晶闸管可控整流技术直流电机调速系统设计

晶闸管可控整流技术直流电机调速系统设计
晶闸管可控整流技术直流电机调速系统设计

目录

1 绪论 (1)

1.1 课题背景 (1)

1.2 直流电动机调压调速可控整流电源设计简介 (1)

1.3 课题设计要求 (1)

1.4 课题主要内容 (2)

2 主电路设计 (3)

2.1 总体设计思路 (3)

2.2 系统结构框图 (3)

2.3 系统工作原理 (4)

2.4 对触发脉冲的要求 (5)

3 主电路元件选择 (6)

3.1 晶闸管的选型 (6)

4 整流变压器额定参数计算 (7)

4.1 二次相电压U2 (7)

4.2 一次与二次额定电流及容量计算 (9)

5 触发电路的设计 (10)

6 保护电路的设计 (14)

6.1 过电压的产生及过电压保护 (14)

6.2 过电流保护 (14)

7 缓冲电路的设计 (16)

8 总结 (19)

1 绪论

1.1 课题背景

当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是

自动控制系统的主要形式。

由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大

提高,而且在技术性能上也显示出较大的优越性。

可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运

行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在

变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联

电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可

控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过

流保护作用。

随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电

能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环

节。

1.2 直流电动机调压调速可控整流电源设计简介

该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、

移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了

保护电路和缓冲电路,通过参数计算对晶闸管进行了选型。

1.3 课题设计要求

1、输入交流电源:

2、三相140V f=50Hz

3、直流输出电压:50~150V

5、直流输出电流额定值50A

6、直流输出电流连续的最小值为5A

7.给出整体设计框图,画出系统的完整的原理图(用protel99软件绘

制);

8.说明所选器件的型号,参数。

9.给出具体电路画出电路原理图;

1.4 课题主要内容

(1)整流电路的选择

(2)整流变压器额定参数的计算

(3)晶闸管电流、电压额定的选择

(4)平波电抗器电感值的计算

(5)保护电路的设计

(6)触发电路的设计

(7)画出完整的主电路原理图和控制电路原理图(8)列出主电路所用元器件的明细表

2 主电路设计

2.1 总体设计思路

本次设计的系统以可控硅三相桥式全控整流电路构成系统的主电路,根据三相桥式全控整流电路对触发电路的要求,采用同步信号为锯齿波的

触发电路,设计时采用恒流源充电,输出为双窄脉冲,脉冲宽度在8°左右。

本触发电路分成三个基本环节:同步电压形成、移相控制、脉冲形成和输

出。此外,还有双窄脉冲形成环节。同时考虑了保护电路和缓冲电路,通

过参数计算对晶闸管进行了选型。

三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短。,由于三相半波可控整流电路的主要缺点在于其变压器二

次侧电流中含有直

电路,可以有效的避免直流磁化作用。

根据已知要求,额定电流为50A,额定电压为150V,可求的功率P=50*150=7.5KW,一般整流装置容量大于4KW,选用三相整流较为合适。

2.2 系统结构框图

三相全控桥式整流电路如图2-1所示。

图2-1系统结构框图

2.3 系统工作原理

其工作原理详细分析如下:

在t1~t2ωω间,U 相电压最高,共阴极组的VT1管被触发导通,电流由U 相经VT1流向负载,又经VT6流入V 相,整流变压器U 、V 两相工作,所以三相全控桥输出电压Ud 为:

Ud=Ud1-Ud2=Uu-Uv=Uuv

经过60o进入t2~t3ωω区间,U 相电压仍然最高,VT1继续导通,W 相电压最低,在VT2管承受的2交点时刻被解发导通,VT2管的导通使VT6承受uwv 的反压关断。这区间负载电流仍然从电源U 相流出经VT1、负载、VT2回到电源W 相,于是这区间三相全控桥整流输出电压Ud 为:

Ud=Uu-Uw=Uuw

经过60o,进入t3~t4ωω区间,这时V 相电压最高,在VT3管0

0α=的3交点处被触发导通。VT1由于VT3和导通而承受Uuv 的反压而关断,W 相的VT2继续导通。负载电流从V 相流W 相,于是这区间三相全控输出电压Ud 为:

Ud=Uv-Uw=Uvw

其他区间,依此类推,电路中6只晶闸管导通的顺序及输出电压很容易得出。

由上述可知,三相全控桥输出电压Ud 是由三相电压6个线电压Uuv 、Uuw 、uvw 、

Uvu 、Uwu 和Uwv 的轮流输出组成的。各线电压正半波的交点1~6分别为VT1~VT6的α=0o点。因此分析三相全控整流电路不同Ud 波形时,只要用线电压波形图直接分析画波形即可。

2.4 对触发脉冲的要求

三相全控桥整流电路在任何时刻都必须有两只晶闸管同时导通,而且其中一只是在共阴极组,另外一只在共阳极组。为了保证电路能起动工作,或在电流断续后再次导通工作,必须对两组中应导通的两只晶闸管同时加触发脉冲,为此可采用以下两种触发方式:

(1)采用单脉冲触发:如使每一个触发脉冲的宽度大于60o而小于120o,这样在相隔60o要触发换相时,当后一个触发脉冲出现时刻,前一个脉冲还未消失,因此均能同时触发该导通的两只晶闸管

(2)采用双窄脉冲触发:如触发电路送出的是窄的矩形脉冲,在送出某一晶闸管的同时向前一相晶闸管补发一个脉冲,因此均能同时触发该导通的两只晶闸管。

3 主电路元件选择

3.1 晶闸管的选型

该电路为大电感负载,电流波形可看作连续且平直的。Ud=150V 时,不计控制角余量按α=0o计算:

由Ud=2 .34U2得 U2=2.34

Ud =64.1V 取80V te U =(2~3)t U

=(2~3)*6*U2

=(2~3)*6*120V

=392~588 V

取Ute 为700V 当Id=100A 时,流过每个晶闸管的电流有效值为:

It =1/3Id =1/3

50A=29A 晶闸管额定电流 ()It AV =1.57It =291.57

=18.5A 取Kf=1.73,考虑2倍裕量:()It AV 取50A,当Id=5A 时

It =1/3Id =1/35A=2.85A

()It AV =1.57

It = 1.8A 考虑2倍裕量:()It AV 取5A

按要求表明应取α=0o来选择晶闸管。即()It AV =5A

所以晶闸管型号为KP50—1

4 整流变压器额定参数计算

在很多情况下晶闸管整流装置所要求的交流供电电压与电网往往不能一致,同时又为了减少电网与整流装置的相互干扰,使整流主电路与电网隔离,为此需要配置整流变压器。整流变压器根据主电路的型式、负载额定电压和额定电流,算出整流变压器二次相电压U2、一次与二次额定电流以及容量。

由于整流变压器二次与一次电流都不是正弦波,因而存在着一定的谐波电流,引起漏抗增大,外特性变软以及损耗增大,所以在设计或选用整流变压器时,应考虑这些因素。

4.1 二次相电压U2

平时我们在计算U2是在理想条件下进行的,但实际上许多影响是不可

忽略的。如电网电压波动、管子本身的压降以及整流变压器等效内阻造成的压降等。所以设计时U2应按下式计算: U2=(cos 2/2)

Udn n Ut A CUdlI I n βα+?- 式中:Udl ——负载的额定电压; ——整流元件的正向导通压降,一般取1V ;

n ——电流回路所经过的整流元件(VT 及VD )的个数(如桥式2n =,半波电路1n =);

A ——理想情况下=0o时U 与U2的比值,查表可知; β——电网电压波动系数,一般取0.9;

α——最少移相角,在自动控制系统中总希望U2值留有调节余量,对于可逆直流调速系统取30o~35o,不可逆直流调速系统取10o~15o; C ——线路接线方式系数,查表三相桥式C 取0.5V ;

Udl---变压器阻抗电压比,100KV *A 以及取Udl=0.05,100KV *A 以上取Udl=0.05~0.1;

I2/I2n ——二次侧允许的最大电流与额定电流之比。

对于一般三相桥式可控整流电路供电的直流调速系统,U2计算也可以采用以下经验公式:

不可逆调速系统: U2=(0.53~0.58)Udn

可逆调速系统: U2=(0.58~0.64)Udn

式中U2——整流变压器二次相电压有效值;

Udn ——直流电动机额定电压。

对于一般的中小容量整流调压装置,其U2值也可以用以下公式估算:

U2=(1.15~1.2)

Udn A 所以根据以知的参数及查表得:

U2=

()

cos 2/2Udn n Ut A CUdlI I n βα+?-=82.48V 4.2 一次与二次额定电流及容量计算

如果不计变压器的励磁电流,根据变压器磁动势平衡原理可得一次和二次电流关系式为:

K=1122

N U N U = 式中N1,N2——变压器一次和二次绕组的匝数;

K ——变压器的匝数比。

由于整流变压器流过的电流通常都是非正弦波,所以其电流、容量计算与线路型式有关。三相桥式可控整流电路计算如下:

大电感负载时变压器二次电流的有效值为

2=

23Id =0.816Id = 0.816*50A=40.5A 由一次侧和二次侧电压得:

111402282.5

N U N U == 1122I N I N = 故1I =23.86A 变压器二次侧容量为

32*23*120*1829.2*U I V A KV A ==

变压器的安全性能----主要有变压器的阻燃性能和绝缘性能

阻燃性能有所选原材料决定

绝缘性能:e型变压器的绝缘是由骨架的结构决定的

c型变压器的绝缘石油组间绝缘层的结构决定的

e型变压器:工字形骨架的绝缘一般

计算方法:

VAB --结构容量

p2 --输出功率

u1 --初级电压

u2 --次级电压

升压式 VAB=p2(1-u1/u2)

将压比 VAB=p2(1-u2/u1)

五触发电路的设计

晶闸管最重要的特性是可控的正向导通特性.当晶闸管的阳极加上正向电压后,还必须在门极与阴极之间加上一个具有一定功率的正向触发电压才能打通, 这一正向触发电压的导通是由触发电路提供的,根据具体情况这个电压可以是交流、直流或脉冲电压。由于晶闸管被触发导通以后,门极的触发电压即失去控制作用,所以为了减少门极的触发功率,常常用

脉冲触发。触发脉冲的宽度要能维持到晶闸管彻底导通后才能撤掉,晶闸管对触发脉冲的幅值要求是:在门极上施加的触发电压或触发电流应大于产品提出的数据,但也不能太大,以防止损坏其控制极,在有晶闸管串并联的场合,触发脉冲的前沿越陡越有利于晶闸管的同时触发导通。为了保证晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并留有一定的裕量。

由闸管的门极伏安特性曲线可知,同一型号的晶闸管的门极伏安特性的分散性很大,所以规定晶闸管元件的门极阻值在某高阻和低阻之间,才可能算是合格的产品。晶闸管器件出厂时,所标注的门极触发电流Igt、门极触发电压U是指该型号的所有合格器件都能被触发导通的最小门极电流、电压值,所以在接近坐标原点处以 gt\Ugt为界划除OABCO区域,在此区域内为不可靠触发区。在器件门极极限电流Igfm、门极极限电压和门极极限功率曲线的包围下,面积ABCDEFG 为可触发区,所用的合格的晶闸管器件的触发电压与触发电流都应在这个区域内,在使用时,触发电路提供的门极的触发电压与触发电流都应处于这个区域内。

再有,温度对晶闸管的门极影响很大,即使是同一个器件,温度不同时,器件的触发电流与电压也不同。一般可以这样估算,在100°高温时,触发电流、电压值比室温时低2~3倍,所以为了使敬闸管在任何工作条件下都能可靠的触发,触发电路送出的触发电流、电压值都必须大于晶闸管器件的门极规定的触发电流、触发电压值,并且要留有足够的余量。如触发信号为脉冲时,在触发功率不超过规定值的情况下,触发电压、电流的幅值在短时间内可以大大超过额定值。触发脉冲应一定的宽度且脉冲前沿应尽可能陡。由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。只有当晶闸管的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触

发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为0.5~1MS,相当于50HZ、18度电度角。为了可靠地、快速地触发大功率晶闸管,常常在触发脉冲的前沿叠加上一个触发脉冲。

触发脉冲的相位应能在规定范围内移动。例如单相全控桥式整流电路带电阻性负载时,要求触发脉冲的移项范围是0度~180度,带大电感负载时,要求移项范围是0度~90度;三相半波可控整流电路电阻性负载时,要求移项范围是0度~90度。

触发脉冲与主电路电源必须同步。为了使晶闸管在每一个周期都以相同的控制角 被触发导通,触发脉冲必须与电源同步,两者的频率应该相同,而且要有固定的相位关系,以使每一周期都能在同样的相位上触发。触发电路同时受控于电压uc与同步电压us控。

六保护电路的设计

在电力电子器件电路中,除了电力电子器件参数要选择合适,驱动电路设计良好外,采用合适的过电压保护,过电流保护,du/dt保护和di/dt 保护也是必不可少的。

6.1 过电压的产生及过电压保护

电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。

(1)外因过电压:主要来自雷击和系统中的操作过程等外部原因,包括:(2)操作过电压:由分闸,合闸等开关操作引起的过电压,电网侧的操作过电压会由供电变压器电磁感应耦合,或由变压器绕组之间的存在的分布电容静电感应耦合过来。

(3)雷击过电压:由雷击引起的过电压。

(4)内因过电压:主要来自电力电子装置内部器件的开关过程。

(5)换相过电压:由于晶闸管或者与全控型器件反并联的续流二极管在换相结束后不能恢复阻断能力时,因而有较大的反向电流通过,使残存的载流子恢复,而当其恢复了阻断能力时,反向电流急剧减小,这样的电流突变会因线路电感而在晶闸管阴阳极这间或与续流二极管反并联的全控型器件两端产生过电压。

(6)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而线路电感在器件两端感应出的过电压。

6.2 过电流保护

电力电子电路运行不正常或者发生故障时,可能会发生过电流现象。过电流分载和短路两种情况。一般电力电子均同时采用几种过电压保护措

施,怪提高保护的可靠性和合理性。在选择各种保护措施时应注意相互协调。通常,电子电路作为第一保护措施,快速熔断器只作为短路时的部分区断的保护,直流快速断路器在电子电力动作之后实现保护,过电流继电器在过载时动作。采用快速熔断器(简称快熔)是电力电子装置中最有效,应用最方泛的一种过电流保护措施。此外,常在全控型器件的驱动电路中设置过电流保护环节,这种措施对器件过电流的响应最快。

七 缓冲电路的设计

缓冲电路,其作用是抑制电力电子期间的内因过电压.du/dt.过电流和di/dt,减少器件的开关损耗.缓冲电路可分为关断缓冲电路和开通缓冲电路.关断缓冲电路又称为du/dt 抑制电路,用于抑制器件开通时的电流过冲和di/dt,减小器件的开通损耗,可将关断缓冲电路和开通电路结合在一起,称为复合缓冲电路.还有另外一中分类方式:缓冲电路中储能元件的能量如果能消耗在吸收电阻上,则称其为馈能式缓冲电路或无损吸收电路,如无特别说明,通常缓冲电路专指关断缓冲电路,而将开通缓冲电路叫做di/dt 抑制电路。 Cs

Rs Ri

VDi

VD

L

Li

V

VD

图2-6di/dt 抑制电路

图2-6所示的缓冲电路,使用于中等的容量的场合.其中RC 缓冲电路主要用于小容量器件,而放电阻止型RCD 缓冲电路用语中或大容量器件,晶闸管在实际应用中一般只承受换相过压,没有关断电压问题,关断时也没有较大的

C

VD R D?VD D?VD R C C R du/dt,因此一般采用RC 吸收缓冲电路即可,图2-6为GTO 常见的三种缓冲电路.为了使缓冲效果更加显著,电路中的二极管尽量选用快速二极管,同时接线要尽量短以减少布线电感.

图72-6a 缓冲电路不仅能抑制开通过程du/dt 与di/dt 值,同时还使刚开通时加在GTO 上的du/dt 初始值小.电路中由于有二极管VD阻挡,使得电容C的放电不能经过GTO,以免GTO刚开通时di/dt 值过大.

图7-1b 缓冲电路抑制du/dt 与di/dt 效果更明显,但电容放电要经过GTO(放电电流受R值的限制).

图7-1c 所示的缓冲电路通常是GTO容量在50A以下时才采用.

a) b) c)

图2-6

阻容吸收元件参数可按表7-1所提供的经验数据选取,电容耐压一般选晶闸管额定电压的1.1至1.5倍。

表7-2 晶闸管阻容电路经验数据

电阻功率2m P fCU =*10

式中f ——频率,取500Hz ;

m U ——晶闸管工作峰值电压,单位为V ;

C ——与电阻串联的电容量,单位为μF ;

P ——电阻选取的功率,单位为W 。

所以根据其提供的资料可取电容0.2μF ,电阻取40Ω。

晶闸管额定电

流It(AV)/A

1000 500 200 100 50 20 10 电容C/μF 2 1 0.5 0.25 0.2 0.15 0.1 电阻R/Ω

2 5 10 20 40 80 100

八总结

经过几周的工程实训,我对电力电子技术这门课程及相关知识有了更深刻的理解和体会,同时也很好的把理论知识运用于实践之中,在实训之中我真正的学到了很多东西,受益颇多。

我做的课题是《直流电动机用硅整流器的设计》,首先对该课题进行简单的介绍:将交流电能转换为直流电能是电力电子技术应用的重要领域。采用晶闸管作为主要的功率开关器件,容量大,控制简单,技术成熟。

在做该设计之前,我认真看了老师给我提出的课题,看了其中的具体要求,通过在图书馆查阅相关资料,上网找资料,向老师询问疑点等方式,有效的解决了我不懂之处。

在本设计中,难点重点在于如何对整流电路进行设计,通过给定的有关参数的计算对晶闸管进行选型,计算变压器的正、副偏电压,电流及其容量。其次,就是这些公式的编写,在平时,Microsoft Word文档中一般很少用,在编写之前,我特意问了老师,装了一个3.0的公式,终于解决了我面前的又一个问题。

该课题分九个环节进行阐述,其内容包括:1、主电路的设计;2、主电路元件的选择;3、整流变压器额定参数的计算;4、平波电抗器的设计;

半导体整流技术与可控硅整流装置

半导体变流技术与可控硅整流装置 一. 概述 半导体变流技术是近代工业发展到半导体时代最典型的技术之一,他不仅在发电机励磁系统方面得到广泛的应用,在冶金、化工、机械制造、交通运输等各方面都得到广泛的应用。可以说,现代生活、生产无处不存在变流技术。 半导体变流技术是现代励磁系统最基本的技术之一。在发电机励磁系统上他不仅取代了传统的直流励磁机,而且在励磁调节方面取代了传统的磁放大器、相复励变压器和整流器,甚至在灭磁方面也部分取代了磁场断路器和灭磁电阻的作用。现代发电机励磁系统中,从电源的变换到发电机励磁能量的提供,无处不存在变流技术的应用。 本课程主要就半导体变流技术的几种典型应用和具体电路进行分析,同时介绍能达公司生产的STR系列整流装置的基本性能和技术指标。另外还利用一定的篇幅根据整流装置在现场的应用介绍一些装置的故障判断和处理方法。希望通过本课程能够对本公司生产人员在变流技术方面提供一定的帮助。 二. 变流技术的种类 根据变流技术的应用和具体电路,我们将变流技术分成如下几类: 单相半波整流 单相全波整流不可控整流 单相桥式整流 单相整流 单相半波可控整流 单相桥式半控整流可控整流 单相桥式全控整流半导体变流 三相零式整流不可控整流 三相桥式整流三相整流 三相半控桥可控整流 三相全控桥

上面的分类只是按照应用最多的情况进行的分类,实际应用中远较上面的要多。比如六相整流、十二相整流等等。由于这些电路在励磁系统中应用的较少,我们在分类时就没有将他们列入。实际上,在早期的模拟式自动励磁调节器的电压测量回路中,为了保证测量电压的纹波系数,六相和十二相整流电路应用的还是很普遍的,只是现代微机励磁调节器采用交流电压采样方式以后,对测量电压的纹波要求相对降低了而不怎么采用了。 三. 单相整流电路 3.1单相半波整流电路 单相半波整流电路接线图及波形图见图一 单相半波整流是半导体变流技术中最基本的电路。他是利用半导体二极管的单向导电性,将交流电转换为直流电最基本的方法。由于二极管的单向导电性,变压器二次电压只有正方向电流才能够通过二极管而施加到负载上,而负方向由于二极管的阻断作用而不能施加到负载上,因此,负载上获得的平均电压仅为变压器二次电压的一半。由于存在二极管导通压降和变压器二次绕组的压降,故电路中: 245.0U U d = 由于在电路的输出侧装有滤波电容器,负载上的最高电压将可以达到变压器二次电压的峰值电压,即22u u d = ;同时,由于电容器的放电作用,在变压器二次电压下降时,负载 上的电压并不随二次电压下降而下降,而是由电容器的放电曲线所决定。单相半波整流电路的波形图见图一(b )。图中:兰色曲线为变压器二次电压,红色曲线为无滤波电容器时的整流输出电压,棕色曲线为有滤波电容器时负载上的电压。 当整流二极管换为可控硅,电路变化为可控单相整流电路时,负载上的平均整流电压由: 2 cos 145.0)(sin 221 2 2α ωωπ π α +== ?U t td U U d 决定。

(完整版)晶闸管可控整流技术直流电机调速系统设计

目录 1 绪论 (1) 1.1 课题背景 (1) 1.2 直流电动机调压调速可控整流电源设计简介 (1) 1.3 课题设计要求 (1) 1.4 课题主要内容 (2) 2 主电路设计 (3) 2.1 总体设计思路 (3) 2.2 系统结构框图 (3) 2.3 系统工作原理 (4) 2.4 对触发脉冲的要求 (5) 3 主电路元件选择 (6) 3.1 晶闸管的选型 (6) 4 整流变压器额定参数计算 (8) 4.1 二次相电压U2 (9) 4.2 一次与二次额定电流及容量计算 (13) 5 触发电路的设计 (15) 6 保护电路的设计 (18) 6.1 过电压的产生及过电压保护 (18) 6.2 过电流保护 (19) 7 缓冲电路的设计 (20) 8 总结 (23)

1 绪论 1.1 课题背景 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是 自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大 提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运 行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在 变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联 电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可 控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过 流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电 能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环 节。 1.2 直流电动机调压调速可控整流电源设计简介 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、 移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了 保护电路和缓冲电路,通过参数计算对晶闸管进行了选型。 1.3 课题设计要求 1、输入交流电源: 2、三相140V f=50Hz 3、直流输出电压:50~150V 5、直流输出电流额定值50A 6、直流输出电流连续的最小值为5A

晶闸管—直流电动机调速系统教学文稿

7.1 晶闸管—直流电动机调速系统 采用晶闸管可控整流电路给直流电动机供电,通过移相触发,改变直流电动机电枢电压,实现直流电动机的速度调节。这种晶闸管—直流电动机调速系统是电力驱动中的一种重要方式,更是可控整流电路的主要用途之一。可以图7-1所示三相半波晶闸管—直流电动机调速系统为例,说明其工作过程和系统特性。 直流电动机是一种反电势负载,晶闸管整流电路对反电势负载供电时,电流容易出现断续现象。如果调速系统开环运行,电流断续时机械特性将很软,无法负载;如果闭环控制,断流时会使控制系统参数失调,电机发生振荡。为此,常在直流电机电枢回路内串接平波电抗器Ld,以使电流Id尽可能连续。这样,晶闸管—直流电动机调速系统的运行分析及机械特性,必须按电流连续与否分别讨论。 8.1.1 电流连续时 如果平波电抗器Ld电感量足够大,晶闸管整流器输出电流连续,此时晶闸管—直流电动机系统可按直流等值电路来分析,如图7-2所示。图中,左半部代表电流连续时晶闸管整流器的等效电路,右半部为直流电动机的等效电路。由于电流连续,晶闸管整流器可等效为一个直流电源Ud与内阻的串联,Ud为输出整流电压平均值 (7-1) 式中U为电源相压有效值,为移相触发角。

电流连续情况下,晶闸管有换流重迭现象,产生出换流重迭压降,相当于整流电源内串有一个虚拟电阻,其中LB为换流电感。再考虑交流电源(整流变压器)的等效内电阻Ro,则整流电源内阻应为,如图所示。 电流连续时直流电动机可简单地等效为为反电势E与电枢及平波电抗器的电阻总和Ra 串联,而平波电抗器电感Ld在直流等效电路中是得不到反映的。 这样,根据图7-2等效电路,可以列写出电压平衡方程式为 (7-2) 式中,Ce为直流电机电势常数,φ为直流电机每极磁通。求出电机转速为 (7-3) 可以看出,在电枢电流连续的情况下,当整流器移相触发角固定时,电动机转速随 负载电流Id的增加而下降,下降斜率为。当角改变时,随着空载转速点no的变化,机械特性为一组斜率相同的平行线。 但是在一定的平波电抗器电感Ld下,当电流减小到一定程度时,Ld中储能将不足以维持电流连续,电流将出现断续现象,此时直流电动机机械特性会发生很大变化,不再是直线,图7-3中以虚线表示。这部分的机械特性要采用电流断续时的运行分析来确定。 二、电流断续时

直流调速器的工作原理

直流调速器的工作原理 The manuscript was revised on the evening of 2021

直流调速器的工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 其实就是可控硅调压电路,电机拖动课本上非常清楚了 直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用 调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速 弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 ? 1.海拔高度不超过00米。(超过0米,额定输出值有所降低) 2.周围环境温度不高于℃不低于-10℃。

(完整版)晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

晶闸管可控整流技术直流电机调速系统

目录 1.引言 (3) 2.原始资料和数据 (3) 3.电路组成和分析 (4) 3.1工作原理 (4) 3.2对触发脉冲的要求 (5) 3.3晶闸管的选型 (6) 3.4参数计算 (7) 3.5二次相电压U2 (7) 3.6一次与二次额定电流及容量计算 (8) 4.触发电路的设计 (9) 5保护电路的设计 (10) 5.1电力电子器件的保护 (10) 5.2过电压的产生及过电压保护 (11) 5.3过电流保护 (11) 6.缓冲电路的设计 (12) 7.总结 (14) 参考文献 (15) 晶闸管可控整流技术直流电机调速系统设计 摘要:可控整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的可控整流主电路,其输出端的负载,可以是电阻性负载、大电感性负载以及反电动势负载。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发 电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交 流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了保护电路和缓冲电路,通过参数计算对晶闸管进行了选型,也对直流电动机进行了简单的介绍。 关键词:可控整流晶闸管触发电路缓冲电路保护电路 1.引言 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环节 2.原始数据: 1、输入交流电源:

晶闸管直流调速系统资料

4 -1 晶闸管直流调速系统主要单元调试 一、实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2.掌握直流调速系统主要单元部件的调试步骤和方法。 二、实验内容 1.调节器的调试 2.电平检测器的调试 3.反号器的调试 4.逻辑控制器的调试 三、实验设备及仪器 1 . DKSZ 一l 型实验装置主控制屏DK01 2 . DK02 、DK03、DK04挂箱 3 .二踪扫描示波器 4 .万用电表 四、实验方法 实验中所用的各控制单元的原理图见第二章有关内容。 1 .调节器(AsR 、ACR )的调试 合上低压直流电源开关,观察各指示灯指示是否正常。 ( l )调零.将调节器输入端接地,把串联反馈网络中的电容短接,使调节器变为P调节器,再调节面板上的调零电位器,使调节器的输出为零。 ( 2 )调整输出正、负限幅值. 将反馈电容短接线去掉,使调节器变为PI 调节器,加入一定的输入电压,调整正、负限幅电位器,使输出正负最大值为所需的数值。 ( 3 )测定输入输出特性.向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 ( 4 )观察PI 特性.突加给定电压UG,用示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 2 .电平检测器的调试 1)测定转矩极性鉴别器DPT的环宽,要求环宽为0.4-0.6V,记录高电平值,调节RP1使环宽对称纵坐标。 2)测定零电流检测器DPZ的环宽,要求环宽也为0.4-0.6V,调节RP1使回环向纵坐标右侧偏离0.1-0.2V。 3)按测得数据,画出两个电平检测器的回环。 3 .反号器(AR)的调试

20A可控硅直流电机调速器讲解

※R系列直流调速器使用手册※ STAR22020 STAR11020 济南三腾电子科技有限公司

在使用本产品前请您详细阅读本使用说明书。 由于不遵守该使用及安装说明书中规定的注意事项,所引起的任何故障和损失均不在厂家的保修范围内,厂家将不承担任何相关责任。请妥善保管好文件,如有相关疑问,请与厂家联系。 安全注意事项 ·请专业技术人员进行安装、连接、调试该设备。 ·在带电情况下不能安装、移除或更换设备线路。 ·请务必在本产品的电源输入端与电源(电瓶)之间加装必要的保护装置,以免造成危险事故或致命伤害;需要加装:过流保护器、保险、紧急开关。 ·请做好本产品与大地、设备之间的隔离及绝缘保护。 ·如确实需要带电调试本产品,请选用绝缘良好的非金属专用螺丝刀或专用调试工具。 ·本产品需要安装在通风条件良好的环境中。 ·本产品不能直接应用在高湿、粉尘、腐蚀性气体、强烈震动的非正常环境下。 该标志表示一种重要提示或是警告。

目录 概述 --------------------------------------------------------------3页产品特点-------------------------------------------------------------3页电气参数-------------------------------------------------------------3页外型尺寸-------------------------------------------------------------4页接线要求-------------------------------------------------------------5页接线端子功能示意----------------------------------------------------6页电位器调整说明-------------------------------------------------------6页软启动ACCEL----------------------------------------------------------6页软停止DECEL----------------------------------------------------------6页电流限制TORQUE-------------------------------------------------------7页力矩补偿IR COM-------------------------------------------------------7页力矩补偿IR COMP的设置与调整方法--------------------------------------7页使能开关(INHIBIT)的连接---------------------------------------------7页速度模式和涨力模式选择------------------------------------------------8页控制信号输入方式的选择------------------------------------------------9页快速制动(能耗制动)的连接方式----------------------------------------10页正转/反转的换向控制方式-----------------------------------------------10页指示灯状态说明--------------------------------------------------------11页调速器与反馈板的接线方式----------------------------------------------11页常见故障解答----------------------------------------------------------12页

可控硅整流器的原理、结构及用途

可控硅整流器的原理、结构及用途 发布日期:2012-06-08 浏览次数:459 核心提示:可控硅整流器,是一种以晶闸管(电力电子功率器件)为基础,以智能数字控 制电路为核心的电源功率控制电器。具有效率高、无机械 可控硅整流器,是一种以晶闸管(电力电子功率器件)为基础,以智能数字控制电路为核心的电源功率控制电器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 晶闸管(Thyristor)是晶体闸流管的简称,又称作可控硅整流器(Silicon Controll ed Rectifier——SCR),以前被简称为可控硅。由于其能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。 自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 可控硅整流器的工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic 2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G 的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 可控硅整流器的结构 ◆从外形上来看,可控硅整流器也主要有螺栓型和平板型两种封装结构。

晶闸管直流调速系统参数和环节特性的测定实验报告

晶闸管直流调速系统参数和环节特性的测定实验报告 一、实验目的 1.熟悉晶闸管直流调速系统的组成及其基本结构。 2.掌握晶闸管直流调速系统的参数测试及反馈环节测定方法和测试条件。 二、实验内容 1.测定晶闸管直流调速系统主电路总电阻 R。 2.测定晶闸管直流调速系统主电路总电感 L。 3.测定直流电动机 - 发电机 - 测速发电机飞轮惯量 GD2。 4.测定晶闸管直流调速系统主电路电磁时间常数 T d。 5.测定直流发电机电动势常数C e和转矩常数 C T。 6.测定晶闸管直流调速系统机电时间常数 T m。 7.测定晶闸管触发及整流装置特性 U d =?(U ct)。 8.测定测速发电机特性 U TG =?(n)。 三、实验设备

四、实验原理 五、实验步骤 (一)测定晶闸管直流调速系统主电路电阻。伏安比较法测量

1. 测量电枢回路总电阻R R=R a + R L + R n (电枢电阻R a、平波电抗器电阻R L 、整流装置内阻R n )(1)不加励磁、电机堵转 (2)合上S1和S2, 调节给定,使输出电压到30%-70%的额定电压 调节电阻,使枢电流80%-90%的额定电流 测定U1和I1。 (3)断开S2 测定U2和I2。 (4)计算电枢回路总电阻 R=(U2-U1)/( I1 - I2) 合上S1和S2测得U1=100V, I1=; 断开S2测得U2=103V,I2=;

R=(U2-U1)/( I1 - I2)=(103V-100V)/电枢电阻 R a (1)短接电机电枢 (2)不加励磁、电机堵转 (3)合上S1和S2, 调节给定,使输出电压到30%-70%的额定电压 调节电阻,使枢电流80%-90%的额定电流 测定U1’和I1’。 (4)断开S2 测定U2’和I2’。 (5)计算 平波电抗器电阻R L和整流装置内阻R n: R L + R n =(U2’-U1’)/(I2’-I1’) 电枢电阻R a :R a =R-(R L + R n) 合上S1和S2测得U1’=95V,I1’= 断开S2测得U2’=97V,I2’= R L + R n =(U2’-U1’)/(I2’-I1’)=(97V-95V)/=R-(R L + R n)=ΩΩ=Ω 3. 平波电抗器电阻 R L (1)短接电抗器两端 (2)不加励磁、电机堵转 (3)合上S1和S2,

晶闸管开环直流调速系统的仿真

晶闸管开环直流调速系统的仿真 一、工作原理 晶闸管开环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路课直接由给定电压Ug座位触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管开环直流调速实验控制原理图 二.设计步骤 1主电路的建模和参数设置 开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机灯部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以讲触发器轨道主电路进行建模。 ①三相对称交流电压源的建模与参数设置。首先从电源模块中选 取一个交流电压源模块,即,再用复制的方法得到三相电源的另外两个电压源模块,并用模块标题名修改方法将模块标签分别改为“A相”、“B相”,“C 相”,然后从连接器模块中选取,按图1主电路图进行连接。 为了得到三相对称交流电压源,其参数设置方法及参数设置如下。 双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置成0°,频率为50Hz,其它为默认值,如图2所示,B、C相交流电源设置方法与A相基本相同,除了初相位设置成互差120°外,其它参数与A相相同。由此可以得到三相对称交流电源。

②晶闸管整流桥的建模和参数设置。首先从电力电子模块组中选取 中的,并将模块标签改成“晶闸管整流桥”,然后双击模块图标,打开整流桥参数设置对话框,参数设置如图3所示。当采用三相整流桥时,桥臂数为3,A、B、C三相交流电源接到整流桥的输入端,电力电子选择晶闸管。参数设置原则如下,如果是针对某个具体的交流装置进行参数设置,对话框中的Rs、Cs、R ON、Vf应取该装置中晶闸管元件的实际值,若果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行仿真。若仿真结果理想,就认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。这一参数设置原则对其他环节的参数设置也是实用的。 图2 A相电源参数设置图3 整流桥参数设置 ③平波电抗器的建模和参数设置。首先从元件模块组中选取 ,并将标签改为“平波电抗器”,然后打开平波电抗器参数设置对话框,参数设置如图4所示,平波电抗器的电感值是通过仿真实验比较后得到的优化参数。 ④直流电动机的建模和参数设置。首先从电动系统模块中选取 ,并将模块标签改为“直流电动机”。直流电动机的励磁绕组“F+ —F-”接直流恒定励磁电源,励磁电源可从电源模块组中选取直流电压源 模块,即,并将电压参数设置为220V,电枢绕组“A+ —A-”经平波电抗器接晶闸管整流桥的输出,电动机经TL端口接恒转矩负载,直流电动机的输出参数有转速n、电枢电流Ia、励磁电流If、电磁转矩Te,通过“示波器”模块观察仿真输出

三相晶闸管可控整流电源设计

电力电子技术基础课程设计报告 题目:三相晶闸管可控整流电源设计 单位:电子信息工程学院自动化系 、 河南科技大学电子信息工程学院 、

自动化2006级《电力电子技术基础》课程设计任务书 课程设计时间:1周 一、设计题目及要求 设计题目1:三相晶闸管可控整流电源设计 1)技术要求 ?三相交流电源,线电压380V。 ?整流输出电压U d在0~210V连续可调。 ?最大整流输出电流20A。 ?负载为阻感负载,且电感值较大(工作时可认为负载电流是连续平滑的直流)。2)主要设计内容 ?整流变压器额定参数的计算(选择变压器次级额定电压和变比,初、次级绕组的导线直径。计算时取导线电流密度为5A/mm2); ?晶闸管器件的电流、电压定额等参数的计算; ?集成触发电路的设计。(包括:触发电路的定向【参教材】;触发电路采用集成触发电路)。 二、课程设计报告的主要内容 1)选题背景及意义简单介绍。 2)设计方案的确定。(确定主电路拓扑结构,确定控制方案等)。 3)主电路工作原理及过程的分析。给出详细的电路工作原理和过程分析。 4)功率器件定额参数的计算。主要包括:【1】电力电子器件电压、电流等定额计算(注意留余量:电压2-3倍,电流1.5-2倍);【2】变压器的参数计算等;【3】电容器,电抗器等参数的计算等。 5)控制系统(电路)的设计等。 6)结束语。(课程设计的结论概括,设计体会等)。 7)附录(包括:电路图和元器件明细表等)。8)参考文献。 注:在报告的最后给出完整的主电路原理图和控制电路原理图等;并列出所用元器件明细表。 要求插图及图表规范,文字通顺,逻辑性强; 提交的毕业设计报告字数不得少于4000字。 2

直流调速系统设计

直流调速系统设计 电气工程学院)摘要: 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。常用的电机调速系统有转速闭环控制系统和电流闭环控制系统,二者都可以在一定程度上克服开环系统造成的电动机静差率,但是不够理想。实际设计中常采用转速、电流双闭环控制系统,一般使电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。本文是按照工程设计的方法来设计转速和电流调节器的。使电动机满足所要求的静态和动态性能指标。电流环应以跟随性能为主,即应选用典型Ⅰ型系统,而转速环以抗扰性能为主,即应选用典型Ⅱ型系统为主。关键词:直流双闭环调速系统电流调节器转速调节器1 设计任务及要求1、1设计任务设计V-M双闭环直流可逆调速系统1、1、1技术数据:?直流电动机:额定电枢电压=400V,额定功率1、 9kW,额定电枢电流=6、9A,额定转速=855r/min,电动机电动势系数Ce=0、1925Vmin/r,允许过载倍数λ=1、5;?晶闸管装置放大系数:Ks=40;整流装置平均滞后时间常数=0、00167s,? 电枢回路总电阻:R=

11、67Ω;?电枢回路电感110mH,电力拖动系统机电时间常数Tm=0、075s;?电枢电流反馈系数:β=0、121V/A (≈10V/1、5),电流滤波时间常数=0、002s;?转速反馈系数α=0、01 V、min/r(≈10V/);转速滤波时间常数=0、01s;1、2设计要求:(1) 根据试凑法设计电流调节器和转速调节器参数进行仿真,电流超调量≤5%;实现转速无静差,空载起动到额定转速时的转速超调量≤5%;(2) 试利用Matlab仿真软件中的Simulink或Simulink中的Power system模块进行仿真,在Matlab仿真软件中构建仿真模型;(3) 用Plot函数绘制理想空载启动到设定转速500r/min下电机启动过程,转速达到设定值后经过20s给定反向信号=-10V时正反转启动过程中转速、电枢电流波形。(4) 对仿真波形及结果进行分析。2 V-M双闭环调速系统的设计改变电枢两端的电压能使电动机改变转向。尽管电枢反接需要较大容量的晶闸管装置,但是它反向过程快,由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,电动机正转时,由正组晶闸管装置VF供电;反转时,由反组晶闸管装置VR供电。如图1所示两组晶闸管分别由两套触发装置控制,可以做到互不干扰,都能灵活地控制电动机的可逆运行,所以本设计采用两组晶闸管反并联的方式。并且采用三相

西门子直流调速装置的设计特点

西门子直流调速装置的设计特点 1 西门子应用较广的直流调速装置是6RA70系列与6RA24系列。 2 流调装置6RA70与6RA24的区别 (1)6RA24单机额定电流最大1200安培,6RA70单机额定电流最大2000安培。 (2)6RA24单机励磁电流最大30安培,6RA70单机励磁电流最大40安培, (3)6RA24基本装置具有8个开关量输入口,8个开关量输出口,4个模拟量入口,4个 模拟量输出口。 6RA70基本装置具有4个开关量输入口,4个开关量输出口,2个模拟量输入口,2 个模拟量输出口。但6RA70装置可选择CUD2、EB1、EB2端子扩展板。 (4)一般来讲,6RA70基本装置即不加CUD2,S00等件)比6RA24基本装置价低。 (5)6RA70装置的通讯板、工业板及端子扩展板与6SE70系列可以通用。 (6)6RA70基本装置可选用OP1S舒适型操作面板,可存贮多套参数。 3 西门子6RA70系列与6RA24系列直流调速装置是全数字直流调速产品

4 应用-6RA70 SIMOREG DC MASTER系列整流器为全数字紧凑型整流器,输入为三相电源,可为变速直流驱动提供电枢和励磁供电,额定电枢电流从15A至2000A。紧凑型整流器可以并联连接,提供高至10000A的电流,励磁电路可以提供最大40A的电流(此电流取决于电枢额定电流)。 5 设计 我们选用6RA7081型装置整流器以其紧凑和节省空间的结构为特色,由于独立的部件容易拿在手中,其紧凑式设计使它们特别容易保养与维护,电子板箱包含基本电子电路和任何附加板。 所有SIMOREG DC MASTER装置均配备一个安装在整流器门上的简易操作面板PMU,面板由一个5位,7段显示,作为状态显示LED 和三个参数化键组成。PMU也具有根据RS232或RS485标准同USS 接口的连接器X300。 操作面板提供了为了启动整流器所需进行的调整和设定及测量值显示的所有手段。 OP1S整流器选件操作面板既可以安装在整流器上,又可外部安装,例如在柜门上。因此,它可以通过一根5米长电缆连接。如果有一个独立的5V电源可以使用,则电缆可长至200米。OP1S通过X300连接到SIMOREG。PO1S可以作为一个经济的测量仪器安装在控制柜,用来显示一定数量的物理测量值。 OP1S提供一个4×16字符的LCD以简单文字显示参数名称,可以选择德语,英语,法语,西班牙语和意大利语作为显示语种。为了容易

变频器主电路中的可控整流电路

变频器主电路中的可控整流电路 可控硅,又称为晶闸管。可控硅的意思:可控的硅整流器,与常规整流二极管相比,其整流输出电压是受控的,常与移相或过零触发电路配合,应用于交、直流调压电路。可控硅是在晶体管基础上发展起来的一种集成式半导体器件。单向可控硅的等效原理及测量电路见下图2-13: A K G P N P N K G G K G A 可控硅器件等效及测量电路 可控硅为具有三个PN 结的四层结构,由最外层的P 层、N 层引出两个电极——阳极A 和阴极K ,由中间的P 层引出控制极G 。电路符号好像为一只二极管,但好多一个引出电极——控制极或触发极G 。SCR 或MCR 为英文缩写名称。 从控制原理上可等效为一只PNP 三极管与一只NPN 三极管的连接电路,两管的基极电流和集电极电流互为通路,VT2的Ic 恰为VT1的Ib ,反之,VT1的Ic 也恰为VT2的Ib ,两管的Ic 、Ib 互为作用,具有强烈的正反反馈作用。一旦从G 、K 回路输入NPN 管子的基极电流,由于正反馈作用,两管将迅即进入饱合导通状态。可控硅导通之后,它的导通状态完全依靠管子本身的正反馈作用来维持,即使控制电流(电压)消失,可控硅仍处于导通状态。控制信号U GK 的作用仅仅是触发可控硅使其导通,导通之后,控制信号便失去控制作用了。控制信号在这里只起到一个“触发”作用,一旦可控硅的导通电流形成,则形成自维持导通条件。 单向可控硅的导通需要两个条件:1、A 、K 之间加正向电压;2、G 、K 之间输入一个正向触发电流信号,无论是直流或脉冲信号。若欲使可控硅关断,也有两个关断条件:1、使正向导通电流值小于其工作维持电流值;2、使A 、K 之间电压反向。 可见,可控硅器件若用于直流电路,一旦为触发信号开通,并保持一定幅度的流通电流的话,则可控硅会一直保持开通状态。除非将电源开断一次,才能使其关断。若用于交流电路,则在其承受正向电压期间,若接受一个触发信号,则一直保持导通,直到电压过零点到来,因无流通电流而自行关断。在承受反向电压期间,即使送入触发信号,可控硅也因A 、K 间电压反向,而处于截止状态。 可控硅器件因工艺上的离散性,其触发电压、触发电流值与导通压降,很难有统一的标

可控硅的工作原理(带图)

可控硅的工作原理(带图)

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。

晶闸管整流直流电动机调速系统

晶闸管整流直流电动机调速系统设计 概述:许多机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。而直流调速系统调速范围广、静差率小、稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用最广泛的电力传动系统。它具有动态响应快、抗干扰能力强等优点。 本此设计主要:就是针对直流调速装置,利用晶闸管相控整流技术,结合集成触发器芯片和调节器,组成晶闸管相控整流直流电动机调速系统,主要应用的芯片是TCA785集成移相触发控制芯片,实现调速系统。同时设计出完整的电气原理图,将分别介绍各个模块的构成原理和使用方法。 关键词:双闭环直流调速晶闸管相控 1 设计意义及要求 1.1 设计意义 电力电子装置是以满足用电要求为目标,以电半导器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制装置。 通过此次课程设计要求学会电力电子装置的设计,能够利用相控整流装置对直流电动机进行调速系统的设计。

1.2 设计要求 本次课程设计的题目是晶闸管相控整流直流电动机调速系统设计。 已知直流电动机参数:N P =3KW ,N U =220V ,N I =17.5A ,N n =1500min r 。要求采用集成触发器及调节器构成转速电流闭环的直流调速系统。设计绘制该系统的原理图,并计算晶闸管的额定电压和额定电流。 2 系统电路设计 根据设计的要求,可将设计分为两大部分,一是主电路及系统原理图,二是控制电路,系统原理图部分我们采用的是三相全控整流装置,在这里我们使用三个TCA785芯片以便满足设计的要求,同时要加入转速电流双闭环系统,更好的实现调速的要求,达到稳定的速度效果。电路原理总图见附录。 2.1 系统主电路 晶闸管相控整流电路有单相、三相、全控、半控等,调速系统一般采用三相桥式全控整流电路,如图1所示。在变压器二次侧并联电阻和电容构成交流侧瞬态过电压及滤波,晶闸管并联电阻和电容构成关断缓冲;快速熔断器直接与晶闸管串联,对晶闸管起过流保护作用。

晶闸管直流电动机不可逆调速系统设计说明

摘要 直流电动机具有良好的起、制动性能,宜于在大围平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到应用。晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管—电动机调速系统(简称V-M系统),和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。 本文首先明确了设计的任务和要求,在了解了转速电流双闭环直流调速系统的调速原理后依次对晶闸管相控整流调速系统的主电路,保护电路,检测电路和触发电路进行了设计,并且计算了相关参数。 最后给出了这次设计的心得体会,参考文献和系统的电气总图。 目录 设计任务及要求 (Ⅰ) 摘要 (Ⅲ) 第二章系统主电路原理分析 (4) 第一节晶闸管直流电动机不可逆调速系统原理 (4) 第二节总体方案 (5) 第三节三相桥式全控整流电路 (7) 第三章系统参数计 (8) 第一节整流变压器参数计算 (8) 第二节晶闸管参数计算 (9)

第三节其他参数计算 (10) 第四章保护电路 (11) 第一节过电压保护 (11) 第二节过电流保护 (14) 第五章系统控制电路设计 (16) 第一节信号检测电路设计 (16) 第二节系统调节器 (16) 第三节触发电路 (17) 后记 (20) 参考文献 (21) 附录:电气原理总图 (22)

第二章系统主电路原理分析 第一节晶闸管直流电动机不可逆调速系统原理 晶闸管相控整流直流电动机调速系统原理框图如图3.1所示:

图3.1 晶闸管相控整流直流电动机调速系统原理框图 系统采用转速、电流双闭环的控制结构。两个调节器分别调节转速和电流,两者之间实行串行连接,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管的触发电路。从闭环反馈的结构上看,电流调节环是环,按典型I型系统设计;速度调节环为外环,按典型Ⅱ型系统设计。为了获得良好的静、动态性能,双闭环调速系统的两个调节器都采用

相关文档
最新文档