量子力学第九章力学量本征值的代数方法

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

量子力学泛函计算简介

量子力学泛函计算 纪岚森 (青岛大学物理科学学院材料物理一班) 摘要:文章叙述了密度泛函理论的发展,密度泛函理论以“寻找合适的交换相关为主线,从 最初的局域密度近似,,从最初的局域密度近似、广义梯度近似到现在的非局域泛函、自相 互作用修正,多种泛函形式的出现,是的密度泛函在大分子领域的计算越来越精确。近年来 密度泛函理论在含时理论与相对论方面发展也很迅速。计算体系日臻成熟,而我所参加的创 新实验小组就是以密度泛函研究大分子体系。在量子力学泛函计算的产生,发展,理论,分 支,前景等方面予以介绍,本着科学普及的态度希望大家能够更加进一步的理解泛函计算。 关键字:量子力学泛函计算,发展,理论分支,前景,科普 1引言:随着量子理论的建立和计算机技术的发展,人们希望能够借助计算机对微观体系的量子力学方程进行数值求解【3】,然而量子力学的基本方程———Schirdinger 方程的求解是极其复杂的。克服这种复杂性的一个理论飞跃是电子密度泛函理论(DFT)的确立电子密度泛函理论是上个世纪60 年代在Thomas-Fermi 理论的基础上发展起来的量子理论。与传统的量子理论向悖,密度泛函理论通过离子密度衡量体系的状态,由于离子密度只是空间的函数,这样是就使得解决三维波函数方程转化为解决三维密度问题,使得在数学计算上简单了很多,对于定态Schirdinger 方程,我们只能解决三维氢原子,对于更加复杂的问题,我们便无法进行更为精确的计算,而且近似方法也无法是我们得到更为精确的结果。但是密度泛函却在这方面比较先进,是的大分子计算成为可能。【2】 2.过程:第一性原理,密度泛函是一宗量子力学重头计算的计算方法,热播呢V啊基于密度泛函的理论计算成为第一性原理——first-principles。经过几十年的发展密度泛函理论被广泛的应用于材料,物理,化学和生物等科学中,Kohn也由于其对密度泛函理论的不可磨灭的先驱性贡献获得了诺贝尔化学奖。密度泛函理论体系包括交换相关能量近似,含时密度泛函。 3.密度泛函理论的发展: 1交换相关能,在密度泛函理论中我们把所有近似都归结到交换相关能量一项上,所以密度泛函的精确度也就是由交换相关能一项上。寻求更好的更加合适的相关近似,即用相同密度的均匀电子气交换相关泛函作为非均匀系统的近似值,或许这也出乎人们的意料,这样一个简单的近似却得到了一个极好的结论。直接导致了后来的泛函理论的广泛应用。由此获

量子力学考试大纲

876 量子力学考试大纲 一、考试性质与范围 本《量子力学》考试大纲用于北京科技大学物理学相关各专业硕士研究生的入学考试。本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定性关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利不相容原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。 二、考试基本要求 (一)波函数和薛定谔方程 1.了解波粒二象性的物理意义及其主要实验事实。 2.熟练掌握波函数的标准化条件:有限性、连续性和单值性。深入理解波函数的概率解释。 3.理解态叠加原理及其物理意义。 4.熟练掌握薛定谔方程的建立过程。深入了解定态薛定谔方程,定态与非定态波函数的意义及相互关系。了解连续性方程的推导及其物理意义。 (二)一维势场中的粒子 1.熟练掌握一维无限深方势阱的求解方法及其物理讨论,掌握一维有限深方势阱束缚态问题的求解方法。 2.熟练掌握势垒贯穿的求解方法及隧道效应的解释。掌握一维有限深方势阱的反射、透射的处理方法。 3.熟练掌握一维谐振子的能谱及其定态波函数的一般特点及其应用。 4.了解 --函数势的处理方法。 (三)力学量的算符表示 1. 掌握算符的本征值和本征方程的基本概念。 2.熟练掌握厄米算符的基本性质及相关的定理。 3.熟练掌握坐标算符、动量算符以及角动量算符,包括定义式、相关的对易关系及本征值和本征函数。 4.熟练掌握力学量取值的概率及平均值的计算方法,理解两个力学量同时具有确定值的条件和共同本征函数。 5.熟练掌握不确定性关系的形式、物理意义及其一些简单的应用。 6.理解力学量平均值随时间变化的规律。掌握如何根据哈密顿算符来判断该体系的守

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

量子力学 第一章 态矢量

序章基本背景知识 1、量子力学得基本要素就是:「态」(状态)、「演化」、「可观测量」(力学量)、「观测行为」(简单解说:粒子在任一时刻都具有一个「状态」,粒子具有得某些可测量得性质(位置、动量、角动量、自旋,etc)称为「可观测量」,而测量粒子得这些性质得过程就就是「观测行为」,俗称“做实验”) 2、初等量子力学得任务就是: (1)预测「对一个系统(“态”)进行实验(“观测”)得到得实验结果(观测结果)」 (2)寻找“态”随时间得「演化」规律 3、从旧量子论到现代量子力学: (1)普朗克能量量子化假设(1900年) (2)爱因斯坦光量子假说(1905年) (3)光得波粒二象性(1909年) (4)玻尔模型(1913年) (5)斯特恩-盖拉赫实验(1922年) (6)德布罗意假设:物质波假说,粒子动量(1924年) (7)乌伦贝克-古兹米特自旋假说;泡利不相容原理;海森堡-矩阵力学(1925年) (8)薛定谔-波动力学(1926年) 波函数统计诠释:就是概率密度函数,(1926年) (9)海森堡不确定性原理;玻尔得互补原理:观测影响状态(1927年) (10)态叠加原理;《量子力学原理》(狄拉克,1930年) 4、量子力学与经典力学得比较: 量子力学经典力学 研究对象在t时刻得位置 无法确定 只能确定在得出现概率 可以确定 t时刻得动量与速度 无法确定,速度无意义 只能确定具有得概率 且不可同时确定位置与动量 位置、动量与速度 同时确定 研究对象得状态得描述波函数(复函数) 或态矢量(复矢量) (实矢量函数) 状态得 演化方程 薛定谔方程(复系数方程) 牛顿第二定律(实系数方程)

有量子力学发展史谈一谈物理学研究方法汇总

量子力学理论体系的发展,从二十世纪初开始,经历了半个多世纪,积累了十二项诺贝尔物理学奖的成果才形成的。 德国物理学家普朗克因发现能量子而对物理学的发展做出杰出贡献,荣获1918 年度诺贝尔物理学奖。他 1895 年开始研究热辐射问题,1900 年普朗克在德国物理学会年会上宣读了《关于正常光谱的能量分布定律》的论文。他指出能量在辐射过程中不是连续的,而是如一股股的涓流似的被释放。这股涓流就是量子,而量子的能量只决定于频率 v,即 E=hv,h = 6.63×10 ?34 J ? S,h 为作用量子,后人称之为普朗克常数,作用量子在物理学中是一种崭新的、前所未闻的事物,它要求从根本上修改我们自从牛顿和莱布尼兹在一切因果关系的连续性基础上创立了微积分以来的全部物理概念。真正认识量子论的价值并大大开拓其应用疆界的是爱因斯坦,1905 年提出光量子的概念,成功地解释了光电效应,1913 年玻尔在此基础上又提出了原子结构的量子理论,揭示了原子光谱之谜。于是普朗克的量子理论,标志着一个新的、广阔的物理学科——量子力学的诞生。 德国物理学家爱因斯坦,因发现了光电效应而获 1921 年度诺贝尔73物理学奖,1905 年爱因斯坦发表了论文《关于光的产生和转化的一个启发性观点》,他推广普朗克把能量子的不连续性局限在辐射和吸收过程中,认为光在传播过程中能量也是不连续的,每个光子都有一定的能量,对于频率为 v 的光,其光子能量为 E=hv。光电效应是由于金属中的自由电子吸收了光子能量而从金属中逸出而发生的。这样,爱因斯坦用光量子理论成功地解释了光电效应,并确定了其规律。爱因斯坦光量子理论的重要意义,是使对光的本性认识推进了一大步,历时三个多世纪的波动说和微粒说的争论,被爱因斯坦的光的波粒二象性论点所代替,并为以后其他的微观粒子的波粒二象性的观点打下了坚实的基础。必须指出爱因斯坦对物理学的贡献不仅仅只是正确解释光电效应一方面,他所创立的狭义相对论、广义相对论等是他对人类科学最大的划时代贡献。只是当时决定授予爱因斯坦诺贝尔物理学奖的时候,他的相对论还未被所有科学家承认,物理学界还存在着激烈的争论和巨大的分歧,因此评委会有意回避了相对论的贡献,只是他对理论物理方面的贡献,特别是阐明光电效应的规律而授予他这项荣誉奖励。 丹麦物理学家玻尔因研究原子结构及原子辐射获 1922 年度诺贝尔物理学奖。

量子力学的矩阵形式和表象变换.

§4.5 量子力学的矩阵形式和表象变换 态和力学量算符的不同表示形式称为表象。 态有时称为态矢量。力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。 1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比 取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e ,见图 其标积可写成下面的形式 )2,1,(),(==j i e e ij j i δ 我们将其称之为基矢的正交归一关系。 平面上的任一矢量A 可以写为 2211e A e A A += 其中),(11A e A =,),(22A e A =称为投影分量。 而),(21A A A = 称为A 在坐标系21X OX 中的表示。 现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e ,且同样有 )2,1,()','(==j i e e ij j i δ 而平面上的任一矢量A 此时可以写为 ''''2211e A e A A += 其中投影分量是),'('11A e A =,),'('22A e A =。 而)','(21A A A = 称为A 在坐标系'X 'OX 21中的表示。 现在的问题是:这两个表示有何关系? 显然,22112211''''e A e A e A e A A +=+=。

用'1e 、'2e 分别与上式中的后一等式点积(即作标积),有 ),'(),'('2121111e e A e e A A += ),'(),'('2221212e e A e e A A += 表成矩阵的形式为 ??? ? ?????? ??=???? ??212212211121),'(),'(),'(),'(''A A e e e e e e e e A A 由于'1e 、1e 及'2e 、2e 的夹角为θ,显然有 ??? ? ?????? ??-=??? ? ?????? ??=???? ??21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ 或记为 ??? ? ??=???? ??2121)(''A A R A A θ 其中 ??? ? ? ?-=θθ θθθcos sin sin cos )(R 是把A 在两坐标中的表示???? ??''21A A 和??? ? ??21A A 联系起来的变换矩阵。 变换矩阵的矩阵元正是两坐标系基矢间的标积,它表示基矢之间的关系。故R 给定,任何矢量在两坐标系间的关系也确定。 很容易证明,R 具有下述性质: I R R R R ==~ ~ 由于1)(det )~ det(2==R R R , 其中 321321)1()det(p p p t R R R R -∑=, 故称这种矩阵为正交矩阵。 但1det =R (对应于真转动(proper rotation ))且R R =* (实矩阵)

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学考博中用到的物理公式(复习时总结的)

初等量子力学的四块容 一、薛氏方程 C1:波函数与薛氏方程 1、付氏变换:(动量→坐标为正) /332 1()()(2)i p r r p e d p ψψπ+∞ ?-∞ = ? 2、δ函数的两个重要极限及一个积分公式 1()2i x x e d αδαπ∞ -∞ = ? (相当于物理中的波粒转换) 其推导过程: 000() 0()()()1 ()()2i x x f x f x x x dx f x dx d f x e αδαπ ∞ -∞ ∞ ∞ --∞ -∞ =-= ? ? ?两式比较得出。 2 4()lim i i x x e πααδ-=(试题1.5用到) 2 4 i i e d ξπ ξ∞ -∞ =? (好像与某个积分是一样的,只是有些变换) 3、证明技巧 等式一边含有V ,而一边没有。2 22V m ?-?+肯定是作为一个整体消去的。 4、波函数平方可积的要求 2 3(3/2) ,()s d r A r r r ψψ-+=?→∞? 全 (0s >) 可以在证明某些概率守恒的式子时(体积分→面积分 V S AdV A ds ??=???) ,可以得到一些式子的积分为0。 5、(,0) (,)x x t ψψ→ 先将(,0)x ψ展为能量本征态的线性组合(自由粒子时即可以通过付氏化为()p ψ),再 / (,)()iEt E n x t C x e ψψ-=∑。

C2:一维势场中的粒子 1、各种势类型 方势、δ势、谐振子、半壁无限谐振子(谐振子奇数解)、半壁无限方势、不对称方势阱。 2、() ()((),())n n n n n x C x C x x ψ??ψ=?=∑。*()()n n C x x dx ?ψ=?(注 意积分围) 22 11222 2 222 1122H C E C E H C E C E =+=+ 3、无限深势阱的解 )()0 n n x x a πψ=? 。222 2 2n n E ma π=(能量可通过22222P E m m -?==求得) 4、谐振子的解 22 12 ()(!)()n x n n x n e H x αψ α-=?其中α=。 5、递推关系 12()2()2()0n n n H x xH x nH x ----= 1()2()n n H x nH x -'= ()(1)()n n n x x ψψ-=-(所以对于半壁无限高的谐振子只有奇数才可以满足) C5:中心力场 1、径向波函数 ()()R r r r χ= 2 2(1)()[(())]()02l l l l r E V r r r χχμ+''?+--= 0r →时,若有20 lim ()0r r V r →=,则() l l R r r 。 2、无限深球方势阱 ○ 1S 态(0l =),其与无限深方势阱一样。 ○20l ≠时,令kr ρ= 则本征方程

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学练习题

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E= kT 2 3(k 为 玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能 量E n = ,相应的波函数=)(x n ψ() a x a x n a n <<=0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6.132 -=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() ) +-'+'+∑ ≠0 2 0m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+ ∑ ≠00 2 0m m n n m mn n E E H ψ ψ , 其中微扰矩阵元 ' mn H =()() ?'τψψ d H n m 00?; 而 ' nn H 表示的物理意义是 。该方法的适用条件是 本征值, 。

量子力学 第一章 态矢量

序章基本背景知识 1.量子力学的基本要素是:「态」(状态)、「演化」、「可观测量」(力学量)、「观测行为」 (简单解说:粒子在任一时刻都具有一个「状态」,粒子具有的某些可测量的性质(位置、动量、角动量、自旋,etc )称为「可观测量」,而测量粒子的这些性质的过程就是「观测行为」,俗称“做实验”) 2.初等量子力学的任务是: (1)预测「对一个系统(“态”)进行实验(“观测”)得到的实验结果(观测结果)」 (2)寻找“态”随时间的「演化」规律 3.从旧量子论到现代量子力学: (1)普朗克能量量子化假设(1900年)(2)爱因斯坦光量子假说(1905年) (3)光的波粒二象性(1909年)(4)玻尔模型(1913年) (5)斯特恩-盖拉赫实验(1922年) (6)德布罗意假设:物质波假说,粒子动量k p =(1924年) (7)乌伦贝克-古兹米特自旋假说;泡利不相容原理;海森堡-矩阵力学(1925年) (8)薛定谔-波动力学(1926年) 波函数统计诠释:2 ψ是概率密度函数, 12 =ψ? ∞ ∞ -dx (1926年) (9)海森堡不确定性原理;玻尔的互补原理:观测影响状态(1927年) (10)态叠加原理;《量子力学原理》(狄拉克,1930年)

4.量子力学与经典力学的比较: *量子力学的测量:在量子领域,在实验中通常事先准备好大量具有相同状态ψ的粒子(这称为「系综」(esemble)),同时测量它们的「物理量」Q,然后考察统计平均值Q。这是由于测量行为会直接改变粒子的状态(所谓的“坍缩”),导致重复实验的结果平均值失去意义(一旦某粒子坍缩到了状态A,之后的一切实验结果也都只会是A) 关于力学量测量结果的详细讨论,见第三章 *不确定性原理:位置和动量无法同时确定,严格来说是指其之一的测量标准差可以任意地大以至于无法确定真实结果,这是不确定性原理的结果,详见第二章第7节

量子力学的表象与表示

第五章 量子力学的表象与表示 §5.1 幺正变换和反幺正变换 1, 幺正算符定义 对任意两个波函数)(r ?、)(r ψ,定义内积 r d r r )()(),(ψ?ψ?*?= (5.1) 按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r ψ时,找 到粒子处在状态()r ?的概率幅。 依据内积概念,可以定义幺正算符如下: “对任意两个波函数?、ψ,如果算符 U 恒使下式成立 ),()?,?(ψ?ψ?=U U (5.2) 而且有逆算符1?-U 存在,使得I U U U U ==--11????1,称这个算符U ?为幺正算符。” 任一算符A ?的厄米算符+A ?定义为:+A ?在任意?、ψ中的矩阵元恒由下式右方决定 ??(,)(,)A A ?ψ?ψ+= (5.3) 由此,幺正算符U ?有另一个等价的定义: “算符U ?为幺正算符的充要条件是 I U U U U ==++???? (5.4a) 或者说 1??-+=U U 。” (5.4b) 证明:若),()?,?(ψ?ψ?=U U 成立,则按+U ?定义, ),??()?,?(),(ψ?ψ?ψ?U U U U +== 由于?、ψ任意,所以 I U U =+?? 又因为U ?有唯一的逆算符1?-U 存在,对上式右乘以1?U -,即得 1??U U +-= 这就从第一种定义导出了第二种定义。类似,也能从第二种定义导出第一种定义。从而,幺正算符的这两种定义是等价的。 2, 幺正算符的性质 幺正算符有如下几条性质: i, 幺正算符的逆算符是幺正算符 证明:设 1-+=U U , 则()()(),1 11--+++-===U U U U 所以1-U 也是幺正 1 这里强调了 U -1 既是对 U 右乘的逆又是对 U 左乘的逆。和有限维空间情况不同,无限维空间情况下,任一算符 U 有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为 U -1 。

量子力学中要用到的数学知识大汇总

第一章矩阵 1.1矩阵的由来、定义和运算方法 1.矩阵的由来 2.矩阵的定义 3.矩阵的相等 4.矩阵的加减法 5.矩阵和数的乘法 6.矩阵和矩阵的乘法 7.转置矩阵 8.零矩阵 9.矩阵的分块 1.2行矩阵和列矩阵 1.行矩阵和列矩阵 2.行矢和列矢 3.Dirac符号 4.矢量的标积和矢量的正交 5.矢量的长度或模 6.右矢与左矢的乘积 1.3方阵 1.方阵和对角阵 2.三对角阵 3.单位矩阵和纯量矩阵 4.Hermite矩阵 5.方阵的行列式,奇异和非奇异方阵 6.方阵的迹 7.方阵之逆 8.酉阵和正交阵 9.酉阵的性质 10.准对角方阵 11.下三角阵和上三角阵 12.对称方阵的平方根 13.正定方阵 14.Jordan块和Jordan标准型 1.4行列式求值和矩阵求逆 1.行列式的展开 https://www.360docs.net/doc/f412375006.html,place展开定理 3.三角阵的行列式 4.行列式的初等变换及其性质 5.利用三角化求行列式的值 6.对称正定方阵的平方根 7.平方根法求对称正定方阵的行列之值 8.平方根法求方阵之逆 9.解方程组法求方阵之逆 10.伴随矩阵

11.伴随矩阵法求方阵之逆 1.5线性代数方程组求解 1.线性代数方程组的矩阵表示 2.用Cramer法则求解线性代数方程组 3.Gauss消元法解线性代数方程组 4.平方根法解线性代数方程组 1.6本征值和本征矢量的计算 1.主阵的本征方程、本征值和本征矢量 2.GayleyHamilton定理及其应用 3.本征矢量的主定理 4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换 1.线性变换的矩阵表示 2.矢量的酉变换 3.相似变换 4.等价矩阵 5.二次型 6.标准型 7.方阵的对角化 参考文献 习题 第二章量子力学基础 2.1波动和微粒的矛盾统一 1.从经典力学到量子力学 2.光的波粒二象性 3.驻波的波动方程 4.电子和其它实物的波动性——de Broglie关系式 5.de Broglie波的实验根据 6.de Broglie波的统计意义 7.态叠加原理 8.动量的几率——以动量为自变量的波函数 2.2量子力学基本方程——Schrdinger方程 1.Schrdinger方程第一式 2.Schrdinger方程第一式的算符表示 3.Schrdinger方程第二式 4.波函数的物理意义 5.力学量的平均值(由坐标波函数计算) 6.力学量的平均值(由动量波函数计算) 2.3算符 1.算符的加法和乘法 2.算符的对易 3.算符的平方 4.线性算符 5.本征函数、本征值和本征方程

量子力学-束缚态和散射态概念比较

) ()(x x V γδ-=束缚态和散射态 量子力学的主要研究对象有两类:束缚态 散射态 束缚态:在势阱中E γ 见右图。 在0≠x 处,0)(=x V 。 0>∴E 为游离态(自由态),E 可取任何连续值。 0

)0(2)0(')0('2 ψγ ψψ m - =--+ 与δ势垒跃变条件比较:)0(2)0(')0('2ψγ ψψ m =--+ 在0≠x 区域,Schrodinger 方程可以写成为 0)(''2=-ψβψx 其中02>-= mE β,)0(=-0 )(x ce x ce x x x ββψ 或写成||)(x ce x βψ-= c 为归一化因子。现在根据跃变条件求解。 按'ψ的跃变条件, c m c c ?-=--2/2 γββ 2/ γβm =∴ 因此可得出粒子能量的本征值 22 22022 γβm m E E -=-== 由归一化条件?∞ ∞ -==1/||d ||22βψc x , 可得出L m c /1/2=== γβ,

量子力学的矩阵形式及表象理论

第三章一维定态问题

第三章 目 录 §3.1一般性质 (2) (1)定理1:一维运动的分立能级(束缚态),一般是不简 并的 ...................................... 2 (2)不同的分立能级的波函数是正交的。 .......... 4 (3)振荡定理 .................................. 4 (4)在无穷大位势处的边条件 .................... 5 §3.2阶梯位势 ....................................... 6 §3.3位垒穿透 (8) (1) E ................................... 10 (3)结果讨论 ................................. 11 §3.4方位阱穿透 .................................... 11 §3.5一维无限深方位阱 (12) (1)能量本征值和本征函数 ..................... 12 (2)结果讨论 ................................. 13 §3.6宇称,一维有限深方势阱,双 δ位势 .. (14) (1)宇称 ..................................... 14 (2)有限对称方位阱 ........................... 15 (3) 求粒子在双δ位阱中运动 ................... 18 §3.7束缚能级与反射振幅极点的关系 ... 错误!未定义书签。 (1) 半壁δ位阱的散射 ......... 错误!未定义书签。 (2)有限深方位阱 .............. 错误!未定义书签。 §3.8 一维谐振子的代数解法 .......... 错误!未定义书签。 (1)能量本征值 ................ 错误!未定义书签。 (2) 能量本征函数 ............. 错误!未定义书签。 (3)讨论和结论 ................ 错误!未定义书签。 §3.9 相干态 ........................ 错误!未定义书签。

量子力学_门福殿_近似方法习题解

第五章 近似方法 1.一维无限深势阱宽度为a ,其势能函数为 (0,) ()0 (0/4,3/4)(/43/4) x x a U x x a a x a K a x a ∞<>?? =≤≤≤≤??≤≤? K 是个很小的常数,把此势阱中的粒子看成是受到微扰的一维无限深势阱中的粒子,求其 能量和波函数的一级近似。 解 :无微扰时的本征函数为(0) ()(1,2,)n n x x n a πψ= = 对应的能量本征值为:222 (0) 2 2n n E a πμ= 能量的一级修正为: 3/43/4(1) '(0)*(0)220/4/422?'d sin d sin a a a n nn n n a a n x K n x E H H x K x dx a a a a ππψψ====??? 3/43/4/4/421c o s 223c o s [s i n s i n ] 22222 2 a a a a n x K K K n x K K n n a dx dx a a a n πππππ-==-=--?? 12/2((1)(2n K n K K n n π -??=?+ -??为偶数时)为奇数时) 波函数的一级修正:'(1) (0) (0)(0) mn n m m n n m H E E ψ ψ≠=-∑ 现在来求:' mn H 3/43/4'(0)*(0)0/4/422?'d sin sin d sin sin a a a mn m n a a m x n x K m x n x H H x K x dx a a a a a a ππππψψ===??? 3/43/4/4/421()()()()[cos cos ][cos cos ]2a a a a K m n x m n x K m n x m n x dx dx a a a a a a ππππ-+-+=-=-??3/4 /4()()[sin sin ]|()()a a K a m n x a m n x a m n a m n a ππππ-+= --+ 3()()3()(){sin sin }{sin sin }()44()44K m n m n K m n m n m n m n ππππ ππ--++= ----+ 2()()2()()cos sin cos sin ()24()24 K m n m n K m n m n m n m n ππππ ππ--++= --+ 将此式代入上式可得波函数的一级修正

相关文档
最新文档