塑性成形技术

塑性成形技术
塑性成形技术

塑性成形技术的现状及发展趋势

刘东利

(中国民航大学,航空工程系,天津,300300)

摘要:叙述了塑性成形技术的现状,介绍了现代塑性加工新技术及塑性成形的发展趋势,金属塑性成形技术展望,提出了当代塑性成形技术的研究方向。

关键词:塑性成形技术;塑性加工新技术;发展趋势;技术展望;研究方向

Current situation and development trend of plasticity forming

technology

Liu Dong Li

(Aeronautical Engineering College

College of Civil Aviation University of China, Tianjin, 300300)

Abstract:The present situation of plastic forming technology, introduced the modern plastic processing of new technology and development trend of plastic forming, metal plastic forming technology, puts forward the research direction of modern plastic forming technology.

Key words: The plastic forming technology;New technology of plastically processing; Development trend; prospect; research direction

1 引言

塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。工业部门的广泛需求为塑性成形新工艺新设备的发展提供了强大的原动力和空前的机遇。金属及非金属材料的塑性成形过程都是在模具型腔中来完成的[1]。

实施塑性成形技术的最终形式就是模具产品,而模具工业发展的关键是模具技术进步,模具技术又涉及到多学科的交叉。模具作为一种高附加值产品和技术密集型产品,其技术水平的高低已成为衡量一个国家制造业水平的重要标志之一。

展望12世纪,材料塑性成形技术一方面正在从制造工件的毛坯向直接制造工件,即精确成形或称净成形方向发展。另一方面,为控制或确保工件品质,材料塑性成形技术已经从经验走向有理论指导,成形过程的计算机模拟仿真技术已经进入实用化阶段。

2 塑性加工新技术

塑性加工新技术新世纪,科学技术面临着巨大的变革。通过与计算机的紧密结合,数控加工激光成形人工智能材料科学和集成制造等一系列与塑性加工相关联的技术发展速度之快,学科领域交叉之广是过去任何时代所无法比拟的。目前,塑性加工新工艺和新设备如雨后春笋般地涌现,把握塑性加工技术的现状和发展前景,有助于及时研究"推广和应用高新技术,推动塑性加工技术的持续发展。

2.1 基于新能源的塑性成形新技术

激光、电磁场、超声波和微波等新能源的应用为塑性加工提供了新的方法。

激光热应力成形利用激光扫描金属薄板时,在热作用区域内产生强烈的温度梯度,引

起超过材料屈服极限的热应力,使板料实现热塑性变形。

电磁成形工艺是利用金属材料在交变电磁场中产生感生电流(涡流),而感生电流又

受到电磁场的作用力,在电磁力的作用下坯料发生高速运动而与单面凹模贴模产生塑性变形。

超声塑性成形是对变形体或工装模具施加高频振动,坯料与工装模具之间的摩擦力可

以显著降低,结果引起坯料变形阻力和设备载荷显著降低,并且还能大幅度提高产品的质

量和材料成形极限,因此,成为一些特殊新材料的最有效加工途径。

2.2 基于新介质的塑性成形新技术

传统的塑性加工都是利用锤头、模具等刚性物体对坯料施加外部载荷。而液体、气体

等新介质在塑性加工中的使用产生了新的成形技术[2]。

液压成形技术通过液体压力的直接作用使材料变形,分为板材液压成形技术、管件液

压成形技术与流体引伸技术。

流体压力成形指采用液态的水、油或粘性物质作传力介质,代替刚性的凹模或凸模,

使坯料在传力介质的压力作用下发生塑性变形。流体压力成形主要包括内高压成形、板液

压成形和粘性介质压力成形[3]。

气压成形技术主要有热态金属气压成形(HMGF)和快速塑性成形(QPF)技术。HMGF

针对管状结构件气压成形;而QPF是针对板料的高温气压成形。新工艺主要通过热火化成

形过程,改善材料的成形性能和变形机制,并可获得优化的热处理后力学性能。

喷丸成形是利用高速弹丸撞击金属板料表面,使受撞击表面及其下一层金属产生塑性

变形,导致面内产生残余应力,在此应力作用下,逐步使板料达到要求外形的一种成形方法。目前,波音和空中客车等飞机制造公司在其现代客机的生产中,都已采用了该技术。

其工艺方法有弯曲喷丸、延伸喷丸和预应力喷丸三种。

2.3 基于不同加载方式的塑性成形新技术

传统的塑性成形加载方式为采用模具对整个坯料施加变形载荷,这样的加载方式对于

厚大零件成形较困难,而改变塑性加工的加载方式可得到新的加工工艺。

无模多点成形借助于高度可调整的基本体群构成离散的上、下工具表面,替代传统的上、下模具进行板材的曲面成形。

2.4 基于提高材料塑性的塑性成形新技术

针对金属材料在常温下塑性较差、成形困难的问题,出现了基于提高材料塑性的新技术。金属等温塑性成形方法是最具代表性的一种新技术,它是通过模具和坯料在变形过程

中保持同一温度来实现的,从而避免了坯料在变形过程中温度降低和表面激冷问题。

2.5 基于复合方式的塑性成形新技术

复合塑性成形技术指将不同种类的塑性加工方法组合起来,或将其它金属成形方法(如

铸造、粉末冶金等)和塑性加工方法结合起来使用,使变形金属在外力作用下产生流动和变形,从而得到所需形状、尺寸和性能的制品的加工方法[4]。包括热锻冷锻复合技术、板料

冲压冷锻复合技术、以及结合铸造和锻造特点开发出来的铸造锻造技术和半固态成形技术。

在使用铸造锻造复合工艺时应注意以下几点:(1)应选用兼有良好铸造性能和锻造性能的合金;(2)兼顾铸造成形和锻造成形要求的铸件(锻件铸坯)的形状设计;(3)确立合理的铸造、锻造、热处理的适当条件。

在一般的金属凝固过程中,生成的固相呈树枝状,当固相比率达到20%时,枝状结构就开始硬化,难以进行成形加工。若在金属凝固的同时加以搅动,金属的凝固组织就由枝状结晶变成球状的等轴晶,当40固相含量为60%以下时的流动特性好,变形抗力小,可以用锻造、

挤压、轧制、压铸等方法成形。这种在对半固态金属进行加工的工艺称为半固态成形技术[5]。

2.6 基于新知识的塑性成形新技术

超塑成形在特定的变形状态下,金属的变形能力可以几倍以至几十倍地提高,而变形抗力可以减少到几分之一至几十分之一,这一被称为超塑性的特性,已经为几十年大量的科学实践证明是普遍存在的。人们不仅配制出了几十种具有明显超塑性的有实用价值的超塑性新合金,而且对几百种现有的工业合金的超塑性进行了研究。超塑新材料和一些现有材料的超塑成形已经得到了工业应用,特别是几种钦合金超塑成形已经成为其优先选择的成形方法,在航空工业被成功地采用。此外,几种铝合金的超塑成形也很成功。

超塑成形的主要特点是根据不同零件的要求,科学地选择变形条件,严格地控制变形条件,以达到提高材料的变形能力和降低变形抗力的目的。超塑成形有时可以代替4至5道传统的成形过程,直接制成精确的不需要再机械加工的零件,而所需的设备和制造成本是其他方法的几分之一[6]。

由于塑性是与金属的多种物理、化学、力学性能有关的性质,所以超塑性必然会对金属的使用和加工产生巨大影响。许多专家学者预测,将有越来越多的金属零件采用超塑成形加工。

2.7 基于特殊材料的塑性成形新技术

粉末冶金塑性成形新技术,具有少无切削、容易实现多种材料的复合、可生产具有特殊结构和性能的材料和制品、减少组织不均匀、可有效进行材料再生和综合利用。目前,发展的粉末冶金塑性成形技术有金属粉末锻造成形、金属粉末超塑性成形、粉末喷射、喷涂成形、粉末轧制、粉末注射成形、温压成形、粉末增塑挤压、热等静压、计算机辅助激光快速成形技术等。

3 塑性成形的发展趋势

3.1 现代模具工业的发展趋势

传统的模具制造技术,主要是根据设计图纸,用仿型加工,成形磨削以及电火花加工方法来制造模具。而现代模具不同,它不仅形状与结构十分复杂,而且技术要求更高,用传统的模具制造方法显然难于制造,必须借助于现代科学技术的发展,采用先进制造技术,才能达到它的技术要求。当前,整个工业生产的发展特点是产品品种多、更新快、市场竞争剧烈。为了适应市场对模具制造的短交货期,高精度、低成本的迫切要求,模具将有如下发展趋势:

(1)愈来愈高的模具精度。10年前,精密模具的精度一般为5μm,现在已达2~3μm,不久1μm精度的模具即将上市。随着零件微型化及精度要求的提高,有些模具的加工精度要求在1μm以内,这就要求发展超精加工[7]。

(2)日趋大型化模具。这一方面是由于用模具成形的零件日渐大型化,另一方面也是由于高生产率要求的一模多腔(现在有的已达一模几百腔)所致。

(3)扩大应用热流道技术。由于采用热流道技术的模具可提高制件的生产率和质量,并能大

幅度节约制件的原材料,因此热流道技术的应用在国外发展较快,许多塑料模具厂所生产的

塑料模具50%以上采用了热流道技术,甚至达到80%以上,效果十分明显。热流道模具在国内也已生产,有些企业使用率上升到20%~30%。

(4)进一步发展多功能复合模具。一副多功能模具除了冲压成形零件外,还担负着叠压、攻丝、铆接和锁紧等组装任务,这种多功能复合模具生产出来的不再是单个零件,而是成批的

组件,可大大缩短产品的生产及装配周期,对模具材料的性能要求也越来越高。

(5)日益增多高挡次模具。大致可分三个层55模具技术2003.N0.1

次,一是用于汽车、飞机、精密机械的微米级(μm)精密加工;二是用于磁盘、磁鼓制造的亚微米级(0.01μm)精密加工;三是用于超精密电子器件的毫微米级(0.001μm)精密加工。目前,超精密加工已进入纳米级(0.1~100nm)精度阶段。这将使模具的技术含量不断提高,使中、高档模具比例将不断增大。

(6)进一步增多气辅模具及高压注射成型模具。随着塑料成形工艺的不断改进和发展,为了

提高注塑件质量,气辅模具及高压注射成型模具将随之发展。

(7)增大塑料模具比例。随着塑料原材料的性能不断提高,各行业的零件将以塑代钢,以塑代木的进程进一步加快,使塑料模具的比例日趋增大。同时,由于机械零件的复杂程度和精度

的逐渐提高,对塑料模具的制造要求也越来越高。

(8)增多挤压模及粉末锻模。由于汽车、车辆和电机等产品向轻量化发展,如以铝代钢,非全密度成形,高分子材料、复合材料、工程陶瓷、超硬材料成形和加工。新型材料的采用,不

仅改变产品结构和性能而且使生产工艺发生了根本变革,相应地出现了液态(半固态)挤压模具及粉末锻模。对这些模具的制造精度要求是高的。

(9)日渐推广应用模具标准化。模具标准化及模具标准件的应用将极大地影响模具制造周期,且还能提高模具的质量和降低模具制造成本。因此,模具标准件的应用在“十五”期间必将得到较大的发展。

(10)大力发展快速制造模具。目前是多品种小批量生产时代,21世纪,这种生产方式占工业

生产的比例将达到75% 以上。由此,一方面是制品使用周期缩短,另一方面花样变化频繁,

要求模具的生产周期愈短愈好。因此,开发快速成型模具将越来越引起人们的重视和关注[8]。

3.2金属塑性成形技术的分析可将其总体发展趋势总结概括为以下几点:

(1) 过程综合

过程综合主要包括两个方面的含义:其一是指材料设计、制备、成形与加工的一体化,各个环节的关联越来越紧密;其二是指多个过程(如凝固与成形)的综合化。多种工艺技术的综合常可导致新的制造原理或制造技术的突破,如精冲复合成形技术、半固态加工技

术和连续铸轧技术等。

(2)技术综合

技术综合是指塑性成形技术越来越发展成为一门多种技术相结合的应用技术科学。21

世纪的塑性成形技术将以新材料、新能源、新介质,以及计算机、信息、电子、控制技术

等为依托,尤其体现为制备、成形、加工技术与计算机技术以及信息技术的综合,与各种

先进控制技术的综合,以更快的速度持续发展,发展的方向将更加突出“精、省、净”的

需求。如激光成形、电磁成形、超声塑性成形、爆炸成形、液压成形、气压成形、数控渐

进成形等。

(3)学科综合

学科综合则体现为传统三级学科(铸造、塑性加工、热处理和焊接)之间的综合,与

材料物理与化学、材料学等学科的综合,与计算机科学、信息工程、环境工程等材料科学

与工程学科以外的其他学科的综合。各学科间的界限越来越不明显,学科渗透与相互依赖

性越来越强。如金属半固态加工、连续铸挤、连续铸轧、粉末冶金塑性成形新技术、爆炸

焊接或扩散焊接后进行塑性加工、复合材料塑性成形新技术等。

塑性加工技术的发展目标是高效、节能、节材、注重环境保护和降低成本,而精确塑

性成技术将是实现上述目标最重要的发展方向,精确塑性成形技术将不断吸收现代最新科

技成果,作为一种综合性技术在21世纪更快的发展[9]。

4 研究方向

4.1 塑性成形基本理论的研究

(1)塑性成形试验和模拟技术的研究。

(2)塑性成形过程变形区应力应变速度、温度场分布的研究。

(3)塑性变形数值分析和模拟技术的研究。成形工艺过程预测和优化设计方法的研究。

(4)塑性加工中摩擦学的研究。

4.2 塑性成形技术的研究

(1)高效精密塑性成形技术的研究、扩大推应用。

(2)金属基粒状复合材料,纤维复合材料和层状复合材料成形工艺的研究。非晶、徽晶材料成形工艺的研究。

(3)复合成形工艺的研究,包括铸一锻,焊一锻,热一温一冷锻等多种工艺复合锻造技术的研究。

(4)常用金属、合金超塑成形技术的研究,扩大超塑成形性速度区间范围的研究。

5 结束语

21 世纪,中国的汽车工业、机械装备工业、航空、航天工业等支柱产业将有大的发展。材料科学、计算机技术、信息控制技术等的快速发展,将为塑性成形技术提供更多更新的

发展基础。当前工业部门的广泛需求,为塑性成形新工艺新设备的发展提供了强大的原动

力和空前的机遇。因此,塑性加工技术的发展需要加快从经验向科学化转化的进程,做到

更精、更省、更净[10]。

同时通过近几年的实践和摸索,现代先进制造技术已在改变塑性成形领域的许多传统观念和生产组织方式,技术创新已成为21世纪企业竞争的焦点。由于新技术的应用和引导,塑性成形技术在国民经济中的作用愈来愈大,在一定程度上决定了我国机械制造业在21世纪

的市场竞争能力,为此我们要有足够的认识并采取得力的措施。

参考文献:

[1]洪慎章。塑性成形技术的现状及发展趋势[J].模具技术2003,(1):54-56.

[2]崔冰艳,陈丽文,白叶飞。材料加工中塑性成形领域研究新进展[J].中国水运 2007 07(02):124-125.

[3]刘华,闫洁,刘斌。现代塑性加工新技术及发展趋势[J].锻压装备与制造技术 2014(4):10-12.

[4]蒋鹏,贺小毛,吴瑛,谢华。复合塑性成形新技术及其应用[J].锻压技术,2000,(1):38-41.

[5]蒋鹏,贺小毛,张秀峰.半固态金属成形技术的研究概况[N].塑性工程学报,1998,5(3):1-7.

[6]教务处,王蛇小.塑性成形的发展方向[N].包头职业技术学院学报,47-49.

[7]阮雪榆等。中国模具工业技术发展[J].模具技术,2001,(2):72-74.

[8]申容华。金属塑性成形技术展望[J].机械工人(热加工),2001,(6):3-4.

[9]王玉。塑性加工技术前沿综述[J].塑性工程学报,2003,(6):4-7.

[10]李德群。塑性加工技术发展状况及趋势[J].航空制造技术,2000,(3):21-22.

(完整版)金属塑性成形原理习题及答案解析

《金属塑性成形原理》习题(2)答案 一、填空题 1. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 2. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 3. 金属单晶体变形的两种主要方式有:滑移和孪生。 4. 等效应力表达式:。 5.一点的代数值最大的 __ 主应力 __ 的指向称为第一主方向,由第一主方向顺时针转所得滑移线即为线。 6. 平面变形问题中与变形平面垂直方向的应力σ z = 。 7.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。8.对数应变的特点是具有真实性、可靠性和可加性。 9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高。 10.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。 11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。 12.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性。 13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。 14.硫元素的存在使得碳钢易于产生热脆。 15.塑性变形时不产生硬化的材料叫做理想塑性材料。 16.应力状态中的压应力,能充分发挥材料的塑性。 17.平面应变时,其平均正应力 m 等于中间主应力 2。 18.钢材中磷使钢的强度、硬度提高,塑性、韧性降低。

19.材料经过连续两次拉伸变形,第一次的真实应变为 1=0.1,第二次的真实应变为 2=0.25,则总的真实应变 =0.35 。 20.塑性指标的常用测量方法拉伸试验法与压缩试验法。 21.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。 二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响 A 工件表面的粗糙度对摩擦系数的影响。 A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做 A 。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B 。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时, A 准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。 A、能量;B、力;C、应变; 6.硫元素的存在使得碳钢易于产生 A 。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的 B 应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 m B 中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A 。 A、纤维组织;B、变形织构;C、流线; 三、判断题 1.按密席斯屈服准则所得到的最大摩擦系数μ=0.5。(×) 2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。(×)

金属塑性成形工艺

有色金属塑性加工趋势 冶金 金属塑性成形工艺有着悠久的历史,4000多年前(青铜器时代),金属的塑性加工与金属的熔炼与铸造同时出现,可加工铜、铁、银、金、铅、锌、锡等,所采用的工艺包括热锻、冷锻、板材加工、旋压、箔材和丝材拉拨。 近代第一次技术革命开始于18世纪中叶,以蒸汽机的发明和广泛使用为标志,从而实现了手工工具到机械工具的转变。塑性加工也从手工自由锻向机械压力机(蒸汽锤、自由锻锤及蒸汽轧钢机)进步。 近代第二次技术革命以电力技术为主导,电磁理论的建立,为电力取代蒸汽动力的革命奠定了基础。金属塑性加工设备以蒸汽向电力驱动进步。机械制造业的进一步发展,提高了塑性加工设备的制造水平,出现了轧钢机、挤压机、锻造机、拉拨机和压力机。 现代科技革命开始于上世纪40年代,其主要标志为电子技术的发展,电控和电子计算机的应用,塑性加工设备和技术向全流程自动化进步。现在可以做到配料、熔炼、铸造、轧制及随后处理全线自动化。 目前,金属材料在日常生活和高科技中占有相当大的比例,其加工技术是其它加工的基础。材料加工成形工艺通常有液态金属成形、塑性成形、连接成形等。塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理高了制品的强度, 可以达到较高的精度, 具有较高的生产率. 坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高。有色金属塑性加工的基本方法:轧制、挤压、拉拔、锻造、冲压等。 近年来,随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。目前金属塑性加工技术现状与总的发展趋势是主要体现在以下一些方面:(1)生产方法、工艺技术向着节能降耗、综合连续、优化精简、高速高效的方向发展。如实行冶炼、铸造与加工的综合一体化,采用连铸连轧,连续铸轧、连续铸挤,半固态加工等新工艺技术;尽量生产最终和接近最终形状产品;利用余热变形、热变形与温变形配合,冷加工与热加工变形量之间的优化匹配,变形与热处理的配合,省略或减少加热与中间退火次数等。(2)工艺装备更新换代加快,设备更趋大型、精密、成套、连续,自动化水平更加提高。生产线更趋大型化、专业化。产品单重大大增加。(3)产品向多品种、高质量、高精度发展,产品结构不断调整,新材料新产品不断被开发。轻型薄壁材料、复合材料、镀层涂层材料等不断发展,产品注重深度加工,有色材料的产品综合性能和使用效能大大提高。(4)工模具结构、材质,加工工艺、热处理工艺和表面处理工艺不断改进和完善。模具的质量和使用效果、寿命得到极大的提高。(5)在加工辅助工序和其他环节,开发新型辅助设备,采取先进技术和多种

浅谈精密微塑性成形技术的现状及发展趋势

浅谈精密微塑性成形技术的现状及发展趋势 处在新的发展阶段,我国的科学技术有了很大程度的进步,微纳米技术和科学的发展受到众人的关注,并逐渐在生产生活当中得到了广泛应用。其中的精密微塑性成形技术在这一过程中的实际应用对实际起到了重要作用,微系统技术和微机电系统具有着节约能源以及节省空间等优点,随着市场对精密微塑成形技术的需求增大,对其理论研究就显得非常重要。文章则主要就精密微塑成形技术的发展现状进行详细分析,并就其发展的趋势加以研究,希望借此对这一领域的实际发展有所裨益。 标签:精密微塑成形技术;现状;发展趋势 引言 微塑性成形技术主要是采用塑性变形的方式进行形成微型零件的工艺方法,在多种复杂形状微小零件作用下能够达到微米量级,所以在微型零件的制造上较为适用。微塑性成形技术并非是传统塑性成形工艺的简单等比例缩小,其作为新的研究领域对实际的发展有着重要促进作用,故此加强这一领域的理论研究就有着实质性意义。 1 精密微塑性成形原理特征及方法分析 1.1 精密微塑性成形原理特征分析 科技的发展带来了生产的效率提升,在微塑性成形技术的发展过程中经历了不同时期的进步,传统的成形工艺按照比例微缩到微观领域在参数上的适应性就失去了。而微塑性成形技术在现阶段已经成了多种学科交叉的边缘技术,实际成形中的润滑以及摩擦也与此同时发生了一些变化,所以宏观摩擦学当中的摩擦理论就不能有效适应。但由于微小尺度下秒面积与体积的增大,所以在摩擦力就对成形造成的影响逐渐扩大,那么润滑就是比较关键的因素[1]。 从实际的成形原理来看,在工件进行微缩化的过程中,此时在摩擦力上就会随之加大,压力的加大那么封闭润滑包中的润滑油压强也随之加大,这样就支持以及对成形的载荷实现了传递,进而对摩擦也减小了。在工件的尺寸不断的微小化过程中,开口润滑包面积减少幅度不是很大,但在封闭润滑包的面积减少幅度就相对比较大,采用固体润滑剂的过程中由于不存在润滑剂溢出的状况所以就对摩擦系数的影响也较小[2]。 1.2 精密微塑性成形方法分析 微塑性成形工艺及方法的相关研究主要是在微冲压以及微体积成形方面,其中的微体积成形主要是进行的微连接器以及顶杆和叶片等微型的期间精密形成。以螺钉为例,其最小的尺寸只有0.8微米,而微成形胚料的最小直径是0.3微米,

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

塑性成形技术讲解

第二章塑性成形技术 ※塑性成形技术: 利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 ※主要应用: 1)生产各种金属型材、板材和线材; 2)生产承受较大负荷的零件,如曲轴、连杆等; ※塑性成形特点: 1)产品力学性能优于铸件和切削加工件; 2)材料利用率高,生产率高; 3)产品形状不能太复杂; 4)易实现机械化、自动化 ※分类: 1)轧制 2)挤压 3)拉拔 4)锻压:a锻造(自由锻,模锻)。b 冲压 第一节金属塑性成形的物理基础 一、塑性变形的实质 ●宏观:外力,弹性变形,塑性变形(分切应力作用) ●微观(晶体内部):位错滑移和孪晶 ●多晶体:晶粒变形、晶界滑移、晶粒转动 二、塑性变形的分类 ●冷塑性变形:低于再结晶温度以下时发生的变形 钨的再结晶温度在1200度。 ●热塑性变形:高于再结晶温度以上时发生的变形 铅、锡等金属再结晶温度在零度以下。 三、冷塑性变形对金属组织和性能的影响 产生加工硬化:随着变形程度的提高,金属的强度和硬度提高,塑性和韧性下降的现象。 原因:位错密度提高,亚结构细化 2. 产生内应力:变形开裂,抗腐蚀性能降低,采用去应力退火进行消除。 3. 晶粒拉长或破碎,可能产生各向异性的塑性变形→晶格畸变→ 加工硬化→内能上升(不稳定)→加热→原子活力上升→ 晶格重组→内能下降(温度低时,回复。温度高时,再结晶) 四、热塑性变形对金属组织和性能的影响 一)、五种形态:静态回复;静态再结晶;动态回复;动态再结晶;亚动态再结晶

1、静态回复、静态再结晶:变形之后,利用热变形后的余热进行,不需要重新加热。 2、动态回复、动态再结晶:热变形过程中发生的。 3、亚动态再结晶:动态再结晶进行的热变形过程中,终止热变形后,前面发生的动态再结晶未完成而遗留下来的,将继续进行无孕育期的再结晶。 二)、热变形对金属组织和性能的影响 1. 使铸锭或毛坯中的气孔和疏松焊合,晶粒细化,改善夹杂物和第二相等形态和分布,偏析部分消除,使材料成分均匀。 2. 使铸态金属中的各种偏析、第二相和夹杂物等沿变形方向延伸,形成条状的纤维组织,使材料的塑性和冲击韧性增加。 3. 热变形中各个相或晶内偏析沿变形方向伸长成带条状,冷却时形成带状组织,使材料的横向塑性和韧性降低。 4. 细化晶粒。 五、金属的可锻性 可锻性:金属经过压力加工时,获得优质制品的难易程度。 衡量标准:①金属的塑性:塑性越小,可锻性越好 ②变形抗力:变形抗力越小,可锻性越好 1、影响可锻性的因素:金属本质、加工条件 ★金属本质:面心>体心>密排六方 ★化学成分:纯金属>合金,碳钢>合金钢,低碳钢>高碳钢 ★金属的组织:相的组织及分布:固溶体>机械混合物>化合物 晶粒大小:等轴晶>柱状晶;细晶粒>粗晶粒 加热条件: 变形温度↑→塑性↑变形抗力↓→可锻性↑ 变形速度↑→加工硬化→塑性↓变形抗力↓→可锻性↓ 第二节金属的体积成形方法 使金属材料在三维空间的三个方向上都发生变形的塑性成形方法 一、锻造: ●概念:利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定力学性能、一定形状和尺寸锻件的加工方法。 锻件的力学性能一般优于铸件。 ●分类: 1). 作用力来源:手工锻造和机械锻造 2). 锻造温度:热锻(再结晶温度以上)、温锻(回复和再结晶温度之间)和冷锻(回复温度以下)。 3). 工艺特点:自由锻和模锻 ★自由锻:在砧块之间成形 ★模锻:在模锻设备上用模具成形 ★自由锻特点:

棘轮套冷挤压成形工艺及模具设计

棘轮套塑性成形工艺及模具设计 中文摘要:冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。本设计介绍了棘轮套零件结构分析、挤压工艺过程、挤压设备选择、模具结构的设计、凸凹模设计、挤压件质量分析、棘轮套齿形模芯的结构、凸模加工工艺及模具各部件三维造型进行了叙述,并计算了毛坯体积、毛坯尺寸、变形程度、挤压比和挤压力。与常规的棘轮套加工工艺相比,冷挤压成形的棘轮套具有齿形强度高、齿形尺寸精度较高、表面粗糙度值低、材料利用率高、生产效率高、设备投资少等优势。 关键词:冷挤压棘轮套正挤压凸缘

Ratchet sets of plastic forming process and die design (Tongling University ,mechanical Material Forming and Control Technology ,07 mold Zhang Teng) Abstract: Volume precision plastic cold extrusion forming technology is an important component. Cold extrusion is the next in the cold metal blank into the mold cavity, the strong pressure and under a certain speed, forced metal extrusion from the mold cavity to obtain the required shape, size, and has some mechanical performance of extrusion Obviously, the cold extrusion process is to control the metal flow by mold, by transfer to a large number of metal forming volume parts.Ratchet sets introduced structure of parts, extrusion process, extrusion equipment selection, die structure design, punch and die design, extrusion quality analysis, ratchet sets of the structure of tooth punch, punch and die processing of parts, Three-dimensional modeling of the narrative, and calculate the rough size, blank size, deformation, extrusion ratio and extrusion pressure. And conventional processing technology compared to ratchet set, ratchet set of cold extrusion with gear, high strength, high precision gear size, low surface roughness, high utilization ratio, high efficiency, less investment in equipment and other advantages. key words: Cold extrusion Ratchet sets Extrusion Flange

金属半固态成型技术发展详解

4 金属半固态加工 4.1概述 4.1.1半固态加工的概念与特点 4.1.1.1半固态加工的概念 传统的金属成形主要分为两类:一类是金属的液态成形,如铸造、液态模锻、液态轧制、连铸等;另一类是金属的固态成形,如轧制、拉拔、挤压、锻造、冲压等。在20世纪70年代美国麻省理工学院的Flemimgs教授等提出了一种金属成形的新方法,即半固态加工技术。金属半固态加工就是在金属凝固过程中,对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固-液混合浆料(固相组分一般为50%左右),即流变浆料,利用这种流变浆料直接进行成形加工的方法称之为半固态金属的流变成形(rheoforming);如果将流变浆料凝固成锭,接需要将此金属锭切成一定大小,然后重新加热(即坯料的二次加热)至金属的半固态温度区,这时的金属锭一般称为半固态金属坯料。利用金属的半固态坯料进行成形加工,这种方法称之为触变成形(thixoforming)。半固态金属的上述两种成形方法合称为金属的半固态成形或半固态加工(semi-solid forming or processing of metals),目前在国际上,通常将半固态加工简称为SSM(semi-solid metallurgy)。 就金属材料而言,半固态是其从液态向固态转变或从固态向液态转变的中间阶段,特别对于结晶温度区间宽的合金,半固态阶段较长。金属材料在液态、固态和半固态三个阶段均呈现出明显不同的物理特性,利用这些特性,产生了凝固加工、塑性加工和半固态加工等多种金属热加工成形方法。 凝固加工利用液态金属的良好流动性,以完成成形过程中的充填、补缩直至凝固结束。其发展趋势是采用机械压力替代重力充填,从而改善成形件内部质量和尺寸精度.但从凝固机理角度看,凝固加工要想完全消除成形件内部缺陷是极其困难的,甚至是不可能的。 塑性加工利用固态金属在高温下呈现的良好塑性流动性,以完成成形过程中的形变和组织转变。与凝固加工相比,采用塑性加工成形的产品质量明显好,但由于固态金属变形抗力高,所需变形力大,设备也很庞大,因此要消耗大量能源,对于复杂零件往往需要多道成形工序才能完成。因此,塑性加工的发展方向是降低加工能耗和成本、减小变形阻力、提高成形件尺寸精度和表面与内部质量。由此出现了精密模锻、等温锻造和超塑性加工等现代塑性加工方法。 半固态加工是利用金属从液态向固态转变或从固态向液态转变(即液固共存)过程中所具有的特性进行成形的方法。这一新的成形加工方法综合了凝固加工和塑性加工的长处。即加工温度比液态低、变形抗力比固 态小,可一次大变形量加工成形形 状复杂且精度和性能质量要求较高 的零件。所以,国外有的专家将半 固态加工称为21世纪最有前途的材 料成形加工方法。 图4-l表示金属在高温下 三态成形加工方法的相互关系。

精密塑性成形工艺

第一章精密下料 1、生产中评价毛坯剪切质量的技术参数有哪些? 棒料答:f、k静、动剪刀形成的压塌深度;b断面不平度;φ断面倾角;d、d 1 直径和毛坯最小直径;c断面光亮带宽度;L毛坯长度。 2、目前常用的精密下料工艺有:径向夹紧剪切和自动卧式带锯床锯切下料。 第二章钢料少无氧化加热 1、目前钢料少无氧化加热方法有:敞焰少无氧化加热和感应加热。 2、根据用途不同,涂层可分为润滑、保护和保护—润滑三大类。 第三章精密模锻工艺及模具设计 1、精密模锻主要主要应用在哪些方面? 答:一是精化毛坯,及利用精锻工艺取代粗切削加工工序,将精锻件直接进行精加工而取得成品零件;二是精锻零件,即通过精密模锻直接获得成品零件。2、精密模锻的分类有:饼盘类、法兰凸缘类、轴杆类、杯筒类、枝丫类、叉形类。 3、闭式精密模锻成形主要有镦粗、正挤、反挤、侧向挤压和镦粗兼压入等几种变形形式。 4、侧向挤压可分为分流式、汇集式和弯曲式三类。 5、毛坯和锻件氧化皮的清理方法有:酸洗、干法滚筒清理、湿法滚筒清理、喷砂、喷丸、车削、无心磨削、冷水浸、镦粗。 6、精密模锻模具的分类通常有:1)按模锻设备分类:如锤用锻模、螺旋压力机用锻模、机械压力机用锻模、液压机用锻模、高速锤用锻模;2)按凹模结构分类:整体凹模和可分凹模。 7、半闭式分流腔的设置原则是什么? 答:分流腔的设置原则,即分流腔应设置在什么位置最合理,应遵循的原则就是多余金属分流腔应满足的要求,即 1)当模膛中所有难于充满的部位在未充满之前,变形金属不应当被挤入到分流腔,这就是说分流腔的位置应选择在模膛最后充满的部位; 2)多余金属挤入分流腔时不应当伴随变形阻力的提高,即多余金属分流时在模膛内所产生的压力比模膛刚充满时所产生的压力没有增加或增加很小,以免增加总的模锻力和加快模膛的磨损; 此外,从便于切削所产生的小飞边的角度考虑,侧向分流腔应设置在锻件最大横向投影面积对应的模膛(沿分模面)周围。 具体设计时,一般依靠合适的尺寸关系来满足第一个要求;以合理的金属流动方向来满足第二个要求。 8、分流腔的结构型式有:孔式分流腔、轴向分流减压分流孔、环形缝隙式分流腔、热挤压带法兰实心锻件端部环形分流腔、端部轴向分流孔、端部角隙。 第四章挤压工艺及模具设计 1、常见挤压的基本方法:正挤压、反挤压、复合挤压、径向挤压、镦挤复合法。 2、挤压特点即应用范围: 答:1)冷挤压特点及应用范围:采用冷挤压加工可以降低原材料消耗,材料利用率高达70%--80%。在冷挤压中,毛坯金属处于三向压应力状态,有利于提高金属材料的塑性且经挤压后金属材料的晶粒组织更加细小而密实;金属流线不被切断加上所产生的加工硬化特性,可使冷挤压件的强度大为提高;可以获得较高的尺寸精度和较低的表面粗糙度。目前,冷挤压已在机械、汽车、仪表、电器、

精密塑性加工技术的分类原理和特点

精密塑性加工技术精密塑性加工技术的分类、原理和特点 学院:材料科学与工程学院 专业:材料加工工程 姓名:张春丽 学号:2013432116 2013 年7月5日

一精密塑性加工概述 1.1 精密塑性加工技术的概念 精密塑性加工是金属材料通过精密塑性加工的方法获得精化毛坯或最终产品零件的加工工艺,过去称为少/无切削工艺,近年来称为近/净加工,习惯上统称为精密塑性加工。 精密塑性加工技术是新材料技术、现代模具技术、计算机技术和精密测量技术与传统的锻造、冲压、挤压等工艺方法相结合的产物。它使加工的制品达到或接近最终零件产品的形状和尺寸,实现质量与性能的优化,缩短制造周期和降低成本。 1.2 精密塑性加工的特点 (1)材料利用率高采用精密塑性加工工艺生产的制件表面仅留少量的机械切屑加工余量或不留余量。 (2)零件产品性能好采用精密塑性加工工艺生产的零件,其金属纤维沿零件轮廓形状分布,且连续致密。 (3)零件产品尺寸规格的一致性好精密塑性加工一般都通过精锻模、挤压模、精冲模和其他精密模具来实现相应精密零件或制品的生产。同一副模具生产成千上万件、数十万件乃至上百万件的零件产品,仍使产品形状和尺寸精度保持一致。 (4)可实现零件产品质量的有效控制采用数值模拟仿真如体积金属塑性加工的有限元模拟和板料金属塑性加工的有限元技术,选择合适的模拟软件并建立起合理的有限元模型。通过模拟可以获得变形金属在模具型腔中的流动方向和流动速度场、应力场、应变场、温度场和内部损伤等详细信息和加工规律;预测缺陷部位及原因;优化工艺参数,获得所需要的组织结构,实现零件产品的有效控制,提高产品的安全性、可靠性与使用寿命。 (5)生产效率高采用精密塑性加工工艺生产,一是多数精密塑性加工的工序比传统塑性加工工序少;二是多采用数控技术和数控设备来实现生产工艺流程,与传统相比,生产效率可提高数十倍甚至上百倍。 (6)存在的主要问题一是一部分精密塑性加工工具,如精模锻、挤压模的使用寿命有待提高;二是高精度高效专用设备和机械手与机器人的研制与应用。

精密微塑性成形技术的现状及发展趋势论文

精密微塑性成形技术的现状及发展趋势论文引言 微塑性成形技术主要是采用塑性变形的方式进行形成微型零件的工艺方法,在多种复杂形状微小零件作用下能够达到微米量级,所以在微型零件的制造上较为适用。微塑性成形技术并非是传统塑性成形工艺的简单等比例缩小,其作为新的研究领域对实际的发展有着重要促进作用,故此加强这一领域的理论研究就有着实质性意义。 1 精密微塑性成形原理特征及方法分析 1.1 精密微塑性成形原理特征分析 科技的发展带来了生产的效率提升,在微塑性成形技术的发展过程中经历了不同时期的进步,传统的成形工艺按照比例微缩到微观领域在参数上的适应性就失去了。而微塑性成形技术在现阶段已经成了多种学科交叉的边缘技术,实际成形中的润滑以及摩擦也与此同时发生了一些变化,所以宏观摩擦学当中的摩擦理论就不能有效适应。但由于微小尺度下秒面积与体积的增大,所以在摩擦力就对成形造成的影响逐渐扩大,那么润滑就是比较关键的因素。从实际的成形原理来看,在工件进行微缩化的过程中,此时在摩擦力上就会随之加大,压力的加大那么封闭润滑包中的润滑油压强也随之加大,这样就支持以及对成形的载荷实现了传递,进而对摩擦也减小了。在工件的尺寸不断的微小化过程中,开口润滑包面积减少幅度不是很大,但在封闭润滑包的面积减少幅度就相对比较大,采用固体润滑剂的过程中由于不存在润滑剂溢出的状况所以就对摩擦系数的影响也较小。 1.2 精密微塑性成形方法分析 微塑性成形工艺及方法的相关研究主要是在微冲压以及微体积成形方面,其中的微体积成形主要是进行的微连接器以及顶杆和叶片等微型的期间精密形成。以螺钉为例,其最小的尺寸只有0.8 微米,而微成形胚料的最小直径是0.3 微米,在模压成形的微结构构建沟槽的最小宽度能够达到二百纳米。另外在微冲压成形这一方法上最为重要的就是进行的`薄板微深拉伸以及增量成形等方法。微型器件的微塑性成形技术属于新兴的研究领域,在成形的方法上主要就是实现毫米级的微型器件精密微成形,在微塑性成形技术的不断发展下,这一技术会进一步的优化。 2 精密微塑性成形技术工艺发展现状及发展趋势 2.1 精密微塑成形技术工艺发展现状分析 精密微塑成形技术在实际的发展过程中也面临着一些问题,在尺寸效应问题上体现的较为显著。微塑性成形的发展领域中,试样尺寸当达到亚毫米或者四微米尺寸的时候,试样的物理特征及内部的结果就会发生变化,所以在性能参数与成形工艺参数就会存在不相

塑性成形方法

第五节其它塑性成形方法 随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件。其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。 一、挤压 挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法。 挤压法的特点: (1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。 (2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。 (3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3.2~0.4μ m,从而 (4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能。 (5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化。 挤压方法的分类: 1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:

(1)正挤压金属流动方向与凸模运动方向相同,如图2-69所示。 (2)反挤压金属流动方向与凸模运动方向相反,如图2-70所示。 (3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2-71所示。 (4)径向挤压金属流动方向与凸模运动方向成90°角,如图2-72所示。 图2-69 正挤压 图2-70 反挤压

复合成型

蜂窝v 过去复合材料曲面件一般都用手工铺层,但是手工铺层效率太低,压实不好,纤维有皱折,质量不易保证,而机械化铺层适用于平面或简单曲面件,对于类似钣金折弯件、引伸件和压延件则难度很大甚至无法实现。比较可行的办法是先将预浸料通过铺带机铺成层压件(一般平面就可以),再通过热隔膜成型,然后通过热压罐支持的方法制成产品。 对“热隔模成型”一词,国外资料中有“Hot Drape forming”和“Hot Diaphragm forming”两种解释,事实上它们是一回事,前者应翻译为热压垂帘成型或覆盖成型,后者即直译为热隔膜成型。因为“垂帘”的意思本身即指工作过程中隔膜像一个垂帘一样盖在产品和工装上,所以统一用热隔膜成型比较确切。 热隔膜成型概念 热隔膜成型是一种复合材料成型方法,即将预浸的复合材料层压后放置于模具上,通过一种特制隔膜的辅助作用经过抽真空和加热等方法,将层压件压向模具,形成所需形状。 复合材料隔膜成型类似于金属材料的引深/压延以及折弯成型。它不但可以成型一些形状复杂的产品,而且由于隔膜的作用,可以在成型过程中保证纤维不滑动、不起皱、无波浪,从而提高产品强度和表面质量,很适合于内设件、曲面复杂件和受力件(如一些梁和长桁等)的成型。热隔膜成型除用于复材件热成型外,还可用于各种蜂窝的胶接和压实,包括飞机内设件的蜂窝胶接、铝合金蜂窝胶接和真空压实等。 虽然RTM、RFI等技术也可以制造成多种此类产品,但它们是通过在纤维注入或真空吸入树酯解决的,树酯的含量、分布很难达到满意的程度。而隔膜成型用的是预浸料,其本身

树酯含量是有保证的,再通过隔膜的作用使之不起皱和有序滑移,同时保证强度不会降低或不会明显降低,并保证厚度。 热隔膜成型方法可用于热塑性及热固性树脂预浸的材料,通过热压罐或不需热压罐(如蜂窝夹芯胶接)固化。隔膜要求比较严格,可用硅橡胶代替特用的聚合隔膜以降低成本。产品拉深的深度与其直径之比最大可达到4∶1。用于蜂窝胶接时,一般只需在设备上抽真空压实(De-Bulking),无需进热压罐。 热隔膜成型分类 热隔膜成型从成型方法上看有“正向成型”和“反向成型”2种,前者即热隔膜从上面将材料往下压向模具,后者是热隔膜从下往上包住材料压向模具;从使用的预浸料所含树酯材料来说有“热固性成型”和“热塑性成型”之分;从使用隔膜的数量上来说有“单隔膜成型”和“双隔膜成型”之分。 对于拉深率大、曲度大的产品,热隔膜成型预浸件的基料最好采用热塑性材料,因为要保证其成型就必须加温,并使之在加到所需温度后能保证其成型有相当的塑性。其中聚醚醚酮(PEEK)和以PEEK为基体的碳纤维复合材料(APC-2)是比较常用的材料,它具有耐高温、耐蚀、阻燃等优点,但聚苯硫醚(Poly Phenylene Sulfide,PPS)被认为是更好的预浸基料。其熔点为280℃,热变形温度为260℃,特点是耐热,寿命长。与热固性树脂相比,热塑性树脂形成的预浸材料虽然具有除成型复杂件外的施工快、周期短、可重复使用、贮存期长、容易修理、机械性能优良、韧性好、抗冲击、耐湿耐热等优点,但是由于其原材料成本高、预浸料粘性与铺覆性差,最高成形温度达350~450℃,一般热压罐温度不能满足其要求,且热塑性树脂的生产经验不足,目前在飞行器结构中尚处于研究试用阶段,应用有限。

塑性成形新技术概况

材料成形设备小论文 塑性成形新技术概况 系名 专 学号 学生姓名 指导教师 2016年 4 月12 日

摘要:文章介绍了当前塑性成形加工中的微成形、超塑成型、柔性加工、半固态加工等各种新技术,并分别阐述了各新技术的相关概念、特点、发展趋势等。这些相关介绍及发展概况对理解塑性成形技术及推广和运用高新技术,推动塑性成形的进一步发展具有一定参考意义。 关键词:塑性成形;新技术;发展概况 1 引言 塑性成形就是利用材料的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。塑性成形技术可分为板材成形和体积成形两大类。板材成形是使用成型设备通过模具对金属板料在室温下加压以获得所需形状和尺寸零件的成形方法,习惯上也称为冲压或冷冲压。板料成形可分为分离工序和成形工序。分离工序俗称冲裁,包括落料、冲孔、修边等。成形工序包括弯曲、拉伸、胀形、翻边等。体积成形是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要包括锻造、轧制、挤压或拉拔等。 塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,到21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。工业部门的广泛需求为塑性成形新技术的发展提供了原动力和空前的机遇。[1] 2 塑性成形新技术 随着科学技术的迅速发展,通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术发展速度之快,学科领域交叉之广泛是过去任何时代无法比拟的,塑性成形新工艺和新设备不断地涌现,出现了高速高能成形、少无切削、超塑成型、柔性加工、半固态加工等多种塑性加工新技术。掌握塑性成形技术的现状和发展趋势,有助于及时研究、推广和应用高新技术,推动塑性成形技术的持续发展。 3.1 高速高能成形 高速高能成形是一种在极短时间内释放高能量而使金属变形的成形方法。 高速高能成形的历史可追溯到一百多年前。但由于成本太高及当时工业发展的局限,该工艺并未得到应用。随着航空及导弹技术的发展,高速高能成形方法才进入到实际应用。 与常规成形方法相比,高速高能成形具有以下特点: 1)模具简单:仅需要凹模即可成形。可节省模具材料,缩短模具制造周期,

金属塑性成型原理

第一章 1.什么是金属的塑性什么是塑性成形塑性成形有何特点 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。 2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;

金属塑性成形技术

文献综述 题目金属塑性成形 学院航空制造工程学院专业机械制造及其自动化姓名段盼光 学号140308020101 2015年6月10日

金属塑性成形 () 【摘要】金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一,包括锻、冲、挤、轧,拉、辊、旋、辗等工艺技术。结合近代科技,金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一。文章主要对塑性成形的基本原理、方法以及应用做了综合介绍。文章还列举了塑性成形在工业生产中的具体应用实例,收集了国内外关于塑性成形的一些最新研究进展。最后针对塑性成形技术的发展提出了一些建议和对该技术在以后的生产中的展望。 【关键词】塑性成形原理应用展望 【abstract】Metal plastic forming technology is the most basic,oldest and important processing means in machinery, metallurgy, automobile tractor, electrician instruments, the space industry, including forging, blunt, extrusion, rolling, pull, roller, spin and rolling process technology. With modern technology, metal forming technology of positive precision, high efficiency, energy saving, section, the clean production direction development, is the national industrial development of one of the most basic technology. The thesis mainly introduced the principle、method and application of plastic forming.In addition,the thesis also listed some specific application examples about plastic forming in industrial production and collected some latest research progress about plastic forming. Finally, in allusion to the development of plastic forming ,I have given some personal opinions and made a good expectation for the technology . 【key words】plastic forming principle application expectation 引言 金属塑性成形就是利用金属的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。由于工艺本身的特点,它虽然有很长的发展历史却又在不断的研究和创新之中,新工艺、新方法层出不穷。这些研究和创新的基本目的不外乎增加材料塑性、提高成形零件的精度及性能、降低变形力、增加模具使用寿命和节约能源等。而“塑性成形原理”正是实现这些目的的基础理论知识。金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。除了这些传统的应用外金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一。 一、金属塑性成形机理 1、冷态下的塑性成形 塑性成形所用的金属材料绝大部分是多晶体,其变形过程较单晶体的复杂得多,这主要是与多晶体的结构特点有关。多晶体是由许多结晶方向不同的晶粒组成。每个晶粒可看成是一个单晶体。晶粒之间存在厚度相当小的晶界。

精密微塑性成形技术的现状及发展趋势

精密微塑性成形技术的现状及发展趋势本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 引言 微塑性成形技术主要是采用塑性变形的方式进行形成微型零件的工艺方法,在多种复杂形状微小零件作用下能够达到微米量级,所以在微型零件的制造上较为适用。微塑性成形技术并非是传统塑性成形工艺的简单等比例缩小,其作为新的研究领域对实际的发展有着重要促进作用,故此加强这一领域的理论研究就有着实质性意义。 1 精密微塑性成形原理特征及方法分析 精密微塑性成形原理特征分析 科技的发展带来了生产的效率提升,在微塑性成形技术的发展过程中经历了不同时期的进步,传统的成形工艺按照比例微缩到微观领域在参数上的适应性就失去了。而微塑性成形技术在现阶段已经成了多种学科交叉的边缘技术,实际成形中的润滑以及摩擦也与此同时发生了一些变化,所以宏观摩擦学当中的摩擦理论就不能有效适应。但由于微小尺度下秒面积与体积的增大,所以在摩擦力就对成形造成的影响逐渐

扩大,那么润滑就是比较关键的因素。从实际的成形原理来看,在工件进行微缩化的过程中,此时在摩擦力上就会随之加大,压力的加大那么封闭润滑包中的润滑油压强也随之加大,这样就支持以及对成形的载荷实现了传递,进而对摩擦也减小了。在工件的尺寸不断的微小化过程中,开口润滑包面积减少幅度不是很大,但在封闭润滑包的面积减少幅度就相对比较大,采用固体润滑剂的过程中由于不存在润滑剂溢出的状况所以就对摩擦系数的影响也较小。 精密微塑性成形方法分析 微塑性成形工艺及方法的相关研究主要是在微冲压以及微体积成形方面,其中的微体积成形主要是进行的微连接器以及顶杆和叶片等微型的期间精密形成。以螺钉为例,其最小的尺寸只有微米,而微成形胚料的最小直径是微米,在模压成形的微结构构建沟槽的最小宽度能够达到二百纳米。另外在微冲压成形这一方法上最为重要的就是进行的薄板微深拉伸以及增量成形等方法。微型器件的微塑性成形技术属于新兴的研究领域,在成形的方法上主要就是实现毫米级的微型器件精密微成形,在微塑性成形技术的不断发展下,这一技术会进一步的优化。 2 精密微塑性成形技术工艺发展现状及发展趋势

相关文档
最新文档