填料塔设计

填料塔设计
填料塔设计

填料塔的结构和计算

摘要:

塔设备是化工,石油化工和炼油行业最为常见的过程设备之一,他的作用是使气液在塔内进行充分的接触,达到传热和传质的目的。

塔设备在一定的条件下,将能达到气液共存状态的混合物实现分离,纯化的单元操作设备,广泛用于炼油,精细化工,环境工程,医药工程,食品工程和轻纺工程等行业和部门中。其投资在工程设备总额中占有很大比重,一般约占20%~50%。

工业上为使气液充分接触以实现传质过程,既可采用板式塔,也可采用填料塔。

吸收塔的工艺计算,首先是在选定吸收剂的基础上确定吸收剂用量,继而计算塔的主要工艺尺寸,包括塔径和塔的有效段高度。塔的有效段高度,对填料塔是指填料层高度

关键词:吸收塔, 矩鞍填料;几何特性;流体力学;传质性能;传质单元高度1.1塔设备简介

塔设备是化工,石油化工和炼油行业最为常见的过程设备之一,他的作用是使气液在塔内进行充分的接触,达到传热和传质的目的。

塔设备在一定的条件下,将能达到气液共存状态的混合物实现分离,纯化的单元操作设备,广泛用于炼油,精细化工,环境工程,医药工程,食品工程和轻纺工程等行业和部门中。其投资在工程设备总额中占有很大比重,一般约占20%~50%。

填充塔的应用始于19世纪中叶,起初在空塔中填充碎石、砖块

和焦炭等块状物,以增强气液两相间的传质。1914年德国人F.拉西首先采用高度与直径相等的陶瓷环填料(现称拉西环)推动了填充塔的发展。此后,多种新填料相继出现,填充塔的性能不断得到改善,近30年来,填充塔的研究及其应用取得巨大进展,不仅开发了数十种新型高效填料,还较好地解决了设备放大问题。到60年代中期,直径数米乃至十几米的填充塔已不足为奇。现在,填充塔已与板式塔并驾齐驱,成为广泛应用的传质设备。

塔设备的分类方法有多种,例如:按操作压力可分为:加压塔,常压塔,减压塔;按塔所能完成的单元过程分为:精馏塔,吸收塔,解压塔,萃取塔,反应塔和干燥塔等等,但是长期以来,最为常用的分类是按塔的内件结构分为板式塔和填料塔。

塔设备的结构,除种类繁多的各种内部构件外,其余构件则是大致相同的。

构件部分有:

(1)塔体:塔体是塔设备的外壳。常见的塔体是由等直径,等壁厚的圆筒和反对作为头盖和底盖的椭圆形封头组成。

(2)塔体支座:最常用的支座形式为裙座。裙座常见的结构型式圆筒形。

(3)除沫器:除沫器用于捕集夹带在气流中的液滴,使用高效的除沫器,对于回收物料,提高分离效率,改善塔器后续设备

的操作状况,是非常有必要的。

(4)接管:为了满足工艺要求,塔体上应开设各种接管,对于不

同用途的接管在结构设计时有不同的要求。

(5)人孔和手孔:人孔和手孔一般是为了安装,检修,检查和装填塔内附件的需要而设置的。由于入孔是人进入塔内的唯一

通道,人孔的设置应便于人员进入任何一层塔板。

工业生产对塔设备的性能有着严格的要求,归纳起来主要有以下几个方面:

(1)具有良好的操作稳定性这是保证正常生产的先决条件。

(2)具有较高的生产效率和良好的产品质量该项是设备设计制造核心。

(3)结构简单,制造费用低塔设备在能保证满足相应的工艺要求的前提下,尽量采用简单的结构,降低设备材料,加工制

作和日常维护的费用。

(4)塔设备的寿命,质量与运行安全化工设备一般要求其使用寿命在10年以上。在设计时,要综合考虑选用材料的成本,

设备的运行安全,制造质量和其一次性投资等之间的关系。

填料塔内件整体步骤如图1-1所示:

图1-1 填料塔内件整体布置图

2.填料塔的结构

填料塔是连续式气液传质设备。这种塔由塔体与裙座体,液体分布装置,填料,再分布器,填料支撑以及气,液的进出口等部件组成。

填料塔操作时,气体由塔底进入塔体,穿过填料支撑沿填料的孔隙上升;液体入塔后经由液体分布器将之均匀分布在填料塔层上,而后自上而下穿过填料压圈,进入填料层,在填料表面上与自而下而上流动的气体进行气夜接触,并在填料表面形成若干混合池,从而进行质量,热量和动量的传递,以实现液相轻重组成的分离目的。

2.1 填料

填料的外形

填料是填料塔中的传质元件,它可以有不同的分类。填料的类型有两大类:拉西环矩鞍填料、鲍尔环;鲍尔环是在拉西环的壁面上开一层或两层长方形小窗。波纹填料有丝网形和孔板形两大类。

填料是填料塔气夜接触的元件正确的选择填料对塔的经济效果重要影响。从填料塔用于工业以来填料的结构型式有了很大的改进,到目前为止各种形式,各种规格的填料已有几百种之多。填料改进的方向为增加其通过能力,以适应工业生产的需要;改善流体的分布与接触,以提高分离效率

2.2 填料的要求

对填料的基本要求有:传质效率高,要求填料能提供大的接触面。即要求具有大的比表面积,并要求填料表面易于被液体润湿。只有润湿的表面才是气液接触表面。生产能力大,气体压力降低。因此要求填料层的空隙率大。不易引起偏流和沟流。经久耐用具有良好的耐腐蚀性,较高的机械强度和必要的耐热性。取材容易价格便宜。

2.3填料塔的组成

填料塔由塔体,喷淋装置,填料,再分布器,栅板以及气,液的进出口等部件组成。

(1)喷淋装置

液体喷淋装置设计的不合理,将导致液体分布不良,减少填料的润湿面积,增加沟流现象,直接影响填料塔的处理能力和分离效率。液体喷淋装置的结构设计要求是:能使整个塔截面的填料表面很好润湿,结构简单,制造维修方便。

喷淋装置的类型很多,常用的有喷洒型,溢流型,冲击型等。(2)填料

填料可分为乱堆填料(颗粒填料)和规整填料两大类。

在填料塔内光有一定段数和一定高度的填料层,液体沿填料表面呈膜状态瞎忙活下流动,作为连续相的气体自下而上流动,与液体形成内流。

(3)液体再分布器

当液体流经填料层时,液体有流向器壁造成“壁流”的倾向,使液体分布不均,降低了,填料塔的效率,严重时可使塔中心的填料不能润湿而成“干锥。

因此在结构上宜采取措施,使液体流经一段距离后再行分布,以便在整个高度内的填料都得到均匀喷淋。

图1-2 填料塔内件整体布置图

2.4填料塔的特点

填料塔的特点是结构简单,装置灵活,压降小,持液量小,生产能力大,分离效果高,耐腐蚀且易于处理易起气泡,易热敏,易结垢的物系。

填料塔由于具有制造和更换容易,材料范围广,适应能力强,压降及滞液量小,传质效率高等优点,在近二十年来获得了长久发展。

2.5填料塔发展状况

填料塔由填料,塔内件及筒体构成。填料分规整填料和散状填料两大类。塔内则有不同形式的液体分布装置,填料固定装置或填料压紧装置,填料支承装置,液体收集再分布装置进料装置及气体分布装置。筒体有整体式结构及法兰连接分段式结构。与板式塔相比,新型的填料踏性能具有如下特点:

1. 生产能力大

板式塔与填料塔的流体流动和传质机理不同。板式塔的传质是通过上升的蒸气穿过板上的液池来实现。填料塔的传质是通过上长的蒸气和靠重力沿填料表面下降的液体逆流接触实现。若塔内件设计合理,填料塔的生产能力一般均高于板式塔。

2. 分离效率高

塔的分离效率决定与被分离物系的性质,操作状态(压力,温度,流量等)以及塔的类型及性能。应当指出,现有的各种板式塔包括最常用的筛板塔及浮阀塔,每米理论及数最多不超过2级。而工业填料塔每米理论级最多可达10级以上,因而对于需要很多理论级数的分离操作而言,填料塔无疑是最佳的选择。

3. 压力降小

填料由于空隙率较高,故其压降远远小于板式塔,一般情况下,板式塔压降高出填料塔5倍左右。压力降的减小意味着操作压力的降低,在大多数分离物系中,操作压力下降会使相对挥发度上升,对分离十分有利。对于新塔可以大幅度降低塔高,减小塔径;对于老塔可以减小回流比以求节能或提高产量与产品质量。

4. 操作弹性大

操作弹性是指塔对负荷的适应性。塔正常操作负荷的变动范围越宽,则操作弹性越大。由于填料本身对负荷变化的适应性很大,而板式塔的操作弹性则受到塔板液汽,雾沫夹带及降液管能力的限制,一般操作弹性较小;

5. 持液量小

持液量是指塔在正常操作时填料表面,内件或塔板上所持有的液量,它随操作负荷的变化而有增减。对于填料塔,持液量一般小于6%,而板式塔则高达8% ~12%。

2.6填料塔的工业应用

今年来,填料塔研究及开发成果在工业装置上获得了迅速的应用。下面仅以规整填料塔为代表列举典型的工业应用实例,评述当今填料塔的性能及其产生的经济效益。其应用领域主要早以下几个方面:

(1) 石油炼制,石油化工及天然气加工:

如原油常压蒸馏器,原油稳定器,为FCC装置提供原料的减压塔,FCC主分馏器,润滑油减压塔,焦化分馏塔,乙烯粗馏塔和急冷塔,碱/胺吸收器和提取器,乙苯/苯乙烯精馏塔,脱甲烷塔,拖乙烷塔,脱丙烷塔,脱异丁烷塔,天然气去湿塔等的应用。(2) 化学工业:

混合硝基甲苯,混合硝基氯苯,混合氯甲苯,混合二甲苯等混

合异构体的分离,苯/甲苯,环乙烷/环乙醇,胺类,醇类等的分离,聚甲醛,硬脂酸;已二酸,已酸乙酯,塑料单体,有机中间体,高沸点溶剂,液态空分和烃类分离等工艺中的分离塔。

(3) 气体回收和净化:

HCI,H2S,CI2,SO2,CO,CO2,NH3,HF等气体的回收与净化。

(4) 香料和医药工业:

紫罗兰酮,薄荷醇,香兰素,橙花醇,维生素E等的生产。(5) 同位素的分离:

D2O,18O等的分离:板式塔和填料塔,散装填料和规整填料各有长短,在各自的使用范围内充分发挥本身优势,它们将会长期存在,共同发展。国内外大量现代填料塔的工业应用,产生了巨大的经济效益和社会效益,这就是现代填料塔分离技术主要发展趋势。我们应紧紧跟踪填料塔分离技术的前沿,并发展我们自己的优势,以创造更大经济效益和社会效益。

3.填料层的计算

填料塔内气液连续接触,对于吸收操作的分析和讨论将主要结合连续接触方式进行。填料塔内充以某种特定形状的固体物--填料,以构成填料层,填料层是塔内实现气液接触的有效部位。填料层的空隙体积所占比例颇大,气体在填料间隙所形成的曲折通道中流过,循高了湍动程度;单位体积填料层内有大量的固体表面,液体分布于填料表面呈膜状流下,增大了气液的接触面积。

填料塔内的气液两相流动方式,原则上可为逆流也可为并流。一般情况下塔内液体作为分散相,总是靠重力作用自上而下地流动;气体靠压强差的作用流经全塔,逆流时气体自塔底进入而自塔顶排出,并流时则相反。在对等的条件下,逆流方式可获得较大的平均推动力,因而能有效地提高过程速率。从另一方面来讲,逆流时,降至塔底的液体与刚刚进塔的混合气体接触,有利于提高出塔底吸收液的浓度,从而减小吸收剂的耗用量;升至塔顶的气体恰与刚刚进塔的吸收剂相接触,有利于降低出俗气体的浓度,从而提高溶质的吸收率。所以,吸收塔通常都采用逆流操作。

吸收塔的工艺计算,首先是在选定吸收剂的基础上确定吸收剂用量,继而计算塔的主要工艺尺寸,包括塔径和塔的有效段高度。塔的有效段高度,对填料塔是指填料层高度。

3.1 填料层高度的基本计算

填料层高度等于所需的填料层体积除以塔截面积。塔截面积已由塔径确定,填料层体积则取决于完成规定任务所需的总传质面积和每立方米填料层所能提供的气、液有效接触面积。上述总传质面积应等于塔的吸收负荷(单位时间内的传质量,kmol/s)与塔内传质速率(单位时间内单位气、液接触面积上的传质量,kmol/m2·s)的比值。计算塔的吸收负荷要依据物料衡算关系,计算传质速率要依据吸收速率方程式,而吸收速率方程式中的推动力总是实际浓度与某种平衡浓

度的差额,因此又要知道相平衡关系。所以,填料层高度的计算将要

涉及物料衡算、传质速率与相平衡这三种关系式的应用。

所有吸收速率方程式,都只适用于吸收塔的任一横截面,而不能

直接用于全塔。就整个填料层而言,气、液浓度沿塔高不断变化,塔

内各横截面上的吸收速率并不相同。

为解决填料层高度的计算问题,先在填料吸收塔中任意截取一段

高度为 dZ 的微元填料层来研究,如图所示。

对此微元填料层作组分A 衡算可知,单位时间内由气相转入液

相的A 物质量为:

(3-1)

微元填料层的物料衡算

在此微元填料层内,因气液浓度变化极小,故可认为吸收速率NA为定值,则:

(3-2)

式中dA——微元填料层内的传质面积,

a——单位体积填料层所提供的有效接触面积,m2/m3;

Ω——堵截面积,m2。

微元填料层中的吸收速率方程式可写为:

将上二式分别代入式3-2,则得到:

及dG

再将式3-1代入上二式,可得:

整理上二式,分别得到:

(3-3)

及(3-4)对于稳定操作的吸收塔,当溶质在气、液两相中的浓度不高时,L、V、a(及Ω)皆不随时间而改变,也不随截面位置而改变,KY 及KX通常也可视为常数(气体溶质具有中等溶解度且平衡关系不为

直线的情况除外)。于是,对式3-3及式3-4可在全塔范围内积分如下:

由此得到低浓度气体吸收时计算填料层高度的基本关系式,即:

及(3-5)上式中单位体积填料的有效接触面积a(称为有效比表面积)总要小单位体积填料层中固体表面积(称为比表面积)。这是因为,只有那些被流动的液体膜层所覆盖的填料表面,才能提供气液接触的有效面积。所以,a值不仅与填料的形状、尺寸及充填状况有关,而且受流体物性及流动状况的影响。a的数值很难测定。为了避免难以测定的有效比表面积a,常将它与吸收系数的乘积视为一体,作为一个整体来看待,这个乘积称为"体积吸收系数"。譬如KYa及Kxa分别称为气相总体积吸收系数及液相总体积吸收系数,其单位均为kmol/m3·s)。体积吸收系数的物理意义是在推动力为一个单位的情况下,单位时间单位体积填料层内吸收的溶质量。

3.2 传质单元高度与传质单元数

填料层的高度还可根据膜系数与相应的吸收推动力来计算。但式3-4及3-5反映了所有此类填料层高度计算式的共同点。现就式3-4 来分析所反映的这种。

此式等号右端因式的单位为:

而 m 是高度的单位,因此可将理解为由过程条件所决定的某种单元高度,此单元高度称为"气相总传质单元高度",以HOG 表示,即:

(3-7)积分号内的分子与分母具有相同的单位,因而整个积分必然得到一个无因次的数值,可认为它代表所需填料层高度 Z 相当于气相总传质单元高度H OG的倍数,此倍数称为"气相总传质单元数",以N OG 表示,即:

(3-8)于是,式3-5可写成如下形式,即:

(3-5a)

同理,式3-6可写成如下形式,即:

(3-6a)式中 H oL---液相总传质单元高度,m;

N oL--液相总传质单元数,无因次。

HoL及Nol的计算式分别为:

(3-9)

(3-10)

依此类推,可以写出如下通式,即:

填料层高度=传质单元高度X传质单元数

譬如当时2-6a及2-6中的吸收系数与总推动力分别换成膜系数及其相应的推动力时,则可分别写成:

式中: HG 、HL---分别为气相传质单元高度及液相传质单元高度,m;

NG 、NL---分别为气相传质单元数及液相传质单元数,无因次。

对于传质单元高度的物理意义,可通过以下分析加以理解。以气相总传质单元高度HOG为例。

假定某吸收过程所需的填料层高度估等于一个气相总传质单元高度,如图3-1(a)所示, 即:

由式3-5a可知,此情况下

在整个填料层中,吸收推动力()虽是变量,但总可找到某一平均值用来代替积分式中()而不改变积分值,即:

于是可将作为常数提到积分号之外,得出:

(a)(b)

图3-1气相总传质单元高度

由此可见,如果气体流经一段填料层前后的浓度变化(Y1-Y2)恰好等于此段填料层内以气相浓度差表示的总推动力的平均值

式(见图3-1b),那末,这段填料层的高度就是一个气相总传质单元高度。

传质单元高度的大小是由过程所决定的。因为:

传质单元数反映吸收过程的难度。任务所要求的气体浓度变化越大,过程的平均推动力越小,则意味着过程难度越大,此时所需的传质单元数也越大。

4.传质单元数的求法

下面介绍几种求传质单元数常用的方法,计算填料层高度时,可根据平衡关系的不同情形选择使用。

4.1图解积分法

图解积分法是直接根据定积分法的几何意义引出的一种计算传质单元数的方法。它普遍适用于平衡关系的各种情况。特别应用于平衡线为曲线的情况。

仍以气相总传质单元数NOG的计算为例。由式2-8可以看到。等号右侧的被积函数中有 Y 与 Y* 两个变量,但 Y* 与 X 之间存在着相平衡关系,而任一横截面上的 X 与 Y 之间又有在着操作关

系(即物料平衡关系)所以,只要有了相平衡方程及操作线方程,亦即有了Y-X图上的平衡线及操作线, M可由任一 Y 值求出相应截

面上的推动力值,继而求出的数值。再在直角坐标系里将与 Y 的对应数值进行标绘,所得函数曲线与Y=Y1、Y=Y2及三条直线之间所包围的面积,便是定积分的值,也就是气相总传质单元数NOG(见图4-1)

(a)

(b)图4-1图解积分法求NO

上述方法是一种理论上严格的方法,在实际计算中,定积分值 NOG 既可通过计量被积函数曲线f的面积来求得,亦可通过适宜的近似公式算出,例如,可利用辛普森公式:

式中n---可取为任意偶数。n值愈大则结果愈准确;

Y0---出塔气相组成;Y0=Y2;

Yn---入塔气相组成, Yn= Y1

对于相平衡关系,如果没有形式简单的相平衡方程来表达,则也可根据过程涉及的浓度范围内所有已知数据点拟合得到相应的曲线方程。按此处理,则平衡关系为曲线时传质单元数的求取。便也不必经过繁琐的画图来计量积分面积,而可借助计算机进行运算。

若用图解积分法求液相总传质单元数NOL或其它形式的传质单元数(如 NG、 NL),其方法步骤与此相同。

4. 2解析法

(1) 脱吸因数式

若在吸收过程所涉及的浓度区间内平衡关系可用直线方程表示,即在此浓度区间内平衡线为直线时,便可根据传质单

元数的定义导出式来计算 NOG 。仍以气相总传质单元数 NOG 为例。依定义式3-8:

由逆流吸收塔的操作线方程式3-20可知:

填料塔设计说明书

填 料 塔 设 计 说 明 书 设计题目:水吸收氨填料吸收塔学院:资源环境学院 指导老师:吴根义罗惠莉 设计者:海江 学号:7 专业班级:08级环境工程1班

一、设计题目 试设计一座填料吸收塔,用于脱出混于空气中的氨气。混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。采用清水进行吸收,吸收剂的用量为最小量的1.5倍。 二、操作条件 1、操作压力常压 2、操作温度 20℃ 三、吸收剂的选择 吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。所以本设计选择用清水作吸收剂,氨气为吸收质。水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。且氨气不作为产品,故采用纯溶剂。 四、流程选择及流程说明 逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多用逆流操作。 五、塔填料选择 阶梯环填料。阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种 选用聚丙烯阶梯环填料,填料规格:

六、填料塔塔径的计算 1、液相物性数 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3 粘度为:μL=0.001004 Pa·S=3.6 kg/(m·h) 表面力为σL=72.6 dyn/cm =940896 kg/h2 2、气相物性数据: 20℃下氨在水中的溶解度系数为:H=0.725kmol/(m3·kPa)。 混合气体的平均摩尔质量为: Mvm=0.05×17.03g/mol +0.95×29g/mol=28.40g/mol , 混合气体的平均密度为:ρvm =1.183 kg/m3 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=1.81×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据 20℃时NH3在水中的溶解度系数为H=0.725 kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=76.41kPa 。 4、物料衡算: 亨利系数 S L HM E ρ= 相平衡常数 754.03 .10102.18725.02 .998=??=== P HM P E m S L ρ E ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量

填料塔的设计指导

二氧化硫填料塔设计 一.填料吸收塔简介 在化学工业中,吸收操作广泛应用于石油炼制,石油化工中分离气体混合物,原料气的精制及从废气回收有用组分或去除有害组分等。吸收操作中以填料吸收塔生产能力大,分离效率高,压力降小,操作弹性大和持液量小等优点而被广泛应用。目前国内对填料吸收塔设计大部分是经验设计方法,该方法是在给定生产任务的条件下,由经验确定出一个液气比的值,然后手算出吸收塔的有关设计参数。该设计手段落后,没有考虑经济技术指标,不符合工厂实际生产中成本最低要求,故提出了填料吸收塔的优化设计方法。 下面简要介绍一下填料塔的有关内容。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。填料塔以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 与板式塔相比,在填料塔中进行的传质过程,其特点是气液连续接触,而传质的好坏与填料密切相关。填料提供了塔内的气液两相接触面积。填料塔的流体力学性能,传质速率等与填料的材质,几何形状密切相关,所以长期以来人们十分注中填料的性能和新型填料的开发,使得填料塔在化工生产中应用更加广泛。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔还有以下特点: 1.当塔径不是很大时,填料塔因为结构简单而造价便宜。 2.对于易起泡物系,填料塔更适合,因填料对气泡有限制和破碎作用。 3.对于腐蚀性物系,填料塔更适合,因为可以采用瓷质填料。 4.对于热敏性物系宜采用填料塔,因为填料塔的持液量比板式塔少,物料在塔内的停留时间短。填料塔的压强降比板式塔小,因而对真空操作更有利。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 二.设计方案简介 2.1 方案的确定 填料精馏吸收塔的确定包括装置流程的确定,操作压力的确定,进料热状况的选择,加热方式的选择以及回流比的选择等 2.1.1 装置流程的确定 吸收装置的流程主要有以下几种 (1) 逆流操作: 定义:气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出的操作。 特点:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。 适用情况:工业生产中多采用逆流操作。 (2) 并流操作: 定义:气液两相均从塔顶流向塔底的操作。 特点:系统不受液流限制,可提高操作气速,以提高生产能力。 适用情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大; 易溶气体的吸收或处

大气课设填料塔设计计算

课程设计说明书 题 目:S H S 20-25型锅炉低硫烟煤 烟 气袋式除尘湿式脱硫系统设计 学生姓名: 周永博 学 院: 能源与动力工程学院 班 级: 环工13-1 指导教师:曹英楠

2016年7 月 1 日 内蒙古工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生姓名:周永博学号:201320303014 指导教师:曹英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉..北京.高等教育出版社.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》郑铭..北京.化学工业出版社.2001.4; 《火电厂除尘技术》胡志光、胡满银..北京.中国水利水电出版社.2005; 《除尘设备》金国淼..北京.化学工业出版社.2002; 《火力发电厂除尘技术》原永涛..北京.化学工业出版社.2004.10; 《环境保护设备选用手册》鹿政理..北京.化学工业出版社.2002.5; 《工业通风》孙一坚主编..中国建筑工业出版社,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业出版社,1994; 《除尘设备设计》金国淼主编..上海科学技术出版社,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业出版社,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,杨华等主编..中国电力出版社;《燃煤烟气脱硫脱硝技术及工程实例》. 钟秦主编.化学工业出版社,2004; 《环保工作者使用手册》. 杨丽芬,李友琥主编.冶金工业出版社,2001; 《工业锅炉房设计手册》航天部第七研究设计院编.中国建筑工业出版社,1986;《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二设计院,1995;《大气污染控制工程》. 吴忠标编.科学出版社,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

填料塔的设计

目录

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂, ,气体处理量为1500m3/h,其中含氨%(体积分数),吸收脱除混合气体中的NH 3

要求吸收率达到99%,相平衡常数m=。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。 二.设计资料 1.工艺流程 采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。 2.进气参数 进气流量: 1500m3/h 进气主要成分:NH 3

填料塔设计

xxxxx 大学 化工原理课程设计任务书 专业: 班级: 组长: 成员: 设计日期: 设计题目: 空气丙酮填料塔的吸收 设计条件: 空气-丙酮体系 ●混合气:丙酮蒸气和空气 ●吸收剂:清水(25℃) ●处理量:1500m3/h(标准状态) ●相对湿度:70% ●温度:20O℃ ●含量:进塔混合气中含丙酮:1.82%(V%)

●要求:丙酮回收率:90% ●操作条件:常压操作 ●厂址地区:任选 ●设备型式:自选 设计内容:相关说明 1.设计方案的选择及流程说明 2.工艺计算 3.主要设备工艺尺寸设计 (1)塔径的确定 (2)填料层高度计算 (3)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及换热器工艺条件 指导教师: xxxx 目录 第一节概述------------------------------------------4

1.1吸收技术概况------------------------------------------4 1.2吸收设备的发展------------------------------------------4 1.3吸收过程在工业生产中的应用------------------------------------------5 1.4丙酮的相关资料------------------------------------------6 第二节设计方案的确定-----------------------------------------7 2.1吸收剂的选择--------------------------------------------7 2.2吸收流程的选择----------------------------------------8 2.3吸收塔设备及填料的选择-------------------------------------------------9 2.4操作参数的选择------------------------------------------9 2.5设计模型图------------------------------------------10 第三节吸收塔的工艺计算----------------------------------------11 3.1基础性数据--------------------------------------------11 3.2物料计算-------------------------------11 3.3填料塔工艺尺寸的计算--------------------------------------------12 第四节设计后的感想-------------------------------------------------18 4.1对设计过程的评述和有关问题的讨论-------------------------------------------------18 4.2设计感想-------------------------------------------------------------------------------------------18 附录:参考文献-----------------------------------------------------------------------------------20

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

填料塔设计

1.填料塔的一般结构 填料塔可用于吸收气体等。填料塔的主要组件是:流体分配器,填料板或床限制板,填料,填料支架,液体收集器,液体再分配器等。 2.填料塔的设计步骤 (1)确定气液负荷,气液物理参数和特性,根据工艺要求确定出气口上述参数(2)填料的正确选择对塔的经济效果有重要影响。对于给定的设计条件,有多种填充物可供选择。因此,有必要对各种填料进行综合比较,限制床层,以选择理想的填料。 (3)塔径的计算:根据填料特性数据,系统物理参数和液气比计算出驱替速度,再乘以适当的系数,得出集液器设计的空塔气速度,以计算塔径。;或者直接使用从经验中获得的气体动能因子的设计值来计算塔的直径。 (4)填充层的总高度通过传质单位高度法或等板高度法算出。

(5)计算填料层的压降。如果压降超过极限值,则应调整填料的类型和尺寸或降低工作气体的速度,然后再重复计算直至满足条件。 (6)为了确保填料塔的预期性能,填料塔的其他内部组件(分配器,填料支座,再分配器,填料限位板等)必须具有适当的设计和结构。结构设计包括两部分:塔身设计和塔内构件设计。填料塔的内部组件包括:液体分配装置,液体再分配装置,填料支撑装置,填料压板或床限制板等。这些内部构件的合理设计是确保正常运行和预期性能的重要条件。 废气处理设备 第六章小型吸收塔的设计32参考文献33设计师:武汉工程大学环境工程学院08级环境工程去除工艺气体中更多的有害成分以净化气体以进一步处理或去除工业废气中的更多有害物质,以免造成空气污染。1.2吸收塔的应用塔式设备是气液传质设备,广泛用于炼油,化工,石家庄汕头化工等生产。根部列车塔中气液接触部分的结构类型可分为板式塔和填料塔。根据气体和液体的接触方式的不同,吸收设备可分为两类:阶

化工原理课程设计(规整填料塔)

填料精馏塔设计任务书 一、设计题目:填料塔设计 二、设计任务:苯-甲苯精馏塔设计 三、设计条件: 1、年处理含苯41%(质量分数,下同)的苯-甲苯混合液3万吨; 2、产品苯含量不低于96%; 3、残液中苯含量不高于1%; 4、操作条件: 填料塔的塔顶压力:4kPa(表压) 进料状态:自选 回流比:自选 加热蒸汽压力:101.33kPa(表压) 5、设备型式:规整填料塔 6、设备工作日:300天/年,24h连续运行 四、设计内容和要求 序号设计内容要求 1 工艺计算物料衡算、热量衡算、理论塔板数等 2 结构设计塔高、塔径、分布器、接口管的尺寸等 3 流体力学验算塔板负荷性能图 4 冷凝器的传热面积和冷却介质的 用量计算 5 再沸器的传热面积和加热介质的 用量计算 6 计算机辅助计算将数据输入计算机,绘制负荷性能图 7 编写设计说明书目录、设计任务书、设计计算及结果、流程图、参考资料等

目录 第1章流程的确定和说明 (3) 1.1加料方式 (3) 1.2进料状态 (3) 1.3冷凝方式 (3) 1.4回流方式 (3) 1.5加热方式 (3) 1.6加热器 (4) 第2章精馏塔设计计算 (5) 2.1操作条件和基础数据 (5) 2.1.1操作压力 (5) 2.1.2基础数据 (5) 2.2精馏塔工艺计算 (7) 2.2.1物料衡算 (7) 2.2.2热量衡算 (9) 2.2.3理论塔板数计算 (11) 2.3精馏塔的主要尺寸 (12) 2.3.1精馏塔设计的主要依据 (12) 2.3.2塔径设计计算 (15) 2.3.3填料层高度的计算 (16) 第3章附属设备及主要附件的选型计算 (17) 3.1冷凝器 (17) 3.1.1计算冷却水流量 (18) 3.1.2冷凝器的计算与选型 (18) 3.2再沸器 (18) 3.2.1间接加热蒸汽 (18) 3.2.2再沸器加热面积 (18) 3.3塔内其他结构 (19) 3.3.1接管的计算与选择 (19) 3.3.2液体分布器 (20) 3.3.3除沫器 (21) 3.3.4液体再分布器 (22) 3.3.5填料支撑板的选择 (22) 3.3.6塔底设计 (23) 3.3.7塔的顶部空间高度 (23) 第4章结束语 (24) 参考文献 (25)

填料塔设计

化工原理课程设计 -填料塔的设计说明书 院(系)别:化学与化工学院 专业:应用化学 年级班: 09级3班 姓名: 学号: 指导老师:

前言: 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 经过学习,我知道,填料塔吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。这次课程设计我把聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。

目录 一、设计任务 (5) 二、设计条件 (5) 三、设计方案 (5) 1、吸收剂的选择 (5) 2、吸收过程的选择 (5) 3、流程图及流程说明 (5) 4、塔填料选择 (6) 四、工艺计算 (6) 1、物料衡算,确定塔顶、塔底的气液流量和组成 (7) 2、塔径计算 (8) 3、填料层高度计算 (9) 4.填料层压降计算 (11) 五、液体分布装置 (12) 1、液体分布器的选型 (12) 2、分布点密度计算 (12) 六、吸收塔塔体材料的选择 (13) 1、吸收塔塔体材料:Q235-B (13) 2、吸收塔的内径 (13) 3、壁厚的计算 (13) 4、强度校核 (14) 七、封头的选型依据,材料及尺寸规格 (14) 1、封头的选型:标准的椭圆封头 (14) 2、封头材料的选择 (14) 3、封头的高 (14) 4、封头的壁厚 (15) 八、液体再分布装置 (15) 九、气体分布装置 (16) 十、填料支撑装置 (16) 十一、液体分布装置 (16) 十二、除沫装置 (17) 1、设计气速的计算 (17) 2、丝网盘的直径 (17) 3、丝网层厚度H的确定 (18) 十三、管结构 (18) 1、气体和液体的进出的装置 (18) 2、填料卸出口 (19) 3、塔体各开孔补强设计 (19) 十四、填料塔高度的确定(除去支座) (20) 1吸收高度 (20) 2、支持圈高度 (20) 3、栅板高度 (20) 4、支持板高度 (20)

填料塔计算和设计

填料塔计算和设计

填料塔计算和设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;

3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要;

填料塔设计机械设计

目录 第一章前言 ................................................................................. 错误!未定义书签。 塔设备设计简介 .................................................................. 错误!未定义书签。 填料塔结构简介 .................................................................. 错误!未定义书签。第二章设计方案的确定 ............................................................. 错误!未定义书签。 装置流程的确定 .................................................................. 错误!未定义书签。 吸收剂的选择 ...................................................................... 错误!未定义书签。 填料的选择 .......................................................................... 错误!未定义书签。 材料选择 .............................................................................. 错误!未定义书签。第三章工艺参数 ......................................................................... 错误!未定义书签。第四章机械设计 ......................................................................... 错误!未定义书签。 塔体厚度计算 ...................................................................... 错误!未定义书签。 封头厚度计算 ...................................................................... 错误!未定义书签。 填料塔的载荷分析及强度校核 .......................................... 错误!未定义书签。 塔体的水压试验 .................................................................. 错误!未定义书签。 水压试验时各种载荷引起的应力 .............................. 错误!未定义书签。 水压试验时应力校核 .................................................. 错误!未定义书签。第五章零部件选型 ..................................................................... 错误!未定义书签。 人孔 ...................................................................................... 错误!未定义书签。 法兰 ...................................................................................... 错误!未定义书签。 除雾沫器 .............................................................................. 错误!未定义书签。 填料支撑板 .......................................................................... 错误!未定义书签。

填料塔计算和设计

填料塔计算和设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。

1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。? 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据

填料塔设计

填料塔设计: 填料塔是指流体阻力小,适用于气体处理量大而液体量小的过程。液体沿填料表面自上向下流动,气体与液体成逆流或并流,视具体反应而定。填料塔内存液量较小。无论气相或液相,其在塔内的流动型式均接近于活塞流。若反应过程中有固相生成,不宜采用填料塔。 填料塔在塔内充填各种形状的填充物(称为填料),使液体沿填料表面流动形成液膜,分散在连续流动的气体之中,气液两相接触面在填料的液膜表面上。它属膜状接触设备。 填料塔以填料作为气、液接触和传质的基本构件,液体在填料表面呈膜状自上而下流动,气体呈连续相自下而上与液体作递向流动,并进行气、液两相间的传质和传热。两相的组分浓度和温度沿塔高连续变化。填料塔属于微分接触型的气、液传质设备。 填料塔又称填充塔。化工生产中常用的一类传质设备。主要由圆柱形的塔体和堆放在塔内的填料(各种形状的固体物,用于增加两相流体间的面积,增强两相间的传质)等组成。用于吸收、蒸馏、萃取等。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。 填料的上方安装填料压板,以防被上升气流吹动。 液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。 气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布

装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。 壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。 因此,当填料层较高时,需要进行分段,中间设置再分布装置。 液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料塔的设计完整版

填料塔的设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

目录 前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书

1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH 3,气体处理量为1500m 3/h ,其中含氨%(体积分数),要求吸收率达到99%,相平衡常数m=。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。 二.设计资料 1.工艺流程 采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。 2.进气参数 进气流量: 1500m 3/h 进气主要成分:NH 3 空气粘度系数:h m kg s pa V ?=??=-/065.01081.15μ 298K,下,氨气在空气中的扩散系数D V =s; 298K,下,氨气在水中的扩散系数D L =*10-9m 2/s 25℃时,氨在水中的溶解度为H=m 3kpa

大气课设填料塔设计计算

学校代码: 10128 学号: 201320303014 课程设计说明书 题目:S H S20-25型锅炉低硫烟煤烟 气袋式除尘湿式脱硫系统设计学生:周永博 学院:能源与动力工程学院 班级:环工13-1 指导教师:英楠

2016年 7 月 1 日 工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生:周永博学号: 4 指导教师:英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉...高等教育.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》铭...化学工业.2001.4; 《火电厂除尘技术》胡志光、胡满银...中国水利水电.2005; 《除尘设备》金国淼...化学工业.2002; 《火力发电厂除尘技术》原永涛...化学工业.2004.10; 《环境保护设备选用手册》鹿政理...化学工业.2002.5; 《工业通风》一坚主编..中国建筑工业,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业,1994; 《除尘设备设计》金国淼主编..科学技术,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,华等主编..中国电力; 《燃煤烟气脱硫脱硝技术及工程实例》. 钟主编.化学工业,2004; 《环保工作者使用手册》. 丽芬,友琥主编.冶金工业,2001; 《工业锅炉房设计手册》航天部第七研究编.中国建筑工业,1986; 《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二,1995; 《大气污染控制工程》. 标编.科学,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

填料塔的设计.doc

目录 一.设计任务书 (3) 1.设计目的 (3) 2.设计任务 (3) 3.设计内容和要求 (3) 二.设计资料 (4) 1.工艺流程 (4) 2.进气参数 (4) 3.吸收液参数 (4) 4.操作条件 (5) 5.填料性能 (5) 三.设计计算书 (6) 1.填料塔主体的计算 (6) 1.1吸收剂用量的计算 (6) 1.2塔径的计算 (7) 1.3填料层高度的计算 (10) 1.4.填料塔压降的计算 (14) 2.填料塔附属结构的类型与设计 (15) 2.1支承板 (16) 2.2填料压紧装置 (16) 2.3液体分布器装置 (16) 2.4除雾装置 (17) 2.5气体分布装置 (17) 2.6排液装置 (18)

2.7防腐蚀设计 (18) 2.8气体进料管 (18) 2.9液体进料管: (19) 2.10封头的选择 (19) 2.11总塔高计算 (20) 3.填料塔设计参数汇总 (21) 四.填料塔装配图(见附录) (22) 五.总结 (22) 六.参考文献 (23) 附录 (23)

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH ,气体处理量为1500m3/h,其中含氨1.9%(体积分数), 3 要求吸收率达到99%,相平衡常数m=0.95。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、

填料塔的设计

西北大学化工学院 化工原理课程设计说 明书 设计名称: 填料吸收塔设备的设计 年级专业: 2008级化学工程与工艺 姓 名:

指导老师:姚瑞清 2011年1月10日 目录 一.设计任务-----------------------------------2 二.填料选择-----------------------------------3 三.计算所需物性参数---------------------------3 四.设计计算过程-------------------------------4 五.塔附件选择---------------------------------10 六.工艺流程说明-------------------------------15 七.心得体会-----------------------------------16 八.参考文献-----------------------------------18 九.工艺流程图---------------------------------19

一. 设计任务 原料气入塔温度为25℃,用清水吸收原料气体中的SO2气体,混合气体的处理量为2000m3/h,其中含有SO2的摩尔分数为0.07,SO2的吸收率为90%,气体入口温度为25℃.水入口温度为20℃。 已知: 20℃时,E=3.55 103kPa, L/G=1.5(L/G)min; 操作压力:常压; 操作温度:液体20℃; 气体:25℃; 填料类型:乱堆塑料鲍尔环; 要求设计填料吸收塔,求所需塔高,塔径,塔内件,塔接管尺寸,绘制流程图,吸收塔工艺条件图,设计过程评述。

相关文档
最新文档