的简单有机物分子被直接用作有机反应的催化剂,成为现代合成化学的前沿领域之一。当然,在不对称有机合成中还涌现了一些新兴的有机催化剂,我们将对其一一介绍。

1.非金属有机催化剂及其应用

1.1 非金属有机催化剂的定义及其特征

与金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性.目前非金属有机催化剂主要有如下三类:

(1)有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ.杂环卡宾类、二酮哌嗪

类、胍类、脲及硫脲类等;

(2)有机膦类:三烷基膦类、三芳基膦类等;

(3)手性醇类质子催化剂:如TADDOL类催化剂.

非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视.1.2 非金属有机催化剂在各类有机反应中的应用

1.2.1 重排反应(炔酮异构化为双烯酮)

1992年,Trost小组[1]首次报道了在三苯基膦的催化下,α、β炔酮异构化为α、β、γ共轭双烯酮。1993年,陆熙炎小组[2.3]对此类反应进行了详细的研究并将此类催化剂范围扩展到有机叔膦,在随后的研究中提出并逐步完善了反应中叔膦的催化机理。

1.2.2 环加成反应

1.2.2.1 [3+2]环加成反应(1,3-偶极环加成反应)

1995年,陆熙炎等报道了一种形成环戊烯的新方法,即2,3一丁二烯酸酯(3a)或2一丁炔酸酯和贫电子烯烃4在有机催化剂三烷基膦的作用下进行[3+2]环加成反应。

2000年,MacMillan等使用手性咪唑啉酮类有机物为催化剂,实现了硝酮和不饱和醛的[3+2]环加成,生成异噁唑啉类化合物。

1.2.2.2 [2+2]环加成

1982年,Wynberg报道了首例使用金鸡纳碱类有机催化剂奎尼定催化乙烯酮和三氯乙醛发生[2+2]环加成反应,反应给出良好收率和高对映选择性的产物β-内酯。

1.2.2.3 [4+3]环加成

烯丙基阳离子与二烯的[4+3]环加成反应是构建七元环的重要手段.

2003年,Harmata等报道了首例有机催化剂催化的不对称[4+3]环加成反应.此反应是在有机催化剂和三氟乙酸共同作用下,以CH2Cl2为溶剂,γ位取代的共轭双烯醛和呋喃发生环加成反应,生成七元环产物。

1.2.3 缩合反应

1.2.3.1 羟醛缩合反应

List等_研究了以(S)-Proline为催化剂的丙酮和一系列醛的分子间Aldol反应。

1.2.3.2 Michael加成

Hanessian和Pharn使用催化量的有机催化剂(s)-Proline和化学计量的辅助物二甲基哌嗪,完成了硝基环戊烷和环状不饱和烯酮的不对称Michael加成,反应有较高的ee值(62%~99%).此反应表现出明显的非线性效应,表明反应过程中包含多组分催化剂.实验证实,醇类溶剂会降低此反应的对映选择性,并且水的存在对反应产生不利影响。

1.2.3.3 Robinson环化反应

Wiechert和najose最早在20世纪70年代就报道使用脯氨酸作为Robinson环化反应的催化剂。

1.2.4 共轭加成

1.2.4.1 硫醇的共轭加成

早在20世纪80年代,Wynberg和Hiems就报道了由手性金鸡纳碱类催化的硫醇对环状α,β-不饱和酮的对映选择性共轭加成反应。

1.2.4.2 叠氮化合物的共轭加成

碱催化的叠氮化物对烯酮的共轭加成产物是制备β-叠氮酸、β-氨基酸的良好前体,在有机合成中应用比较广泛,但是易爆、高毒性的反应物HN3不利于该反应的操作.Guerin和Horstmann采用了包含γ-苯甲基组氨酸的短链缩氨酸来催化叠氮化合物对不饱和酮的共轭加成,收到了良好的效果。

1.2.5 氢氰化反应

1.2.5.1 醛的氢氰化

手性氰醇是非常重要的手性中间体,可以顺利地转化为α-羟基酸、a-羟基醛、a-羟基酮、β-羟基胺、a-氨基酸.手性氰醇一般由氰化氢(或氰化钾)对醛或酮进行不对称亲核加成来制取,目前通用的最好方法是醛和氰化氢在氰酶催化下进行加成,产率和对映选择性都很高(>98% ee),不足的是

酶的选择和制取都非常复杂,不利于操作.有机催化剂的使用则避免了上述缺点.Inoue发现二酮哌嗪在氰化氢对苯甲醛的不对称加成反应生成手性氰醇的

过程中起到了很好的催化作用.此反应是在2 mo1%的催化剂的作用下,以甲苯为溶剂,在-20℃条件下,氰化氢对苯甲醛进行不对称

加成生成(R)-苯乙醇腈,产物具有很高的转化率和对映选择性。

1.2.5.2 亚胺的氢氰化

氰化氢对亚胺的不对称加成是一个非常有用的反应,用此反应的产物进行水解便可以很容易得到具有光学活性的氨基酸.Lipton小组发现使用手性催化剂二酮哌嗪催化苯甲醛亚胺的氢氰化时,并未发现有不对称产物的生成.据推测可能是因为苯甲醛亚胺中的N原子有足够的碱性因而导致在氢氰化的过程中催化剂中的咪唑侧链不能促进质子的转移,把上述催化剂中的咪唑部分换作胍基后则有了突破性的进展.在一25℃条件下,催化量的(2 mo1%)就可以使N-二苯甲基亚胺的氢氰化产物α氨基腈有非常高的收率和对映选择性。

1.3 展望

非金属有机催化剂在有机反应中的适用范围虽然不如金属有机催化剂广泛,在催化效率和选择性方面不如生物有机催化剂高,而且个别反应中催化剂使用量偏大,但是仍然在催化有机反应尤其是不对称合成中起着十分重要的作用.随着越来越多的非金属有机催化剂的发现以及对其催化性能的研究和改进,非金属有机催化剂在有机合成中将起到越来越重要的作用,并且在如下几个方面将会有很大的发展空间:(1)进一步提高反应的选择性(包括化学选择性、区域选择性、立

体选择性、对映选择性);(2)提高反应的原子经济性;(3)使反应在固相、水相、氟相、高分子溶剂、超临界流体等非常规溶剂中进行;(4)与高聚物载体进行支载,增加催化剂的回收率及重复使用率;(5)催化有机反应在无溶剂条件下进行,增加反应环境友好性;(6)催化剂从化学计量、半催

化量减少至催化量;(7)使反应条件趋于温和,操作简便.

随着对非金属有机催化剂进一步广泛的深入研究。会有越来越多的有机催化剂被发现并应用到各种有机反应中,同时也为不对称合成提供了又一强有力的工具.

2.金属有机催化剂及其应用

2.1 金属有机催化剂的发展

众所周知,在高分子合成中,凭借新的催化剂,新结构和新性能的高分子才能出现,新的聚合反应过程才能发生,从而推动聚合物科学不断向前发展,取得惊人的成效.本世纪五十年代Ziegler—Natta配位催化剂的出现,开创了一个新的高分子研究领域定向聚合,不仅使一些难聚合的单体进行聚合,而且比较容易获得高规整结构,性能优良的高分子材料.六十年代,我国长春应化所开创了稀土络合催化体系,应用于高分子合成,制得了高度顺式定向、分子量大、凝肢含量低、性能优良的顺丁胶。九十年代,由Kaminsky发现的MAO一茂金属催化体系首次工业化获得成功,为高分子材料工业,尤其是聚烯烃工业的技术革命拉开了序幕,产生一代全新的聚烯烃.MAO-茂金属催化体系是以二茂金属化合物为主催化剂,甲基铝氧烷齐聚物(MAO)为共催化剂组成的新型均相催化剂。其用于烯烃聚合,与传统的Ziegler—Natta催化剂相比,具有几大优势t高催化效率、单一活性中心、可设计的催化剂结构和可活性聚合.从而可实现对聚合参数和过程的控制,使分子裁剪成为可能,制备多种性能优异的新一代聚烯烃.这是高分子材料工业,尤其是聚烯烃工业发展的新里程碑.由于MAO-茂金属催化体系已经比较成熟,在这里不作过多的展望。尽管MAO-茂金属催化体系有许多优势,但由于其需要用大量昂贵的MA0,与茂金属化合物的摩尔比高达1000~2000倍.MAO合成困难,工艺危险性大,重现性差,因此近几年来,非MAO的茂金属催化体系的研究竟相涌现。实际上,这类富有生命力的新催化体系,是由IVB族金属二茂化合物与硼化物为代表的Lewis酸系列助催化剂组成的催化体系,称为NCA-茂金属催化体系.另外,以VIIIB族元素为代表的后过渡金属及稀土金属有机络合物催化体系,在烯烃及其衍生物聚合,尤其是非极性单体与极性单体共聚中也显示了很强的生命力.

2.2 NCA-茂金属催化体系

如前所述,由于MAO一茂金属催化体系,存在一一些难以克服的缺点,因而近些年来人们致力于开发一些新型的茂金属催化体系,其中最引人注目的是9O 年代发展起来的阳离子型茂金属催化体系.它由IVB族茂金属化合物与以硼化物为代表的Lewis酸系列助催化剂组成.这类催化剂无需使用大量昂贵的MAO作为助催化剂,而是使用比MAO更有效的、易制备、稳定、成本低的硼化物.硼化合物有硼酸盐、硼的五氟苯化合物,硼烷的羰基化合物等.其作用是获得一个烷基,促进形成阳离子型的二茂金属催化中心.硼的化合物不参与反应,称为非配位阴离子化合物(简称NCA).所以这类催化体系又称为NCA-茂金属催化体系.它不仅可以使丙烯等规聚合,而且可以使MMA、非共轭二烯烃、环烯烃、苯乙烯、以及含有极性官能团的烯烃进行立体选择性聚合。

以硼化物作助催化剂的阳离子茂金属催化剂,按照催化剂的组分可分为三

类,即单组分、双组分和三组分催化剂。

2.2.1 单组份体系

这类单组分催化剂一般由茂金属的烷基化合物与硼的季胺盐或三苯基硼反应生成,硼化物离子以非配位形式与茂金属阳离子形成离子对.硼化合物有四种形式:苯基硼,氟取代苯基硼,一三氟甲基取代的苯基硼和金属碳硼烷。

2.2.2 双组分体系

这种催化剂主要由阳离子茂金属和中性茂金属两组分组成,可催化极性乙烯基单体聚合.1992年,Scollins用THF体系于室温催化MMA聚合得高分子量(Mr= 150,000),窄分布(MWD=1.2~1.4),高转化率(100%).高间规的PMMA[4]

2.2.3 三组分体系

这种催化剂主要由中性甲基锆茂、中性硼化物和烷基锌组成,可催化极性乙烯基单体聚合.1994年K.Soga et al用ZnEt2体系于0度催化MMA聚合得高分子量(100,000),窄分布(1.25)的闻规PMMA.还用ZnEt2催化MMA聚合得到高等规的PMMA[5]

2.3 单组分茂稀土金属催化剂(不用助催化剂)

我国拥有特别丰富的稀土资源,蕴藏量占世界的首位,稀土金属催化剂在高分子合成中的应用,已成为我国在国际高分子研究领域中的一大特色,占有领先地位.茂稀土金属催化剂与常规Ziegler-Natta催化剂,MAO一茂金属催化剂相比.对极性单体(如丙烯酸、甲基丙烯酸及其醇等)的聚合,显示了独特优越的催化特性,能获得高分子量、单分散、高立构规整的聚合物,同时对乙烯聚合也具有活性聚合的特征,显示高的催化活性和高的分子量.因此,茂稀土金属催化荆是实现极性与非极性单体共聚,获得具有结构和性能特点的聚合物的理想催化体系.由于Ziegler—Natta催化剂和MAO一茂金属催化剂易受极性单体毒化,失去催化功能而无法实现极性单体聚合.因此,发展茂稀土金属催化荆在高分子合成中的应用.具有重要的科学和实际意义.

单组分茂稀土金属催化剂可以催化极性单体聚合、非极性单体聚合、烯烃和极性单体共聚、环烯烃开环聚合等多方面的有机合成反应,限于篇幅原因在这里不再一一赘述。

2.4 结语

烯烃与极性单体的共聚是聚烯烃工业中的一个诱人的目标和重要的发展分支.由于配位聚合在聚合物组成、规整性、分子量和分子量分布、以及聚合物徽观结构控制等方面都具有独到的特点,因此研究开发金属络舍物体系催化烯烃与极性单体共聚已引起人们的共同关注和兴趣.

综上所述,进行烯烃与极性单体共聚,可从如下三个方面人手;(1)采用非过渡金属络合物催化体系,尤其是稀土金属络合物催化体系,这方面以日本的Yasuda教授的工作为代表,已初步取得了好的结果.(2)发展弱亲氧性的前过渡金属络合物催化体系.加拿大的S.Collins教授提出的硼一茂锫催化体系(即NCA 一茂话催化体系),避免了极性单体对前过渡金属催化荆的毒害,用于MMA聚合得到了很好的结果,同时对烯烃聚合具有活性,因而可发展用于烯烃与极性单体的共聚.(3)对非极性烯烃显示高催化活性的后过渡金属体系.Brookhart和Novak 两位教授分别研究的含Pd或Ni络合物体系催化极性和非极性烯烃共聚合。

3.不对称合成中有机催化剂的应用

不对称催化是当今化学发展最为活跃的领域之一,是开发手性药物、材料及香料等化学品的强大理论基础和学术依据.酶和金属络合物是两类最主要和最有

效的催化剂.其中金属络合物是研究的最为普遍的化学催化剂,并且取得世人瞩目的成就,有些已被应用于工业生产,2001年的诺贝尔化学奖授予了该领域做出突出贡献的三位科学家.

金属络合物催化蓬勃发展的同时,近几年来,不含金属的有机小分子催化越来越受到关注,正在成为化学领域继金属催化剂之后研究的另一热点.有机催化是指使用低于化学计量的不含金属的有机小分子进行的催化反应.20世纪70年代,Hajos小组和Wiechert小组[6]分别报道了应用简单的氨基酸脯氨酸进行催化的高效和高对映选择性的分子内羟醛缩合反应,此后很长一段时期,有机催化反应未引起大家的重视.最近几年,有机催化的研究得到前所未有的发展.有机小分子可以象酶一样发挥作用,有可能在前生命物质(如糖类)的合成中起着重要作用.有机催化剂具有容易操作和一些“绿色”的优点:(1)不需金属来引发,不必担心有毒的金属泄漏到环境;(2)有机催化剂通常价格低廉,容易修饰和制备;

(3)有机催化剂通常可以在湿溶剂或空气中进行反应,不必用到苛刻的无水无氧条件;(4)有机催化剂容易从产物中分离和回收.如脯氨酸易溶于水,难溶于有机溶剂,利用此特点很容易从反应体系中分离。

3.1 有机磷催化剂

有机磷不仅在金属络合物催化方面是广泛应用的配体,同时也可单独作为有机催化剂来使用.由于磷原子体积比较大,可极化性大,因此烷基膦亲核性比较强,而碱性远远弱于相应的胺.如三烷基膦的亲核性是三乙胺的100倍,而碱性仅是它的1%.烷基磷或芳基磷在Baylis-Hillman反应中显示出比较好的催化活性[7],用三苯基膦催化不饱和酮与Ⅳ_磺酰基苯甲酰亚胺反应提供67%~92%收率的偶联产物,如改用含膦和羟基的双官能团催化剂47进行该反应时,收率达到

90%。

3.2 醇、酚型催化剂

手性醇、酚类质子催化剂在有机催化反应中显示出良好的催化活性和对映选择性,其催化过程往往是通过双氢键活化羰基进行的.

Schaus等应用二酚53催化不饱和环己酮与各种醛进行Baylis-Hillman偶联反应,给出比较好的收率和对映选择性.尤其是脂肪醛对共轭不饱和酮的加成比芳香醛有更好的选择性.该反应是三乙基膦与联苯二酚化合物共同催化的结果.

3.3 硫脲类催化剂

Ricci等利用硫脲衍生物54催化硝基共轭烯对各种芳香体系的傅-克烷基化反应,无溶剂条件下往往得到收率比较高的产物,有的甚至高达100%.其双氢键活化硝基的机理如下图所示.比较脲类及硫脲类催化剂的反应性能,硫脲呈现更好的催化活性.

3.4 总结

除了以上评述的几类有机小分子催化剂之外,还有其它许多种,随着时间的推移,新结构类型的催化剂将不断涌现,新催化反应的应用将不断被发掘.尽管有些反应机理不十分清楚,但已在不对称合成中得到应用,尤其是在形成碳一碳键的不对称反应中显示出潜在的应用前景.

4.结束语

有机合成在现代工业生产中有着举足轻重的地位,现在已经发展起来的金属有机催化剂、非金属有机催化剂、微粒有机催化剂有各自的优点,但又有各自的

缺点,如何综合所有有机催化剂的优点,避免其缺点,称为今后发展的主要方向。而且,在今后的研究中,在不对称合成中有机催化剂的合成研究比较重要。

目前的大部分有机催化反应对反应底物依赖性比较大,底物结构稍一改变就有可能导致产率和对映选择性的大大下降,如何使催化剂更具有普遍适用性,提高基团的兼容性,提高催化选择性(包括化学选择性、区域选择性、立体选择性),仍然是面临的挑战性问题.与金属催化相比,有机催化剂通常用量比较大,反应时间较长,而以离子液体为溶剂、将催化剂固载化等手段有利于提高催化剂的活性和催化剂回收使用率;总之如何降低催化剂的用量,提高催化剂的效率,仍然有巨大的发展空间.随着量化计算对结构与性能关系的介入和催化反应机理研究的深入,新的高效和高对映选择性的有机催化剂将不断涌现,有机小分子催化的有机合成必将为资源的合理利用、生态环境的保护和人类的生命健康提供又一强有力的工具.

参考文献:

1.Trost,B.M.;Kltzmaier,U.J.Am.Chem.Soc.1992,114,7933.

2.Guo,C.;Ln,X.J.Chem.Soc.,Chem.Commun.1998,394.

3.Guo,C.;Ln,X.J.Chem.Soc.,Perkin Tram.1 1998,1921.

4.Collin S,Ward D G. Group-transler polyerization using cntionic zirconocene compounds[J].J Am Chem Soc,1992,114,5460-5462

5.Yadav J S,Thimpathi Reddy P,Nanda S,et a1.Stereoseleetive synthesis of(R)·(-)-denopamine,(R)-(-)-tembamide and(R)·(-)·aegeline via asymmetric reduction of azidoketones by Daucus carota in aqueous medium[J].Tetrahedron:Asymmetry,2001,12(24):3381—3385.

6.Eder,U.;Sauer,G.;W iechert,R.Angew.Chem.lnt.Eng1.1971.10,496.

7.(a)Methot,J.L.;Roush,W.R.Adv.Synth.Cata1.2Oo4,346,1035.

(b)Shi,M.;Zhao,G.一L.Adv.Synth.Cata1.2Oo4,346,1205.

(c)Shi,Y.一L.;Xu,Y.一M.;Shi,M.Adv.Synth.Cata1.20t)4,346 1220.

灭火剂种类

灭火剂种类 ?一、水 ?1、灭火用水的种类 ?1)集密水(直流水):适合远距离操作灭火。 ?2)开花水:具有良好的冷却作用和穿透火焰能力。 ?用于建筑火灾和石化生产设备的扑救和冷却。 ?3)喷雾水流:可扑救粉尘、纤维状物质、固体火灾和丙类可燃液体火灾,还可扑救带电设备火灾。 灭火剂种类 ?4)水蒸汽:主要是稀释燃烧区域可燃蒸汽浓度和降低燃烧区内的氧含量。 ?主要用于密闭厂房、容积,以及空气不流通的火灾,和石化装置火灾的保护及灭火。 ?2、水灭火时注意事项 ?1)与水反应能产生可燃气体,不能用水扑救。 ?如轻金属(钾、钠、镁等)、电石。 ?2)非水溶性可燃、易燃液体火灾,原则上不 灭火剂种类 ?能用水扑救,但原油、重油可用雾状水扑救。 ?3)直流水不能用于扑救带电设备火灾、高温设备,也不能扑救可燃粉尘聚集处的火灾。 ?4)贮存大量浓硫酸、浓硝酸的场所发生火灾,不能用直流水扑救,以免酸液发热飞溅。必要时,宜用雾状水扑救。 ?水主要扑救A类火灾,也对B类和C类火灾适用。 ?适用扑救石油、可燃、易燃液体、可燃气体和可燃固体的初期火灾,以及带电设备火灾。 ?种类 ?碳酸氢钠干粉灭火器(BC) ?磷酸铵盐干粉灭火器(ABC) ?《建筑灭火器配置设计规范》对火灾的分类: ?A类火灾:含碳固体可燃物的火灾; ?B类火灾:甲、乙、丙类液体火灾; ?C类火灾:可燃气体火灾; ?D类火灾:可燃金属火灾; ?带电火灾。 ?注意:扑救非水溶性可燃、易燃液体的火灾时,干粉与氟蛋白泡沫或轻水泡沫联用,具有很好的灭火效果。但干粉不能与蛋白泡沫和一般合成泡沫联用,因为干粉中的防潮剂对泡沫的破坏作用很大,两者一接触,泡沫就会很快被破坏而消失。 ?BC类和ABC类干粉灭火器具有不相容性,不能放置在同一个灭火器箱内,不能同时灭火。 ?1、工艺装置内手提式干粉灭火器的配置,应符合下列规定: ?1)甲类装置灭火器的最大保护距离,不宜超过9米,乙、丙类装置不宜超过12米; ?2)每一配置点的灭火器数量不应少于两个,多层框架应分层配置; ?3)危险的重要场所,宜增设推车式灭火器。 ?2、可燃液体、气体、液态烃的铁路装卸栈桥,应沿栈桥每12米处上下分别设置一个手提式干粉灭火器。 ?3、可燃液体、气体、液态烃的罐区,宜按防火堤内每400m2配置一手提灭火器,但每个储罐

浇注料的分类及其特性

耐火材料的分类及其特性

耐火浇注料 特性: 一种由耐火物料加入一定量结合剂制成的粒状和粉状材料。具有较高流动性,适用于以浇注方式成型的不定形耐火材料。同其他不定形耐火材料相比,结合剂和水分含量较高,故流动性较好,但耐磨性较差,适用于各种窑炉,具有耐碱性的水硬性浇注料。 适用方法: 物料及结合剂加水搅拌均匀使用,需要支模,填灌后用振动棒振打消除气泡。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。适用于产生摩擦量小的高温区域,如锅炉底部风室、一次风道、返料立管(料腿)、尾部烟道炉墙、冷渣机、各炉门的填充等。

耐磨可塑料 特性: 耐磨可塑料是一种高铝、刚玉质颗粒状制品。与传统耐火可塑料相比,其具有施工简易,效率好,成型好,强度高等优良性能,该材料是由胶粘剂、耐火骨料和促硬剂组成,,加一定比例的PA胶后形成一种可塑耐火泥,便于各种复杂部位施工。属于气硬性材料,具有低温硬化性能,保证循环流化床锅炉耐磨性的需要。 耐磨性能较差。 施工工艺: 使用时采用强制搅拌机搅拌,在搅拌时将小袋中的促硬剂均匀加入,干搅1分钟后,再加入4-5%的胶粘剂搅拌3分钟,待料呈一定的塑性时,即可卸出使用。 采用橡皮锤捣打施工或机器捣打施工,可施工时间保证在30分钟以后,初凝时间约1个小时。 施工时,把可塑料铺设一定的厚度,一般不超过60mm厚,用橡皮锤或木锤捣实,捣打炉墙等部位一般不需支模,捣打后的衬体比设计尺寸厚的多,应及时除去多余部分。即或支模,如炉顶等部位施工拆模后,若有多余部分也要除去。修整下来的多余料如未变干可放在非工作面继续使用。修整工作面最好与捣打工序并行开展。如果施工间断时,要用塑料布等物将捣打面盖严,防止迅速干燥。耐磨可塑料搅拌后可施工时间大约为30分钟(随环境温度有所变动),一旦时间过长硬化后,就应扔掉,不可继续使用。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。

二极管种类及应用

二极管 一、二极管的种类 二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。下面以用途为例,介绍不同种类二极管的特性。 1.整流二极管 整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。 因为整流二极管正向工作电流较大,工艺上多采用面接触结构。南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。 整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。通常情况下额定正向T作电流LF在l A以上的整流二极管采用金属壳封装,以利于散热;额定正向工作电流在lA以下的采用全塑料封装。另外,由于T艺技术的不断提高,也有不少较大功率的整流二极管采用塑料封装,在使用中应予以区别。 由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封 装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。常见整流二极管的外形如图2所示。 选用整流二极管时,主要应考虑其最大整流电流、最大反向丁作电流、截止频率及反向恢复时间等参数。 普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管(例如l N 系列、2CZ系列、RLR系列等)即可。 开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、

灭火器的分类及使用方法(正式)

编订:__________________ 单位:__________________ 时间:__________________ 灭火器的分类及使用方法 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5271-40 灭火器的分类及使用方法(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 灭火器的种类很多,按其移动方式可分为:手提式和推车式;按驱动灭火剂的动力来源可分为:储气瓶式、储压式、化学反应式、按所充装的灭火剂则又可分为:泡沫、干粉、卤代烷、二氧化碳、酸碱、清水等。 灭火器适应火灾及使用方法(手提式) (一)泡沫灭火器适应火灾及使用方法 1、适用范围 适用于扑救一般B类火灾,如油制品、油脂等火灾,也可适用于A类火灾,但不能扑救B类火灾中的水溶性可燃、易燃液体的火灾,如醇、酯、醚、酮等物质火灾;也不能扑救带电设备及C类和D类火灾。 2、使用方法 手提灭火器手柄,迅速奔赴火场。这时应注意不

得使灭火器过分倾斜,更不可横拿或颠倒,以免两种药剂混合而提前喷出。当距离着火点10米左右,即可将筒体颠倒过来,一只手紧握提环,另一只手扶住筒体的底圈,将射流对准燃烧物。在扑救可燃液体火灾时,如已呈流淌状燃烧,则将泡沫由远而近喷射,使泡沫完全覆盖在燃烧液面上;如在容器内燃烧,应将泡沫射向容器的内壁,使泡沫沿着内壁流淌,逐步覆盖着火液面。切忌直接对准液面喷射,以免由于射流的冲击,反而将燃烧的液体冲散或冲出容器,扩大燃烧范围。在扑救固体物质火灾时,应将射流对准燃烧最猛烈处。灭火时随着有效喷射距离的缩短,使用者应逐渐向燃烧区靠近,并始终将泡沫喷在燃烧物上,直到扑灭。使用时,灭火器应始终保持倒置状态,否则会中断喷射。 3、注意事项 (手提式)泡沫灭火器存放应选择干燥、阴凉、通风并取用方便之处,不可靠近高温或可能受到曝晒的地方,以防止碳酸分解而失效;冬季要采取防冻措

实验室中常用抗凝剂

实验室中常用的抗凝剂有肝素、乙二胺四乙酸盐(EDTA盐)、枸橼酸盐、草酸盐等4种,实际应用中要根据不同的需要进行选择,才能获得理想的效果。现将它们的应用特点分述如下: 一、肝素 抗凝是用于血液化学成分检测的首选抗凝剂。肝素是一种含有硫酸基团的粘多糖,是分散相物质平均分子质量为15000。其抗凝原理主要是通过与抗凝血酶Ⅲ结合引起抗凝血酶Ⅲ构型发生变化,加速凝血酶-凝血酶复合体形成而产生抗凝作用。此外,肝素还能借助血浆辅助因子(肝素辅助因子Ⅱ)来抑制凝血酶。常用肝素抗凝剂是肝素的钠、钾、锂、铵盐,其中以肝素锂最好,但其价格较贵,钠、钾盐会增加血液中的钠、钾含量,铵盐会增加尿素氮的含量。通常用肝素抗凝的剂量为10.0~12.5 IU/ml血液。 肝素对血液成分干扰较少,不影响红细胞体积,不引起溶血,适用于做红细胞渗透性试验、血气、血浆渗透量、红细胞压积及普通生化测定。但肝素具有抗凝血酶作用,不适合做血凝试验。另外,肝素过量可引起白细胞聚集和血小板减少,所以不适合做白细胞分类和血小板计数,更不能用于止血检验。此外,肝素抗凝血不能用于制作血涂片,因为Wright染色后出现深蓝色背景,影响显微镜减产。肝素抗凝血应于短时间内使用,否则放置过久血液又可凝固。 二、乙二胺四乙酸盐(EDTA盐) EDTA能与血液中Ca2+结合成螯合物,凝血过程被阻断,血液不能发生凝固。EDTA盐有钾、钠、锂盐,国际血液学标准化委员会推荐使用的是EDTA-K2,其溶解度最高,抗凝速度最快。EDTA盐通常配成质量分数是15%的水溶液,每ml 血液加1.2mgEDTA,即每5ml血液加0.04ml 15%EDTA溶液。EDTA盐可在100℃下干燥,抗凝作用不变。

耐火材料的分类

耐火材料的分类 ?作者:单位:中国水泥网收集资料[2007-11-5] 关键字:耐火材料-分类 ?摘要: 耐火材料的定义:耐火度大于1580℃的无机非金属材料为耐火材料。 耐火材料是材料工业的一部份,因用于热工窑炉而得名耐火材料。耐火材料分为常规耐火材料和特种耐火材料,常规耐火材料是指用于冶金炉、水泥窑、玻璃窑等热工窑炉炉衬的材料,多半由天然原料加工而成的。特种耐火材料用料纯度高,多为氧化物合成材料,用于特殊的冶炼设备,或是窑炉的特殊部位。 耐火材料品种繁多,常用的分类有四种。 一、按主晶相酸、碱性质分类 1、酸性材料制品:这类产品中以石英(SiO2)为第一相,SiO2属酸性氧化物,帮而得名。硅砖是酸性材料的代表产品;半硅砖、耐碱砖、耐酸砖中SiO2含量60%到80%,是半酸性材料。 2、碱性材料制品:以MgO、CaO为主晶相,因MgO、CaO是碱土氧化物,故而称为碱性耐火材料。它们的熔点高,抗碱性渣(C/S>2)侵蚀能力很强,属于高级耐火材料,但它们易于水化。镁铬砖、白云石砖、橄榄石砖等产品,主要华化学成份也是MgO、CaO也属于碱性材料。 3、中性材料制品:以Al2O3、ZrO2为主晶相,它们的化学行为可变,当遇到碱性氧化物时表现出酸性特点,如生成MgO、Al2O3、Al2O3、ZrO2;遇到有强酸性氧化物时又表现碱性特点。如生成黏土砖、高铝砖、菒来石砖是中性材料代表产品。锆英石制品也是中性产品。 二、按组成耐火材料主要成份分类 所谓主要成份是指第一相和第二相成份,含量大约占化学成份总量的90%左右。现代耐火材料技术发展越来越多项材料配料,故出现第二相、第三相成份,调节第二相、第三相成份即可产生新的技术,在化学组成上超出了第一相分类局限性,是应用最普遍的一种分类方法。 1、硅铝系列品:要硅铝系列材质中,主要成分是SiO2、Al2O3,它包括黏土砖、高铝砖、硅线石、蓝晶石、红柱石、莫来石砖等制品。 2、镁铬系列制品:镁铬系列中主要成分是MgO、Cr2O3,方镁石为第一相,镁铬尖晶石为第二相,属于这个系列的产品有镁铬砖和铬镁砖。 3、镁铝系列品:主要成分是MgO、Al2O3,由于它们生成MgO.Al2O3,镁铬系列制品中都含有镁质材料。 4、镁钙系列产品:主要成分是以MgO、CaO。它们都有极高的熔点,是重要的镁质材料。

常用灭火器的类型及适用范围

常用灭火器的类型及适用范围 一、类型: 酸碱式灭火器 药液成份: H2SO4 NaHCO3 适用范围:非油类及电器失火的一般火灾 注意事项 1、使用时倒置摇匀后,无灭火液喷出时应立即清理喷嘴,若不能排除应弃于远处,防止爆炸。 2、不宜用于精密仪器,贵重资料的灭火。 二、类型泡沫式灭火器 药液成份:Al2(SO43 NaHCO3 适用范围:油类失火 注意事项: 三、二氧化碳灭火器 液体CO2 电器、贵重仪器、资料失火、小范围的油类着火。 1、双手握在喷射口的橡胶部位,不要接触金属部分。 2、不得用于可燃性金属失火。 3、灭火后不伤物品、不留痕迹。 四、四氯化碳灭火器 液体CCl4 电器失火 1、有毒,注意使用时风向,要站在上风处。 2、不得用于K、Na和CS2、CaC2的着火。 3、灭火后不留痕迹。 五、干粉灭火器 粉末主要成份为Na2CO3等盐类物质,加入适量润滑剂,防潮剂。 油类、可燃气体、电器设备、精密仪器、文件记录和遇火燃烧等物品的初起火灾。 需分清干粉灭火器的不同类型,有针对性的使用。 六、1211灭火器 CF2ClBr 油类、有机溶剂、电器、精密仪器 属化学抑制灭火器、灭火效率高、绝缘、无污染、不留痕迹、但价格贵。 可根据检测样品性质、所用试剂属性、用电情况等进行灭火器的选择和分区布置,最好每个检测室均配有灭火器,达不到此要求,可在每个大区域摆放各种灭火器然后在墙上或其他地方注明每种灭火器使用方向及注意事项,以方便需要时使用、参考 非常用的有一两个即可,但要保证其状态良好。 首先分析下燃烧原理,一切灭火方法的原理是将灭火剂直接喷射到燃烧的物体上。或者将灭火剂喷洒在火源附近的物质上,使其不因火焰热辐射作用而形成新的火点。因此可采用: 1.冷却灭火法这种灭火法的原理是将灭火剂直接喷射到燃烧的物体上,以降低燃烧的温度于燃点之下,使燃烧停止。或者将灭火剂喷洒在火源附近的物质上,使其不因火焰热辐射作用而形成新的火点。冷却灭火法是灭火的一种主要方法,常用水和二氧化碳作灭火剂冷却降温灭火。灭火剂在灭火过程中不参与燃烧过程中的化学反应。这种方法属于物理灭火方法。 2.隔离灭火法隔离灭火法是将正在燃烧的物质和周围未燃烧的可燃物质隔离或移

血液抗凝剂的特点及应用

实验室常用血液抗凝剂的特点及应用 在实验室检验中,有许多检测项目的血液标本是需要抗凝才可以检测的。而抗凝剂种类较多,实际应用中要根据不同的需要进行选择,才能获得理想的效果。实验室中常用的抗凝剂有肝素、乙二胺四乙酸盐(EDTA盐)、枸橼酸盐、草酸盐等4种,现将它们的特点及应用分别叙述如下: 一、肝素 抗凝是用于血液化学成分检测的首选抗凝剂。肝素是一种含有硫酸基团的粘多糖,是分散相物质平均分子质量为15000。其抗凝原理主要是通过与抗凝血酶Ⅲ结合引起抗凝血酶Ⅲ构型发生变化,加速凝血酶-凝血酶复合体形成而产生抗凝作用。此外,肝素还能借助血浆辅助因子(肝素辅助因子Ⅱ)来抑制凝血酶。常用肝素抗凝剂是肝素的钠、钾、锂、铵盐,其中以肝素锂最好,但其价格较贵,钠、钾盐会增加血液中的钠、钾含量,铵盐会增加尿素氮的含量。通常用肝素抗凝的剂量为10.0~12.5 IU/ml血液。 肝素对血液成分干扰较少,不影响红细胞体积,不引起溶血,适用于做红细胞渗透性试验、血气、血浆渗透量、红细胞压积及普通生化测定。但肝素具有抗凝血酶作用,不适合做血凝试验。另外,肝素过量可引起白细胞聚集和血小板减少,所以不适合做白细胞分类和血小板计数,更不能用于止血检验。此外,肝素抗凝血不能用于制作血涂片,因为Wright染色后出现深蓝色背景,影响显微镜减产。肝素抗凝血应于短时间内使用,否则放置过久血液又可凝固。 二、乙二胺四乙酸盐(EDTA盐) EDTA能与血液中Ca2+结合成螯合物,凝血过程被阻断,血液不能发生凝固。EDTA盐有钾、钠、锂盐,国际血液学标准化委员会推荐使用的是EDTA-K2,其溶解度最高,抗凝速度最快。EDTA盐通常配成质量分数是15%的水溶液,每ml血液加1.2mgEDTA,即每5ml血液加0.04ml 15%EDTA溶液。EDTA盐可在100℃下干燥,抗凝作用不变。 此抗凝剂不影响白细胞计数及大小,对红细胞形态影响最小,并且可以抑制血小板的聚集,适用于一般血液学检测。但如果抗凝剂浓度过高,渗透压上升,会造成细胞皱缩。EDTA溶液pH与盐类关系较大,低pH可使细胞膨胀。EDTA-K2可使红细胞体积轻度膨胀,采血后短时间内平均血小板体积非常不稳定半小时后趋于稳定。EDTA-K2使 Ca2+、Mg2+下降,同时使肌酸激酶、碱性磷酸酶降低,EDTA-K2的最佳浓度为1.5mg/ml血液,如果血少,中性粒细胞会肿胀分叶消失,血小板会肿胀、崩解,产生正常血小板的碎片,使分析结果产生错误。EDTA由于能抑制或干涉纤维蛋白凝块形成时纤维蛋白单体的聚合,不适于血凝和血小板功能检测,也不适用于钙、钾、钠及含氮物质的测定。此外,EDTA能影响某些酶的活性和抑制红斑狼疮因子,故不适合制作组化染色和检查红斑狼疮细胞的血涂片。 三、枸橼酸盐 枸橼酸盐主要是枸橼酸钠,其抗凝原理是能与血液中的Ca2+结合形成螯合物,使Ca2+失去凝血功能,凝血过程被阻断,从而阻止血液凝固。枸橼酸钠有Na3C6H5O7·2H2O和2Na3C6H5O7·11H2O两种晶体,通常用前者配成3.8%或3.2%的水溶液,与血液按照1:9体积混合。 大部分凝血试验都可用枸橼酸钠抗凝,它有助于Ⅴ因子和Ⅷ因子的稳定,并且对平均血小板体积及其他凝血因子影响较小,可用于血小板功能分析。枸橼酸钠细胞毒性较小,也是输血中血液保养液的成分之一。但是,枸橼酸钠6mg才能抗凝1ml血液,碱性强,不适用于血液化验和生化测验。 四、草酸盐 草酸盐也是常用的抗凝剂,优点是溶解度大,作用原理是溶解后解离的草酸根与标本中的Ca2+形成草酸钙沉淀,使Ca2+失去凝血功能,凝血过程被阻断。常用的草酸盐抗凝剂种类有草酸钠、草酸钾和草酸铵,草酸钠的常用浓度为O.1 mol/L,与血液按1:9比例使用。但是,高浓度k+或Na+易使血细胞脱水皱缩,而草酸铵则可使血细胞膨胀,故测定血细胞比容时用草酸铵与草酸钾或草酸钠两者适当比例混合的抗凝剂,恰好不影响红细胞的形态和体积。常用于血液生化测定,但不适用于K+、Ca 2+的测定。由于生成草酸钙沉淀,红细胞会出现锯齿状,白细胞出现空泡,淋巴细胞及单核细胞会变形,不宜做血片检查。草酸盐可使血小板聚集,并影响白细胞形态,不能用于白细胞和血小板分类计数。 附录四常用抗凝剂的配制及用法 在医学实验中常需动物的全身抗凝,采出的全血或血浆有的也需加入适当的抗凝剂抗凝。对抗凝剂的要求是:用量少、溶解度大、不带进干扰实验的杂质。 一、肝素 (1)肝素抗凝作用原理 肝素的抗凝作用很强,作死亡复苏等实验时,常用它作动物全身抗凝剂,肝素的抗凝作用主要是抑制凝血致活酶的活力,阻止血小板凝聚以及抑制抗凝血酶等作用,从而使血液不发生凝固。

浇注料是什么

浇注料又称耐火浇注料,是一种由耐火物料加入一定量结合剂制成的粒状和粉状材料,具有较高流动性,以浇注方式成型的不定形耐火材料。 同其他不定形耐火材料相比,结合剂和水分含量较高,流动性较好,故而浇注料应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。接下来咱们就一起详细了解一下什么是浇注料。 一、什么是浇注料? 浇注料是耐火材料中的一个种类,耐火材料分为定形制品和不定形制品,浇注料是不定形制品中的一个品种,所用材质和耐火砖一样,可以说是定形耐火制品均可制成不定形耐火材料中的浇注料,采用浇筑施

工的不定形耐火制品绿色环保,正逐渐的代替定形耐材。 二、浇注料分类 浇注料种类和名称有很多,可以按照骨料、主要成份、使用部位、化学性质及特点来进行命名,例如:按耐火骨料分有粘土质骨料(Al2O3 30%~45%)、高铝质骨料(Al2O3%26ge;45%)、硅质骨料 (SiO2%26ge;85%、Al2O3%26lt;10%)、碱性骨料(有镁砂、白云石等)、特别骨料(有碳、碳化物、尖晶石、锆英石、氮化物等)和隔热骨料(有珍珠岩、蛭石、陶粒、漂珠、轻质砖砂、多孔熟料、氧化铝空心球等)。按结合剂分有水硬性结合、化学结合、凝集结合耐火浇注料。 产品分类除了骨料还要按照气孔或比重进行分类,例如:按气孔率分有细密耐火浇注料和气孔率不低于45%的隔热保温耐火烧注料两种。 化学结合浇注料在常温下一般经过参加促硬剂构成化学反应而硬化,首要种类有水玻璃、硫酸铝、磷酸盐浇注料等。 凝集结合浇注料为在煅烧进程中经烧结效果而硬化,首要种类有粘土浇注料等。 水硬性结合浇注料在常温下凝集硬化并经过水化效果而硬化,首要种类有硅酸盐水泥、一般铝酸钙水泥、纯铝酸钙水泥、电熔纯铝酸钙水泥浇注料等。 二、浇注料如何施工? 浇注料施工步骤: 1、施工部位的清理及支模具; 2、本产品属于混合制品,产品先干式搅拌;

常用灭火器分类及应用

. 一、干粉灭火器: . 1、干粉储压式灭火器(手提式)是以氮气为动力,将筒体内干粉压出。适宜于扑救石油产品、油漆、有机溶剂火灾。它能抑制燃烧的连锁反映而灭火。也适宜于扑灭液体、气体、电气火灾(干粉有5万伏以上的电绝缘性能)。有的还能扑救固体火灾。 注意保养灭火器,要放在好取、干燥、通风处。每年要检查两次干粉是否结块,如有接块要及时更换;每年检查一次药剂重量,若少于规定的重量或看压力表如下掉气压,应及时充装。 . 2、干粉推车使用时,首先将推车灭火器快速推到火源近处,拉出喷射胶管并展直,拔出保险销,开启扳直伐门手柄,对准火焰根部,使粉雾横扫重点火焰,注意切断火源,控制火焰窜回,由近及远向前推进灭火。 . 3、干粉灭火器(MFZ)2-3kg有效射程距离2.5m,4-5kg射程为4m,时间8-9秒。8kg射程为5m,时间12秒。(MFTZ)35-50kg推车有效射程为8m,时间20秒。70kg推车射程9m,时间25秒。 . 2 . 二、二氧化碳灭火器 . 二氧化碳灭火器都是以高压气瓶内储存的二氧化碳气体做为灭火剂进行灭火,二氧化碳灭火后不留痕迹,适宜于扑救贵重仪器设备,档案资料,计算机室内火灾,它不导电也适宜于扑救带电的低压电器设备和油类火灾,但不可用它扑救钾、钠、镁、铝等物质火灾。 . . 3 . 三、1211灭火器 . 1、“1211”灭火器是一种高效灭火剂。灭火时不污染物品,不留痕迹,特别适用于扑救精密仪器、电子设备、文物档案资料火灾。它的灭火原理也是抑制连烧的连锁反应,也适宜于扑救油类火灾。 .

使用时要首先拔掉保险销,然后握紧压把开关,即有药剂喷出。使用时灭火筒身要垂直,不可平放和颠倒使用。它的射程较近,喷射时要站在上风,接近着火点,对着火源根部扫射,向前推进,要注意防止回头复燃。“1211”灭火器每三个月要检查一次氮气压力,每半年要检查一次药剂重量、压力,药剂重量若减少10%时,应重新充气、灌药。 . 2、“1211”灭火器,1kg有效射程2.5m,2-3kg射程3.5m,4kg射程4.5m,时间为8秒。“1211”推车有效射程:25kg射程8m,时间20秒,40kg射程8m,时间25秒。. . 4 . 四、泡沫灭火器 . 1、目前主要是化学泡沫,将来要发展空气泡沫,泡沫能覆盖在燃烧物的表面,防止空气进入。它最适宜扑救液体火灾,不能扑救水溶性可燃、易燃液体的火灾(如:醇、酯、醚、酮等物质)和电器火灾。 . . 5 . 五清水灭火器 . 清水灭火器中的灭火剂为清水。水在常温下具有较低的粘度、较高的热稳定性较大的密度和较高的表面张力,是一种古老而又使用范围广泛的天然灭火剂,易于获取和储存。 . 它主要依靠冷却和窒息作用进行灭火。因为每千克水自常温加热至沸点并完全蒸发汽化,可以吸收2593.4KJ的热量。因此,它利用自身吸收显热和潜热的能力发挥冷却灭火作用,是其它灭火剂所无法比拟的。此外,水被汽化后形成的水蒸气为惰性气体,且体积将膨胀1700倍左右。 . 在灭火时,由水汽化产生的水蒸气将占据燃烧区域的空间、稀释燃烧物周围的氧含量,阻碍新鲜空气进入燃烧区,使燃烧区内的氧浓度大大降低,从而达到窒息灭火的目的。当水呈喷淋雾状时,形成的水滴和雾滴的比表面积将大大增加,增强了水与火之间的热交换作用,从而强化了其冷却和窒息作用。 . 另外,对一些易溶于水的可燃、易燃液体还可起稀释作用;采用强射流产生的水雾可使可燃、易燃液体产生乳化作用,使液体表面迅速冷却、可燃蒸汽产生速度下降而达到灭火的目的。 .

消毒剂的种类及应用(终审稿)

消毒剂的种类及应用文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、化学消毒剂的基本分类 按用途分类: 环境消毒剂和带畜(禽)体表消毒剂(包括饮水、器械等) 按杀菌能力分类: ⑴高效(水平)消毒剂:即能杀灭包括细菌芽胞在内的各种微生物。 ⑵中效(水平)消毒剂:即能杀灭除细菌芽胞在外的各种微生物。 ⑶低效(水平)消毒剂:即只能杀灭抵抗力比较弱的微生物,不能杀灭细菌芽胞、真菌和结核杆 菌,也不能杀灭如肝炎病毒等抗力强的病毒和抗力强的细菌繁殖体 的。 按物品性状: 固体、液体、气体 按化学性质分类 (一)过氧化物类消毒剂:指能产生具有杀菌能力的活性氧的消毒剂 如过氧乙酸、过氧化氢、过氧戊二酸、臭氧、二氧化氯等杜邦子公司Antec的 “Virkon” 过一硫酸氢钾复合盐消毒剂等。 缺陷及危害:过氧乙酸、过氧化氢、过氧戊二酸不稳定、刺激性强,长期使用对人和动物眼睛、呼吸道黏膜、环境有强力的破坏

过氧化物消毒剂性能对照表 (二)含氯消毒剂:指在水中能产生具有杀菌活性的次氯酸的消毒剂 (1)有机含氯消毒剂:如二氯异氰尿酸钠、二(三)氯异氰尿酸、氯胺-T 、二氯二甲基海 因、四氯甘脲氯脲等的消毒剂 (2)无机含氯消毒剂:漂白粉(CaOCl 2)、漂(白)粉精(高效次氯酸钙Ca(ClO)22H 2O)、次氯酸 钠(NaClO.5H 2O )、氯化磷酸三钠(Na 3PO 4. 1/4NaOCl . 12H 2O)等。 缺陷及危害:代谢物:三氯甲烷高致癌、绝大多数刺激性强,无表 面活性作用 有机含氯消毒剂性能对照表

常用抗凝剂

常用抗凝剂种类及应用 一、基本概念 凝固:将血液从血管中抽出,如果未经抗凝,也不做其他处理,通常在几分钟内便自动凝固。一定时间分离后上层析出的淡黄色液体为血清。血浆与血清的区别是:血清中无FIB 抗凝:应用物理的或化学的方法,除掉或抑制血液中的某些凝血因子,阻止血液凝固,称为抗凝。离心分离后的上层淡黄色液体为血浆。 抗凝剂:能够阻止血液凝固的化学试剂或物质,称为抗凝剂或抗凝物质。 促凝:帮助血液快速凝固的过程。 促凝剂:帮助血液快速凝固以达血清快速析出的物质。一般成分为胶类物质。 二、常用抗凝剂的抗凝原理及适用 1、肝素是用于血液化学成分检测的首选抗凝剂。肝素是一种含有硫酸基团的粘多糖,是分散相物质平均分子质量为15000。其抗凝原理主要是通过与抗凝血酶Ⅲ结合引起抗凝血酶Ⅲ构型发生变化,加速凝血酶-凝血酶复合体形成而产生抗凝作用。此外,肝素还能借助血浆辅助因子(肝素辅助因子Ⅱ)来抑制凝血酶。常用肝素抗凝剂是肝素的钠、钾、锂、铵盐,其中以肝素锂最好,但其价格较贵,钠、钾盐会增加血液中的钠、钾含量,铵盐会增加尿素氮的含量。通常用肝素抗凝的剂量为10.0~12.5 IU/ml血液。肝素对血液成分干扰较少,不影响红细胞体积,不引起溶血,适用于做细胞渗透性试验、血气、血浆渗透量、红细胞压红积及普通生化测定。但肝素具有抗凝血酶作用,不适合做血凝试验。另外,肝素过量可引起白细胞聚集和血小板减少,所以不适合做白细胞分类和血小板计数,更不能用于止血检验。此外,肝素抗凝血不能用于制作血涂片,因为Wright染

色后出现深蓝色背景,影响显微镜减产。肝素抗凝血应于短时间内使用,否则放置过久血液又可凝固。 2、乙二胺四乙酸盐(EDTA盐)。EDTA能与血液中Ca2+结合成螯合物,凝血过程被阻断,血液不能发生凝固。EDTA盐有钾、钠、锂盐,国际血液学标准化委员会推荐使用的是EDTA-K2,其溶解度最高,抗凝速度最快。EDTA盐通常配成质量分数是15%的水溶液,每ml血液加1.2mgEDTA,即每5ml血液加0.04ml 15%EDTA溶液。EDTA盐可在100℃下干燥,抗凝作用不变。EDTA盐不影响白细胞计数及大小,对红细胞形态影响最小,抑制血小板的聚集,适用一般血液学检测。如果抗凝剂浓度过高,渗透压上升,会造成细胞皱缩。EDTA溶液pH与盐类关系较大,低pH可使细胞膨胀。EDTA-K2可使红细胞体积轻度膨胀,采血后短时间内平均血小板体积非常不稳定半小时后趋于稳定。EDTA-K2使Ca2+、Mg2+下降,同时使肌酸激酶、碱性磷酸酶降低,EDTA-K2的最佳浓度为1.5mg/ml血液,如果血少,中性粒细胞会肿胀分叶消失,血小板会肿胀、崩解,产生正常血小板的碎片,使分析结果产生错误。EDTA盐能抑制或干涉纤维蛋白凝块形成时纤维蛋白单体的聚合,不适于血凝和血小板功能检测,也不适用于钙、钾、钠及含氮物质的测定。此外,EDTA能影响某些酶的活性和抑制红斑狼疮因子,故不适合制作组化染色和检查红斑狼疮细胞的血涂片。 3、枸橼酸盐主要是枸橼酸钠,其抗凝原理是能与血液中的Ca2+结合形成螯合物,使Ca2+失去凝血功能,凝血过程被阻断,从而阻止血液凝固。枸橼酸钠有Na3C6H5O7·2H2O和2Na3C6H5O7·11H2O两种晶体,通常用前者配成3.8%或3.2%的水溶液,与血液按照1:9体积混合。大部分凝血试验都可用枸橼酸钠抗凝,它有助于Ⅴ因子和Ⅷ因子的稳定,并且对平均血小板体积及其他凝血因子影响较小,可用于血小板功能分析。枸橼酸钠细胞毒性较小,也是输血中血液保养液的成分之一。但是,枸橼酸钠6mg才能抗凝1ml血液,碱性强,不适用于血液分析和生化测验。

二极管的特性与应用

二极管的特性与应用 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si 管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称

医院常用消毒剂的应用指导原则

医院常用消毒剂的应用指导原则为加强常用消毒剂的管理,根据《中华人民共和国传染病防治法》和卫生部《消毒管理办法》、《医院感染管理办法》、《消毒技术规范》等文件的要求,特制定本指导原则。 一、常用消毒剂的应用原则 1 、加强管理,使用合格的消毒剂:采购、使用的消毒产品必须具有省以上卫生行政部门的卫生许可批件,从正规途径采购,并按批准的使用范围和方法使用。 2 、选择消毒剂的原则: (1) 根据物品污染后的危害程度选择:进入人体组织、无菌器官、血流或血液从中流过的医疗用品为高危险性物品,必须选择灭菌剂;接触人体黏膜或破损皮肤的医疗用品中为中度危险性物品,选择高- 中效消毒剂;仅和人体完整皮肤接触的物品为低度危险性物品,选择去污清洁剂或低效消毒剂( 无病原微生物污染的环境和场所不须每天使用消毒剂消毒) 。 (2) 根据消毒物品的性质选择:消毒剂的种类繁多,用途和用法各不相同,杀菌能力和对物品的损坏也有所不同。应根据消毒物品的性质选择消毒效果好,对物品损伤小的消毒剂。 3 、根据使用说明书正确使用:仔细阅读消毒剂使用说明书了解消毒剂的性能、使用范围和使用方法以及使用注意事项,有疑问时可咨询医院感染控制科和器械科。 通常情况下需结合消毒对象、污染后危害性及物品性质选择:高 危险性物品首选压力蒸汽灭菌法,不能压力蒸汽时可以选择过氧化氢

低温等离子体灭菌法,化学消毒剂或灭菌剂消毒灭菌是最后的选择。化学消毒与灭菌时,一般情况下,消毒剂浓度高、作用时间短,消毒效果下降,对物品的损坏也较轻。

4 、加强监测,防止消毒剂及灭菌剂的再污染:包括有效期监测、浓度监测、生物监测等。生物监测由医院感染控制科按卫生部要求执行,用于消毒的消毒剂每季度一次,用于灭菌的灭菌剂每月一次。 5 、充分考虑对消毒剂消毒灭菌效果的其他影响因素:消毒剂消毒灭菌效果除浓度和作用时间外,如温度、消毒湿度、酸碱度、有机物、化学拮抗物、微生物污染程度、消毒剂的种类与穿透力等均影响消毒剂的消毒灭菌效果;尤其要重视物品清洁程度对消毒灭菌效果的影响,确保物品在消毒灭菌前清洗符合要求。 7 、配置消毒液应使用量杯定量,不得随意配置。 二、常用消毒剂应用中注意事项: 1 、消毒剂对人体有一定毒性和刺激性,对物品有损伤作用,大量频繁使用可污染环境,应严格按照说明书规定的剂量使用。 2 、正确掌握消毒剂使用浓度计算方法,加强配置的准确性:消毒剂的配置和使用均以其有效成分含量计算,因此稀释时不能将其有效成分按100%计算,而应按其实际含量计算。 3 、注意消毒剂使用有效期,使用单位及器械科(消毒剂采购部门)严禁存放和使用过期产品。

浇注料的使用

产品名称 高强耐碱浇注料抗结皮浇注料 牌号 GT-13NL GC-13 化学成分 (%) AL2O3 <48 ≥78 SiC SiO2 >45 SIC:40-60 最高使用温度(℃):≥1300 1300 体积密度(Kg/m3)110℃×24h ≥2.10 ≥2400 耐压强度 (MPa) 110℃×24h≥ 70 100 1100℃×3h≥ 70 100 1500℃×3h≥

抗折强度 (MPa) 110℃×24h≥ 7 ≥8 1100℃×3h≥ 7 ≥9 1500℃×3h≥ 线变化率(%) 1100℃×3h -0.1~-0.5 ±0.4 施工参考用水量(%) 6~7 6~7 施工方法 振动 产品名称 高强耐碱水泥浇注料高铝质高强耐火浇注料 牌号 GT-13NL G-16 化学成分 (%) AL2O3 <48 ≥78

SiC SiO2 >45 ≤15 最高使用温度(℃):≥1300 1600 体积密度(g/cm3)110℃×24h ≥2.10 ≥2.65 耐压强度 (MPa) 110℃×24h≥ 70 100 1100℃×3h≥ 70 100 1500℃×3h≥ 抗折强度 (MPa) 110℃×24h≥ 7 10 1100℃×3h≥ 7 10 1500℃×3h≥ 线变化率(%)1100℃×3h

-0.1~-0.5 ±0.3 施工参考用水量(%) 6~7 5.5~ 6.5 施工方法 振动 产品名称 高铝质钢纤维高强耐火浇注料高铝质高强耐火浇注料 莫来石刚玉质浇注料 牌号 HN-16E HN-16F HN-PA80 化学成分 (%) AL2O3 ≥75 72 ≥80 SiC ≥5 SiO2 ≤15 20 最高使用温度(℃):≥ 1600 1500

半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表第1章教学内容与要求 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体 (1)N型半导体本征半导体中,掺入微量的五价元素构成N型半导体,N型半导体中的多子是自由电子,少子是空穴。N型半导体呈电中性。 (2) P型半导体本征半导体中,掺入微量的三价元素构成P型半导体。P型半导体中的多子是空穴,少子是自由电子。P型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN结及其特性

1.PN 结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。 (1) 正向特性 0>U 的部分称为正向特性,如满足U ??U T ,则T S U U e I I ≈,PN 结的正向电流I 随正向电压U 按指数规律变化。 (2) 反向特性 0>,则S I I -≈,反向电流与反向电 压的大小基本无关。 (3) 击穿特性 当加到PN 结上的反向电压超过一定数值后,反向电流急剧增加,这种现象称为PN 结反向击穿,击穿按机理分为齐纳击穿和雪崩击穿两种情况。 4. PN 结的电容效应 PN 结的结电容C J 由势垒电容C B 和扩散电容C D 组成。C B 和C D 都很小,只有在信号频率较高时才考虑结电容的作用。当PN 结正向偏置时,扩散电容C D 起主要作用,当PN 结反向偏置时,势垒电容C B 起主要作用。 1.2.3 半导体二极管 1. 半导体二极管的结构和类型 半导体二极管是由PN 结加上电极引线和管壳组成。 二极管种类很多,按材料来分,有硅管和锗管两种;按结构形式来分,有点接触型、面接触型和硅平面型几种。 2. 半导体二极管的伏安特性 半导体二极管的伏安特性是指二极管两端的电压u D 和流过二极管的电流i D 之间的关系。它的伏安特性与PN 结的伏安特性基本相同,但又有一定的差别。在近似分析时,可采用PN 结的伏安特性来描述二极管的伏安特性。 3. 温度对二极管伏安特性的影响 温度升高时,二极管的正向特性曲线将左移,温度每升高1o C ,PN 结的正向压降约减小(2~)mV 。 二极管的反向特性曲线随温度的升高将向下移动。当温度每升高10 o C 左右时,反向饱和电流将加倍。 4. 半导体二极管的主要参数 二极管的主要参数有:最大整流电流I F ;最高反向工作电压U R ;反向电流I R ;最高工作频率f M 等。由于制造工艺所限,即使同一型号的管子,参数也存在一定的分散性,因此手册上往往给出的是参数的上限值、下限值或范围。 5. 半导体二极管的模型 常用的二极管模型有以下几种:

各种灭火剂分类及适用范围

各种灭火剂分类及适用范围 一、水 水是应用最广泛的天然灭火剂,它可以单独使用,也可以与不同的化学剂组成混合液使用。现有消防器材中,用水灭火的占很大比例。例如:作为重要灭火工具的消防车,多数是离不开水的;在固定灭火装置中,水喷淋系统使用的最多最广;对于泡沫灭火系统来说,泡沫混合液中就含有94%或97%的水。因此,水不仅现在,而且将来也是重要的和不可缺少的灭火剂。 (一)水的物理化学性质 纯水是一种五色、无味、无嗅的透明液体。水具有三种不同形态,即气态、液态和固态。水的比热、汽化热较大,所以用水灭火的效果很好。 水能与许多物质发生化学反应,如活性金属、金属氢化物、碳化碱金属、硅金属化合物、磷化物、硼氢类物质等,产生可燃气体,同时放出一定热量,当温度达到可燃气体的自燃点或可燃气体接触到火源时,便会立即引起燃烧或爆炸,水在1 500℃时还会发生分解,生成氢气和氧气,形成气体爆炸性混合物,如遇见火会发生爆炸。 仓库消防用水一般取自于自燃界,含有一定杂质,有一定的电导率,水中的电解质越大,其电导率越大,因此,一般不能用水扑救电气火灾。此外,一般水的比重比油品的密度大,用水直接灭火会引起油品流散飞溅,造成火灾蔓延,因此不能用水直接灭油品火灾。 (二)水的灭火作用 1.冷却作用 冷却是水的主要灭火作用。水的热容量和汽化潜热很大,水的比热为4.184焦/(克·度),也就是说,每公斤水的温度升高1℃,就会吸收4184焦的热量;水的蒸发潜热为2.259千焦/克,即每公斤水蒸发汽化时,要吸收2259千焦的热量。因而当水与炽热的燃烧物接触时,在被加热和汽化的过程中,就会大量吸收燃烧物的热量,使燃烧物冷却。 当水与炽热的含碳可燃物接触时,还会发生化学反应,并吸收大量的热。 由此可见,水与炽热的燃烧物接触后,就会通过上述物理作用