2015考研数学极限必做100题

2015考研数学极限必做100题
2015考研数学极限必做100题

2015考研数学极限必做100题

1 如果lim x→x 0

f (x )存在,则下列极限一定存在的为

(A) lim x→x 0

[f (x )]α (B )lim x→x 0

|f (x )| (C )lim x→x 0

ln f (x ) (D )lim x→x 0

arcsin f (x )

2 设f (x )在x =0处可导,f (0)=0,则lim x→0

x 2f (x )?2f(x 3)

x =

(A )?2f ′(0) (B ?f ′

(0) (C )f ′(0) (D )

3.设f (x ),g (x )连续x →0时,f (x )和g (x )为同阶无穷小则x →0时,∫f (x ?t )?t x

0为 ∫xg (xt )?t 1

0的

(A )低阶无穷小 (B )高阶无穷小 (C )等价无穷小 (D )同阶无穷小

4.设正数列{a n } 满足lim n→∞

∫x n ?x a

n 0 =2 则lim n→∞

a n =

(A )2 (B )1 (C )0 (D )1

2 5.x →1时函数x 2?1

x?1?

1x?1

的极限为

(A )2 (B )0 (C )∞ (D )不存在,但不为∞

6.设f (x ) 在x =0的左右极限均存在则下列不成立的为

(A )lim x→0+

f (x ) = lim x→0

?f (?x ) (B ) lim x→0

f (x 2) = lim x→0

+f (x ) (C )lim x→0

f (|x |) = lim x→0

+f (x ) (D )lim x→0

f (x 3) = lim x→0

+f (x )

6. 极限lim

x→∞?sin

1

x ?1(1+1x )α

?(1+1x

)

=A ≠0的充要条件为

(A )α>1 (B )α≠1 (C )α>0 (D )和α无关

7.

.已知lim x→∞[x 21+x

?ax ?b ]=0,其中a,b 为常数则

a,b 的值为

(A )a =l ,b =1 (B )a =?1 ,b =1 (C )a =1,b =?1 (D a =?1,b =?1

8. 当x →0 时下列四个无穷小量中比其他三个更高阶的无穷小为

(A )x 2 (B )1?cos x (C )√1?x 2?1 (D )x ?tan x 9.已知x n+1=√x n y n ,y n+1=12(x n +y n ) ,x 1=a >0,y 1=b >0 (a

{x n }和{y n }

(A) 均收敛同一值(B )均收敛但不为同一值 (C )均发散 (D )无法判定敛散性 10. 设α>0,β≠0,lim x→∞

[(x

+x

α)1

α

?x 2]=β则α,β为

11. 若 lim x→x 0

[f (x )+g (x )]存在,lim x→x 0

[f (x )?g (x )]不存在,则正确的为

(A )lim x→x 0f (x )不一定存在 (B )lim x→x 0

g (x )不一定存在

(C )lim x→x 0

[f 2(x )?g 2(x )] 必不存在 (D )lim x→x 0

f (x )不存在

12. 下列函数中在

[1,+∞)无界的为

(A)f (x )=x 2

sin 1

x 2 (B )f (x )=sin x 2

+2√x

(C )f (x )=x cos √x +x 2??x (D )f (x )=arctan 1x

x

13. 设f (x )连续lim x→0

f (x )

1?cos x =2且x →0

时∫f (t )?t sin 2 x 0为x 的n 阶无穷小则n

=

(A )3 (B )4 (C )5 (D )6

14. 当x →0时下列四个无穷小中比其他三个高阶的为

(A )tan x ?sin x (B )(1?cos x )ln (1+x ) (C )(1+sin x

)x

?

1 (D )∫arcsin t ?t x 2

15. 设[x ]表示不超过x 的最大整数,则y =x ?[x ]是

(A )无界函数 (B )单调函数 (C )偶函数 (D )周期函数

16. 极限lim x→∞

[x 2

(x?a )(x+b )]

x

=

(A )1 (B )? (C) ?a?b (D )?b?a

17. 函数

f (x )=

x 2?x x ?1

√1+

1x 的无穷间断点的个数为

(A ) 0 (B ) 1 (C ) 2 (D ) 3

18. 如果lim x→0

[1

x ?(1

x ?a)?x ]=1,则a=

(A ) 0 (B ) 1 (C ) 2 (D ) 3 19. 函数f (x )=x?x 3

sin πx 的可去间断点的个数为

(A ) 1 (B ) 2 (C ) 3 (D )无穷多个

20. 当x →0+时,与√x 等价的无穷小量是 (A ) 1-?√x (B ) ln

1?x

(C ) √1+√x ?1 (D ) 1?cos √x 21.设函数f (x )=

1

?x x?1?1

,则

(A ) x =0,x =1都是f (x )的第一类间断点 (B )x =0,x =1都是f (x )的第二类间断点

(C )x =0是f (x )的第一类间断点,x =1是f (x )的第二类间断点 (D )x =0是f (x )的第二类间断点,x =1是f (x )的第一类间断点 22 lim n→∞

ln √(1+1n )2(1+2n )2…(1+n n )2

n

等于

(A )∫ln 2 x ?x 2

1 (B) 2∫ln x ?x 21 (C) 2∫ ln (1+x )?x 21 (D) ∫ln

2 (1+x )?x 2

1 23.若lim

x→0

sin 6x+xf (x )

x =0,则lim

x→0

6+f (x )x 为

(A )0 (B )6 (C )36 (D )∞

24.对任意给定的ε∈(0,1),总存在正整数N ,当n ≥N 时,恒有“|x n ?a |≤2ε” 是数列收敛于a 的

(A )充分必要条件 (B )充分非必要条件

(C )必要非充分条件 (D )非充要条件 25.设函数f (x )=lim

n→∞1+x

1+x 2n

,讨论函数f (x )的间断点,其结论为

(A ) 不存在间断点 (B )存在间断点x =0

(C )存在间断点x =1 (D )存在间断点x =?1

26. .lim

n→∞[tan (π

4

+2

n

)]

n

=

27.x[sin ln (1+3

x

)?sin ln (1+1

x

)] =

28.已知lim

x→∞3xf(x)=lim

x→∞

[4f(x)+5]则lim

x→∞

xf(x)=

29.在[0,1]上函数f(x)=nx(1?x)n的最大值记为M(n)则lim

n→∞

M(n) =

30. 设k、L、δ>0则lim

x→0

[δk?x+(1?δ)L?x]?1x =

31.lim

x→+∞

arcsin (√x2+x?x) =

32. lim

x→0

∫(3sin t+t2cos 1

t

)?t

x

(1+cos x)∫ln (1+t)?t

x

=

33.lim

x→+∞(1+2x+3x)1

x+sin x =

34. α~β(x→a)则lim

x→a (β

α

)

β2

β2?α2 =

.lim x→0

∫tsin (x2?t2)?t

x

(1?cos x)ln (1+2x2)

=

35.lim

x→0+

(?x?1?x)1ln x =

36.f(x)有连续的导数f(0)=0,f′(0)=6,则lim

x→0

∫f(t)?t

x3

[∫f(t)?t

x

]

3

=

37.f(x)的周期T=3且f′(?1)=1,则lim

?→0

?

f(2?3?)?f(2)

=

38.lim

n→∞2n n!

n n

=

39.设f(x)在x=1连续且lim

x→1f(x)+x x?3

x?1

=?3,则f

′(1)=

40.极限p=∫lim

n→∞√2n+x2n n

2

?2

?x =

41.lim

x→0[1+tan x

1+sin x

]

1

x3 =

42.lim

x→+∞

(ln x)1x?1 =

43.x→0时f(x)=?x?1+ax

1+bx

为x的3阶无穷小则a=,b =

44. 极限lim

x→?√4x2+x?1+x+1

√2

=

45.lim

n→∞(1?1

2

)(1?1

3

)?(1?1

n

) =

46.lim

x→+∞(√x6+x5

6?√x6?x5

6) =

47. f′′(x)存在f(0)=f′(0)=0,f′′(x)>0,u(x)为曲线f(x)在(x,f(x))处切

线在x轴的截距则lim

x→0

x

u(x)

=

48. a>0,bc≠0,lim

x→+∞[x a ln (1+b

x

)?x] =c (c≠0)则a= b= c=

49.lim

n→∞

sin (√n2+1π) =

50.已知x→0时x?(a+bcos x)sin x为x的5阶无穷小则a = ,b=

lim x→0[ (1+x)

1

x

?

]

1

x

=

35.lim

x→+∞∫|sin t|?t

x

x

=

36.f(x)可导对于?x∈(?∞,+∞)有|f(x)|≤x2则f′(0)=

37.lim

n→∞∫x n

1+x

?x

1

=

38.如果lim

x→∞(1+x

x

)

ax

=∫t?t?t

a

?∞

则a=

39.设x→1+时2?2x?1ln x与(x?1)n为同阶无穷小则n=

40 .lim

x→+∞

?x

(1+1

x

)

x2

=

41.lim

x→0ln (sin2 x+?x)?x

ln (x+?)?2x

=

42. |x|<1时lim

n→∞

(1+x)(1+x2)?(1+x2n)=

43. 设极限lim

x→+∞

[(x5+7x4+2)a?x]=b(b≠0)则a= b =

44. lim

x→∞[x?x2ln (1+1

x

)] =

45. w =

lim x→0

[

1

(√)?1ln (1+x

)

]

= 46. 设y =y (x )由y 2+xy +x 2?x =0确定满足y (1)=?1的连续函数

则lim x→1

(x?1)2

y (x )+1 =

47 .设a 1,a 2…a m 为正数(m ≥

2)则lim n→∞

(a 1

n

+

a 2

n +?+

a m n )1

n =

48. f (x )连续x →0时F (x )=∫(x 2+1?cos t )f (t )?t x

0为x 3的等价无穷小 则f (0)= 49. f (x )连续 f (0)=0,

f ′(

0)≠0则lim

x→0∫

f(x 2?t)?t

x 2

x

3∫f (xt )?t 10

=

50. f (x )=∫

sin (xt )t

?t x

x 2则lim

x→0f (x )

x 2

=

51. 极限lim x→∞

x 2

[ a

1x+1

?a 1

x

] =

52. 已知f (x )在x =a 可导f (x )>0 ,n ∈N ,f (a )=1,f ′(a )=2

则极限lim n→∞

[

f(a+1n

)f (a ) ]n

=

53. lim x→0

(cot 2 x ?1

x 2)=

54. lim

x→1lncos

(x?1)1?sin π

2x

=

55. 如果lim x→?∞

(√x 2+x +1+ax +b)=0 则a = b =

56. lim x→0

(arcsin x x )1

1?cos x

=

57. 已知曲线y =f (x )在点(0,0)处切线经过点(1,2)则极限 lim x→0

[cos x +

∫f (t )?t x 0]1

x 2

=

58. 已知f (x )在x =0邻域内可导且lim x→0

[sin x x 2

+

f (x )x

]=2 则f (0)=

f ′(0)= lim x→0x

f (x )+? =

59. lim

x→0

√1+tan x?√1+sin x xln

(x+1)?x 2 =

60 lim

x→1

ln x ln(1?x)=

61. lim

n→∞[1

2

+3

22

+5

23

+? +2n?1

2n

] =

62. lim

x→0[a

x

?(1

x2

?a2)ln(1+ax)] = (a≠0)

63 .lim

x→0?

1

x+1

?

1

x?1

arctan1

x

=

64.设f(x)在[a,b]连续则lim

n→+∞∫x n f(x)?x

1

=

65. w=lim

x→0arcsin x?sin x

arctan x?tan x

=

66 . lim

x→0(x+3)x?3x

x2

=

67 .lim

x→+∞1

x

∫(1+t2)?t2 ?x2?t

x

=

68. lim

x→0?2?(x+1)

2

x

x

=

69. lim

x→0

2

√1+xsin x?cos x

=

70. lim

n→∞[(1+12

n2

)(1+22

n2

)+?+(1+n2

n2

)]

1

n =

71. 设x n=1

n2+1+2

n2+22

+…+n

n2+n2

则lim

n→+∞

x n=

72 .P=lim

x→0

[ln (1+?

2

x)

ln (1+?

1

x)

+a[x]

]

存在求p及a的值.

73.lim

x→+∞∫(1+t2)?t2?t

x

x?x2

=

74. lim

x→0[ 1

ln (1+x2)

?1

sin2 x

] =

75. lim

x→+∞

(x+?x)1x =

76. lim

x→1

x?x x

1?x+ln x

=

77. lim

n→∞1.3.5.7…(2n?1)

2.4.6.8…(2n)

=

78. lim

n→∞1

n

√n(n?1)?(2n?1)

n =

79. 极限lim

x→0(1?√cos x)(1?√cos x

3)…(1?√cos x

n)

(1?cos x)n?1

=

80. 设f (x )一阶连续可导且f (0)=0,f

′(0)=1则下列极限lim x→0

[1+f (x )]

1arcsin x

=

81. 函数f (x )满足f (0)=0 ,f ′(0)>0则极限lim x→0

+

x f (x )

= 82. lim x→+∞

[x +√1+x 2]2

x

=

83. lim x→+∞[ π

2?arctan x ]

1ln x

=

84. lim

x→0

1?cosx √cos 2x √cos3x

3

x 2

=

85. 函数f (x )=

x ln

|1?x |的第一类间断点的个数为

86. lim x→0

(cot x )2sin x = 87.lim

x→+∞

?x ?2

π

xarctan x

x+? =

88.lim n→∞(

1√2+1√n +22+?+1√22) = 89. lim x→+∞ x 2[lnarctan (x +1)?lnarctanx ] =

90. lim x→+∞

x 32

(√x +2?2√x +1+√x) = 91 设x ≠0时 lim n→∞

cos x

2cos x

4…cos x

2n =

92极限w =lim x→+∞1+2|x |

1+x

arctan x =

93. lim

x→0tan x+(1?cos x )

ln (1?2x )+(1??x 2

)

=

94 f (x )=arcsin x 在[0,b ]上用拉格朗日中值定理且中值为ε则lim b→0

ε

b =

95 已知曲线y =f (x )与y =sin x 在(0,0)处相切则lim n→∞

[ 1+f (2

n ) ]n

=

96 lim n→∞(

1

n +n+1

+

2n +n+2

+?+

n n +n+n

) =

97 lim x→+∞

(

a 1

x +b 1

x +c 1

x

3

)x

= 98 极限lim x→0

(1+x )1

x ??

x

=

99.设f (x ) 在x =1处可导且在(1,f (1))处的切线方程为y =x ?1,

求极限P = lim

x→0∫?t f(1+?x2??t)?t x2

x2ln cos x

100.如果lim

x→+∞

(x n+7x4+1)m?x=b(n>4 ,b≠0)求m,n及b的值

相关主题