如何将两个或者多个视频拼接在一起,视频拼接非常简单!

如何将两个或者多个视频拼接在一起,视频拼接非常简单!
如何将两个或者多个视频拼接在一起,视频拼接非常简单!

如何将两个或者多个视频拼接在一起,视频拼接非常简单!

现在,我们经常会用手机拍一些短视频。但是有时候我们需要把这些视频合并在一起,以便于观看的连续性。那么,怎么把视频合并起来呢?视频合并,顾名思义就是把多个视频片段合并成一个完整的视频片段,它可以用于电影、电视剧方面,也可以用于老师制作视频课件方面。对于刚接触视频编辑的小伙伴来说,要想找到一款简单方便且实用的视频合并软件,还是有点难度的。为此,小编特意整理了一款好用的视频合并软件和使用方法给大家,有需要的小伙伴可以进行下载使用哦。

使用工具:视频转换器https://www.360docs.net/doc/f45787653.html,

方法步骤:

双击运行迅捷视频转换器,弹出下图所示界面,进入到软件界面。点击迅捷视频转换器界面“合并视频”中的“添加文件”,然后在弹出的打开对话框中选择并打开要进行合并的所有视频。也可以选择直接把视频素材放入文件夹中,然后添加直接添加文件夹合并,

我这里是添加了两个不同格式的视频素材,要将这两个视频合并成一个完整的视频。我们可以自己更改视频长度,则选择需要修改的视频,然后点击下面的剪辑,选择左侧的开始时间和结束时间,然后确认。设置好后点击“合并视频”按钮。

先选择视频导出的格式,一般没有特殊情况选择MP4格式就行了。接

着设置视频输出目录。点击输出设置后面的设置按钮可以自行设置视频导出的比特率、视音频编码器、视频分辨率以及音频声道等。最后点击“合并视频”或者“开始转换”。

导出的时候会有相关的导出进度显示。如果合并的视频片段较多,视频文件比较大,那导出时间相应的也就会久一点,不过个人觉得也还是挺快的。导出完成后可以播放刚刚导出的视频,也可以选择打开视频文件所在的文件夹,或者是关闭软件。

今天用到的这个工具可远不止这样简单哦,可以让视频画面裁剪和视频分割等。一般的视频编辑都可以用该工具来实现,迅捷视频转换器

的也可以转换音视频文件的格式。

全景拼接算法简介

全景拼接算法简介 罗海风 2014.12.11 目录 1.概述 (1) 2.主要步骤 (2) 2.1. 图像获取 (2) 2.2鱼眼图像矫正 (2) 2.3图片匹配 (2) 2.4 图片拼接 (2) 2.5 图像融合 (2) 2.6全景图像投射 (2) 3.算法技术点介绍 (3) 3.1图像获取 (3) 3.2鱼眼图像矫正 (4) 3.3图片匹配 (4) 3.3.1与特征无关的匹配方式 (4) 3.3.2根据特征进行匹配的方式 (5) 3.4图片拼接 (5) 3.5图像融合 (6) 3.5.1 平均叠加法 (6) 3.5.2 线性法 (7) 3.5.3 加权函数法 (7) 3.5.4 多段融合法(多分辨率样条) (7) 3.6全景图像投射 (7) 3.6.1 柱面全景图 (7) 3.6.2 球面全景图 (7) 3.6.3 多面体全景图 (8) 4.开源图像算法库OPENCV拼接模块 (8) 4.1 STITCHING_DETAIL程序运行流程 (8) 4.2 STITCHING_DETAIL程序接口介绍 (9) 4.3测试效果 (10) 5.小结 (10) 参考资料 (10) 1.概述 全景视图是指在一个固定的观察点,能够提供水平方向上方位角360度,垂直方向上180度的自由浏览(简化的全景只能提供水平方向360度的浏览)。 目前市场中的全景摄像机主要分为两种:鱼眼全景摄像机和多镜头全景摄像机。鱼眼全景摄像机是由单传感器配套特殊的超广角鱼眼镜头,并依赖图像校正技术还原图像的鱼眼全景摄像机。鱼眼全景摄像机

最终生成的全景图像即使经过校正也依然存在一定程度的失真和不自然。多镜头全景摄像机可以避免鱼眼镜头图像失真的缺点,但是或多或少也会存在融合边缘效果不真实、角度有偏差或分割融合后有"附加"感的缺撼。 本文档中根据目前所查找到的资料,对多镜头全景视图拼接算法原理进行简要的介绍。 2.主要步骤 2.1. 图像获取 通过相机取得图像。通常需要根据失真较大的鱼眼镜头和失真较小的窄视角镜头决定算法处理方式。单镜头和多镜头相机在算法处理上也会有一定差别。 2.2鱼眼图像矫正 若相机镜头为鱼眼镜头,则图像需要进行特定的畸变展开处理。 2.3图片匹配 根据素材图片中相互重叠的部分估算图片间匹配关系。主要匹配方式分两种: A.与特征无关的匹配方式。最常见的即为相关性匹配。 B.根据特征进行匹配的方式。最常见的即为根据SIFT,SURF等素材图片中局部特征点,匹配相邻图片中的特征点,估算图像间投影变换矩阵。 2.4 图片拼接 根据步骤2.3所得图片相互关系,将相邻图片拼接至一起。 2.5 图像融合 对拼接得到的全景图进行融合处理。 2.6 全景图像投射 将合成后的全景图投射至球面、柱面或立方体上并建立合适的视点,实现全方位的视图浏览。

360°全景拼接技术简介

本文为技术简介,详细算法可以参考后面的参考资料。 1.概述 全景图像(Panorama)通常是指大于双眼正常有效视角(大约水平90度,垂直70度)或双眼余光视角(大约水平180度,垂直90度),在一个固定的观察点,能够提供水平方向上方位角360度,垂直方向上180度的自由浏览(简化的全景只能提供水平方向360度的浏览),乃至360度完整场景范围拍摄的照片。 生成全景图的方法,通常有三种:一是利用专用照相设备,例如全景相机,带鱼眼透镜的广角相机等。其优点是容易得到全景图像且不需要复杂的建模过程,但是由于这些专用设备价格昂贵,不宜普遍适用。二是计算机绘制方法,该方法利用计算机图形学技术建立场景模型,然后绘制虚拟环境的全景图。其优点是绘制全景图的过程不需要实时控制,而且可以绘制出复杂的场景和真实感较强的光照模型,但缺点是建模过程相当繁琐和费时。三是利用普通数码相机和固定三脚架拍摄一系列的相互重叠的照片,并利用一定的算法将这些照片拼接起来,从而生成全景图。 近年来随着图像处理技术的研究和发展,图像拼接技术已经成为计算机视觉和计算机图形学的研究焦点。目前出现的关于图像拼接的商业软件主要有Ptgui、Ulead Cool 360及ArcSoft Panorama Maker等,这些商业软件多是半自动过程,需要排列好图像顺序,或手动点取特征点。 2.全景图类型: 1)柱面全景图 柱面全景图技术较为简单,发展也较为成熟,成为大多数构建全景图虚拟场景的基础。这种方式是将全景图像投影到一个以相机视点为中心的圆柱体内表面,

视线的旋转运动即转化为柱面上的坐标平移运动。这种全景图可以实现水平方向360度连续旋转,而垂直方向的俯仰角度则由于圆柱体的限制要小于180度。柱面全景图有两个显著优点:一是圆柱面可以展开成一个矩形平面,所以可以把柱面全景图展开成一个矩形图像,而且直接利用其在计算机内的图像格式进行存取;二是数据的采集要比立方体和球体都简单。在大多数实际应用中,360度的环视环境即可较好地表达出空间信息,所以柱面全景图模型是较为理想的一种选择。 2)立方体全景图 立方体全景图由六个平面投影图像组成,即将全景图投影到一个立方体的内表面上。这种方式下图像的采集和相机的标定难度较大,需要使用特殊的拍摄装置,依次在水平、垂直方向每隔90度拍摄一张照片,获得六张可以无缝拼接于一个立方体的六个面上的照片。这种方法可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。 3)球面全景图 球面全景图是指将源图像拼接成一个球体的形状,以相机视点为球心,将图像投影到球体的内表面。与立方体全景图类似,球面全景图也可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。球面全景图的拼接过程及存储方式较柱面全景图大为复杂,这是因为生成球面全景图的过程中需要将平面图像投影成球面图像,而球面为不可展曲面。因此这是一个平面图像水平和垂直方向的非线性投影过程,同时也很难找到与球面对应且易于存取的数据结构来存放球面图像。目前国内外在这方面提出的研究算法较其他类型全景图少,而且在可靠性和效率方面也存在一些问题。 3.主要内容

360度全景摄像技术原理介绍

360度全景摄像技术原理介绍 通常只有在必须的情况下,我们才费尽周折地试图在狭小空间安装视频监控设备。就当人们开始将要习惯忍受这样的架设行为时(固有的需求矛盾所制),悄然产生一种新生力量---- 360度全景摄像。 以往我们在狭小空间试图构建监控系统,无外乎会采用几种方案:短焦距镜头摄像机、调整安装位置、或多摄像机联动对射等。但以上几种方式都存在着不同的应用缺陷;选择短焦距镜头摄像机时,水平可视范围小于80度(广角也超不过90度),因而监控范围较小;调整安装位置,往往受到客观环境的制约而影响稳定安装(例如一面是玻璃、一面是门、顶上有电线或无法承重的装饰吊顶等等);选择多摄像机联动对射,不仅增加了设备投入的成本,也使得施工变得更加繁琐。 一360度全景摄像技术简介 顾名思义,360度全景摄像就是一次性收录前后左右的所有图像信息,没有后期合成,更没有多镜头拼接。其原理依据仿生学(鱼眼构造如图1)采用物理光学的球面镜透射加反射原理一次性将水平360度,垂直180度的信息成像(如图2),再采用硬件自带的软件进行转换,以人眼习惯的方式呈现出画面。 图1 鱼眼结构 图2 鱼眼镜头的硬件示意图 鱼眼镜头是一种超广角的特殊镜头,其视觉效果类似于鱼眼观察水面上的景物。鱼的眼睛类似人眼构造,但是相对于扁圆形的人眼水晶体,鱼眼水晶体是圆球形,虽然只能看到比较近的物体,但却拥有更大的视角。 图3中,人眼看水中实物,由于实物反射的光线在水中发生折射,使人误以为物体处于虚像的位置(例如水中筷子弯曲现象)。根据折射原理,光从空气斜射入水等介质中时,折射角小于入射角;光从水等介质斜射入空气中时,折射角大于入射角。也可以概括为,光从一种介质斜射入另一种介质时,传播方向一般会发生变化。鱼眼镜头就是利用折射原理,本着拥有更大的球面弧度(类似鱼眼的球形水晶体),成像平面离透镜更近(鱼眼的水晶体到视网膜距离很近)的设计思想,进行开发制造的。 一般来说,焦距越短,视角越大,而视角越大,因光学原理产生的变形也就越强烈。为了达到水平360度,垂直180度的超大视角,鱼眼镜头允许桶形畸变合理存在,除了画面中心的景物保持不变,其他本应水平或垂直的景物都发生了相应的变化。为了把畸变后的图象转化为适合于人眼观看的正常图像,需要通过软件对图像进行坐标变换,并进行图像修正等处理。 图4是以日本FXC鱼眼镜头为例,简要介绍360摄像头软件处理的基本流程:

视频拼接综述

视频拼接全景摄像机综述 作者:上海凯视力成信息科技有限公司 随着摄像机从模拟走向网络,“高清”日渐成为市场关注的热点,它的出现让人们可以看得更清楚,获得更多的细节。但是,客户在从之前“只能看见人脸”到现在“能看清人脸”的同时,又提出了另一方面的要求,那就是“看得更广”,即在同一个场景中能看到更多的东西。对此,原来是通过用几只摄像头覆盖一个区域,或用快球来回巡航扫描去解决。但在某些场合,这些方案还不能完全满足客户的要求,比如客户需要在同一个画面里确定人的移动,或需要用同一个场景中监看到的事物去说明一些问题,这个时候就需要全景摄像机,本文试图对全景摄像机做一综述。作者:上海凯视力成信息科技有限公司 1.全景摄像机的好处 全景摄像机可以带来如下好处: (1)超宽监控视角。一枚鱼眼镜头尽收360度全景,四周的影像一次尽收眼底,完全消灭死角。 (2)降低成本。一台好的全景摄像机可以替代多台传统摄像机的应用,这种360度实时全景监控能力,使得无需为涵盖整个监控区域而安装多台摄像机,因 而节省了摄像机硬件投资。监控摄像机路数大大减少,可以节省配套设备, 如镜头、防护罩、布线、电源、录像、显示等相应配件和设备的成本,还可 降低施工布线难度,节省安装时间、人工费用以及后续维护费用。 (3)虚拟PTZ技术。采用虚拟PTZ技术,可以放大或移动监控视野内的图像区域,当转变方向观察另一个图像区域时,不会发出任何噪音,隐秘且不易察觉。 由于没有机械移动部件,不需要时刻的进行机械化运转,全景摄像机不会发 生任何磨损,产品结实耐用,使用寿命大大延长。全景环视的图像失真矫正 可对多个图像区进行,这样,与机械PTZ摄像机不同,全景摄像机能同时观 察和摄录多个不同的区域。作者:上海凯视力成信息科技有限公司

图像拼接算法及实现(一).

图像拼接算法及实现(一) 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

全景视频处理技术分析

龙源期刊网 https://www.360docs.net/doc/f45787653.html, 全景视频处理技术分析 作者:王永亮王晨余世水 来源:《传播力研究》2019年第22期 摘要:在21世纪,VR技术日益兴起,使全景视频更加清晰,进而给予用户更为良好的视觉体验。目前,全景视频是由多个镜头对物体进行悬拍、环拍、仰拍等,同时,用图像拼接技术对各种图形实施无缝拼接,并借助压缩编码与网络传输技术使之形成清晰、完整的全景视频。本文将简单分析全景视频处理技术,希望能为视频拍摄工作提供参考与借鉴。 关键词:VR技术;全景视频处理技术;摄像师 在VR技术的支持下,当前全景视频充分体现了其内容的审美理念与构思、情感等。其次,全景视频处理技巧已呈现出多样化特征,分类方式不同,视频拍摄技巧种类也不尽相同,按照所拍摄景物的距离及其视角来划分,全景视频拍摄技巧可分为近景、远景与特写;从摄像机运动方式来区分,拍摄技巧讲究360度环拍、移动、悬拍、推拉与仰拍等;按照画面处理方 式来划分,全景视频加工技巧有入画、定格和淡出等不同方式。此外,全景视频处理工作要求摄像师应结合视频艺术创作标准,树立最佳镜头意识,正确运用各种拍摄技巧,增加全景视频的深意,凸显出视频内容所包含的文化底蕴和审美理念,努力提高作品播放效果。本文将简单介绍全景视频处理技术的基本要素,并系统论述如何提高全景视频拍摄效果。 一、全景视频处理技术的基本要素 (一)图像采集技术 从整体结构来看,当前全景视频图像采集方式主要分为以下三种: 1.广角镜头采集方式。这种拍摄方式所选用的视角大多为180度的超广角或者用接近鱼眼的视角来采集全局场景,完成初步采集后予以精细化处理。 2.折反射方式。折反射方式与广角镜头采集方式具有相似性,会通过适当降低分辨率来扩大拍摄范围与视角,这样难免会使部分画面发生变形,对此,需要在完成画面采集之后予以精心加工和校正。 3.云台摄像机和多路摄像机方式。目前,云台摄像机和多路摄像机是最常见的图像采集设备,两种摄像机均能够运用图像拼接技术将所拍摄的图像合成一幅全景图像,只是结构各有差异。云台摄像机是通过高速旋转环绕拍摄景物,然后运行拼接技术合成全景。多路摄像机方式是由八个摄像机组构成360度的拍摄视角,使同一时刻所拍摄的景物经过拼接后构成全景。 (二)视频拼接技术

图像拼接算法及实现.doc

图像拼接算法及实现(一) 来源:中国论文下载中心 [ 09-06-03 16:36:00 ] 作者:陈挺编辑:studa090420 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration. Key words: image mosaic, image registration, image fusion, panorama 第一章绪论

虚拟现实全景视频技术详解

虚拟现实全景视频技术详解 虚拟现实全景视频就是可以上下左右360度任意角度拖动观看的动态视频。360度全景视频的每一帧画面都是一个360度的全景,观看视频的时候可以360度任意角度拖动观看视频,让我们有一种真正意义上身临其境的感觉,另外通过佩戴VR眼镜观看会有更强的沉浸感。可以让观众无死角的任意选择自己喜欢的角度,缩小或放大视频的一种互动型很强的新观影形式。想拍虚拟现实全景视频这些问题你想过吗? 1..拍摄设备覆盖范围 拍摄使用的全景拍摄设备都是经过相机参数标定的。而在拍摄过程中,我们还需要解决多相机的采集同步的问题。常见的同步方式有:闪光同步(Flash),即检测所有相机视频帧内的“闪光”,如明亮帧,白色帧,利用这个信号进行同步;运动同步(Motion),即检测所有相机视频帧内的运动信息,通过匹配各帧运动量进行同步;声音同步(audio spectrum),即分析所有相机采集到的声音频谱进行同步;以及手动同步(manual),即根据某一个时刻的所有相机采集的视频帧手动进行微调。 2.相机同步方式 完成同步采集后,需要将多相机采集的视频帧进行拼接,而在拼接之前,考虑到各帧是相机在不同角度下拍摄得到的,所以他们并不在同一投影

平面上,如果对重叠的图像直接进行无缝拼接,会破坏实际景物的视觉一致性。所以需要先对图像进行投影变换,再进行拼接。一般有平面投影、柱面投影、球面投影和鱼眼投影等。 3.投影变换 完成投影变换后,之后的步骤就是拼接,拼接过程主要有特征提取—特征匹配—配准—融合等步骤。常用的特征提取方法有SIFT、SURF、ORB、BRIEF等,下图所示为SIFT特征提取过程。 4.特征点匹配结果 配准的目的是根据几何运动模型,将图像注册到同一个坐标系中,在多幅图像配准的过程中,采用的几何运动模型主要有:平移模型、相似性模型、仿射模型和透视模型等。 完成上述各个步骤后,拼接工作基本完成。但是,由于不同角度的画面是通过不同的相机采集得到,最终全景图像会遇到各个区域的曝光不一致的情况,通过曝光补偿的技术可以使得拼接后的全景图像曝光一致。 对于用户而言,针对编码后的全景视频,要进行终端显示观看。常用的显示设备有PC、Pad、Phone、头显等。显示过程就是将全景视频进行相应投影,如进行柱面、球面投影等。 5.虚拟现实全景视频在旅游行业的应用

高清图像全景拼接

高清图像全景拼接 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

全景拼接白皮书

目录

1 方案概述 1.1 市场需求 全景拼接系统,是以画面拼接技术为基础,将周围相邻的若干个摄像机画面拼接成一幅画面。传统视频监控系统,用户如果要实时监控一片连续的大范围区域,最常见的做法是,安装多个摄像机,每个负责一小片区域,该方案的主要缺陷是,用户没有画面整体感,很难连续追踪整个区域内的某个目标。全景拼接系统,能很好的解决上述问题。 传统意义上的全景拼接系统,虽然解决了“看的广”、“看的画面连续”的问题,但并没有解决“看的清”的问题。因此宇视的全景拼接系统中,增加了球机联动功能,以解决“看的清”的问题,一台10倍以上光学放大的球机可以看清100米甚至更远的目标。球机联动功能,是以枪球映射技术为基础,将全景画面坐标系和球机画面坐标系关联映射起来,用户只要在全景画面中拉框,球机就自动转动和变倍到指定位置,对用户来说这是一个设备,而不是孤立的两个设备。 全景拼接系统,主要应用于大范围监控,如广场、公园、景区、机场停机坪、机场大厅、物流仓库、大型生产车间、交通枢纽等。 1.2 方案特点 ●画面拼接:支持3个高清相机(最高1080P)的拼接。 ●画面拼接:拼接后最高分辨率可以达到5760×1080。 ●球机联动:支持1个球机(最高1080P)的联动。 ●球机联动:支持在全景画面中拉框放大,自动联动球机转动和变倍到指定位置。 2 组网模型 2.1 全景拼接 2.1.1 逻辑框图(或拓扑图) 2.1.2 原理描述 拼接原理: 拼接前提:用于拼接的摄像机,在图像内容上,两两相交。

视频图像拼接技术研究.

南京理工大学 硕士学位论文 视频图像拼接技术研究 姓名:林学晶 申请学位级别:硕士 专业:控制理论与控制工程 指导教师:茅耀斌 20100620 硕士论文视频图像拼接技术研究 摘要 视频图像拼接技术是视频应用领域研究的一个热门课题,可广泛应用于全景图生成、双目机器人应用等多个方面。本文主要针对三类视频图像序列拼接应用进行了研究: 针对仅存在平移变换关系的视频图像序列,本文研究了一种基于频域的相位相关方法。论文首先介绍了相位相关方法的原理和利用这种方法实现视频拼接的算法流程,然后通过实验证明该方法适用于帧与帧问有较大重叠区域的视频序列,并且允许视频中存在少量小的运动物体。在此基础上设计实现了适用于小平移视频序列的实时拼接软件。 针对在不同的视角位置同时采集得到的双实时视频图像序列,本文研究了两种基于点特征的拼接技术。论文首先介绍了Harris角点和SIFT算子的原理,然后阐述了基于点特征的双摄像头拼接技术的各个环节,包括特征点匹配、RANSAC去除误匹配点对、透视变换矩阵模型参数计算、插值处理和融合等。本

文比较了几种图像的融合方法,采用了一种自动调节亮度值和加权融合方法,消除了图像拼接后可能出现的拼接缝隙和颜色过渡不自然的现象。由于Harris角点易受噪声影响,本文提出了一种投票机制的改进方法,增强了Harris角点定位的准确性。本文最后搭建了基于DirectShow的双摄像头采集平台、设计实现了基于Harris角点和SIFT算子两种点特征的双摄像头实时视频拼接程序,前者适用于摄像机采集的视频图像存在平移、旋转的情况,后者适用于存在平移、旋转和尺度缩放的情况。 本文最后针对低分辨率图像序列,研究了基于SIFT算子的拼接问题,并将之应用于手机连续抓拍文本序列图像的拼接。关键词:相位相关方法,Harris角点,RANSAC,透视变换矩阵,加权融合 Abstract硕士论文 Abstract Videomosaicisapopulartopiconvideotechnologythatshowssignificantimportant applicationforpanoramicimages,binocularrobotand SOon.Differenttechniquesofvideomosaic areusedindifferentapplications.Inthispaper,threetypesofcasearestudied: Themethodofphasecorrelationbasedonfrequencydomainisstudiedforavideo

二维图像拼接技术

专业设计报告 设计题目:基于机器人视觉的图像处理方法研究 ——二维图像处理 姓名:学号: 学院:专业: 指导教师: 同组人姓名:

摘要: 在实际应用中,经常会用到超过人眼视野范围甚至是全方位的高分辨率图像,普通数码相机的视野范围往往难以满足要求。为了得到大视野范围的图像,人们使用广角镜头和扫描式相机进行拍摄。但这些设备往往价格昂贵、使用复杂,此外,广角镜头的图像边缘会难以避免的产生扭曲变形,不利于一些场合的应用。为了在不降低图像分辨率的条件下获取大视野范围的图像,人们提出了图像拼接技术,将普通图像或视频图像进行无缝拼接,得到超宽视角甚至360度的全景图,这样就可以用普通数码相机实现场面宏大的景物拍摄。利用计算机进行匹配,将多幅具有重叠关系的图像拼合成为一幅具有更大视野范围的图像,这就是图像拼接的目的。 图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。最初主要是对大量航拍或卫星的图像的整合,也可运用于军事领域网的夜视成像技术,。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。在医学图像处理方面,把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,图像拼接技术的应用也日益广泛。 通过本课题的研究,初步了解图像拼接技术的基本应用,并了解sift语言的应用,将两幅具有相同特征点的图拼接在一起,实现二维图像的初步拼接处理。 关键词: 图像获取,图像配准,图像融合,图像合成,SIFT。 一、设计的任务和目的 二维和三维图像测量方法,具有非接触,自扫描,高精度的优点,已得到广泛应用。但在保证高精度的条件下,要实现大范围,多参数测量,单纯提高摄像机性能往往受到限制,而且成本高。图像拼接技术能够实现上述测量目的,达到较高的性能价格比。二维图像拼接是利用已获得的多幅被测物图像,提取图像间的公共特性,并通过公共特征将多图数据统一到同一坐标下,从而挖掘出数据中的深层次信息。 二维图像拼接依据特征信息提取方法的不同,可以分为基于区域和基于特征两种。基于区域的拼接一般通过求相关系数实现,计算量大,运行时间长。基于特征的拼接可以提取有旋转,平移,缩放不变性的不变量,具有快速,准确的特点,在工业测量中还可人为加入特制标记,使测量更有实用性。 图像拼接的关键是精确找出相邻图像中重叠部分的位置,然后确定两张图像的变换关系,然后进行拼接和拼缝融合。但是由于照相机受环境和硬件等条件影响,所要拼接的图像往往存在平移、旋转、大小、色差及其组合的形变与扭曲等差别。本设计采用基于特征的图像拼接技术,首先对图像进行轮廓提取,然后再对提取的轮廓进行匹配,从

视频拼接关键技术

全景视频拼接关键技术 作者:一、原理介绍 图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360度全景图,图像拼接技术涉及到计算机视觉、计算机图形学、数字图像处理以及一些数学工具等技术。图像拼接其基本步骤主要包括以下几个方面:摄相机的标定、传感器图像畸变校正、图像的投影变换、匹配点选取、全景图像拼接(融合),以及亮度与颜色的均衡处理等,以下对各个步骤进行分析。 摄相机标定 由于安装设计,以及摄相机之间的差异,会造成视频图像之间有缩放(镜头焦距不一致造成)、倾 斜(垂直旋转)、方位角差异(水平旋转),因此物理的差异需要预先校准,得到一致性好的图像,便于 后续图像拼接。作者: 相机的运动方式与成像结果之间的关系见下图。

图1:相机的运动方式与成像结果之间的关系 图像坐标变换 在实际应用中,全景图像的获得往往需要摄像机以不同的位置排列和不同的倾角拍摄。例如由于机载或车载特性,相机的排列方式不尽相同,不能保证相机在同一面上,如柱面投影不一定在同一个柱面上,平面投影不一定在同一平面上;另外为了避免出现盲区,相机拍摄的时候往往会向下倾斜一定角度。这些情况比较常见,而且容易被忽略,直接投影再拼接效果较差。因而有必要在所有图像投影到某个柱面(或平面)之前,需要根据相机的位置信息和角度信息来获得坐标变换后的图像。 理论上只要满足静止三维图像或者平面场景的两个条件中的任何一个,两幅图像的对应关系就可以用投影变换矩阵表示,换句话说只要满足这其中任何一个条件,一个相机拍摄的图像可以通过坐标变换表示为另一个虚拟相机拍摄的图像。作者:

VR全景视频是如何实现的

随着VR热潮的风起云涌,“全景”这个词汇被一次又一次地搬上了台面,诚然,VR内容的缺失问题现在已经被越来越多的开发者和商业团体所关注,而全景拍摄视频,无疑会成为一种很好的内容落地方式。它能够在不需要过多的交互方式以及因此产生的学习成本的同时,带给观看者充分的沉浸式体验,以及通过离线渲染和摄影得到各种极致的效果。 那么,全景的定义与实现过程究竟是怎样的,人们可以如何去构建全景内容呢? 1、投影方式 全景拍摄并非是多么时新的一个概念,事实上它甚至可以追溯到12世纪的《韩熙载夜宴图》,当然这并非真正意义上的沉浸式体验,就算我们把这幅长画给卷成一个圆筒,然后站在中心去观看,也依然会觉得缺失了一点什么,没错,一个明显的接缝,以及头顶和脚下两片区域的空白。 出现这种问题的原因是很简单的,因为宋朝人并没有打算把这幅画做成沉浸式的体验——当然这是废话——真正的原因是,画面对应的物理空间视域并没有达到全包围的程度,也就是水平方向(经度)360度,垂直方向(纬度)180度。 VR头盔和应用软件的意义也就在于将这些明显变形的画面还原为全视角的内容,进而让使用者有一种身临其境的包围感。 由此看来,作为全景内容的一种重要承载基体,投影图像(或者视频)不仅应当完整包含拍摄的全部内容,还要避免过多的扭曲变形以免重投影到VR眼镜时产生质量损失。 2、拼接与融合 如果说有六台摄像机,它们的FOV角度被严格限定为水平和竖直都是90度,然后造一个一丝不苟的支架,把这六台摄像机牢固而稳定地安装到支架上,确保它们的中心点严格重合在一起,并且各自朝向一个方向——这样的话,输出的图像也许能够正好符合立方图的标准,并且可以直接使用。 然而,无论摄像机镜头的感光面积,焦距参数(以及因此计算得到的FOV视场角度),还是支架的钢体结构设计与制作,都无法确保精确地达到上面要求的参数,几mm的光学或者机械误差看似无伤大雅,但是对于严丝合缝的立方图图像来说,必然会在最终呈现的沉浸式场景中留下一条或者多条明显的裂缝。更何况还有支架运动时产生的振动问题,以及相机镜头老化产生的焦点偏移问题,这些看似细小的麻烦各个都足以让我们刚刚构建的理想物理模型化为泡影。

图像拼接算法及实现(二).

图像拼接算法及实现(二) 3.3.2 特征点匹配法 比值匹配法利用图像特征较少,而且在图像发生小角度旋转的时候容易发生误匹配。基于特征点的匹配法可以很好的解决这类问题。特征点主要指图像中的明显点,如房屋角点、圆点等。用于点特征提取得算子称为有利算子或兴趣算子。自七十年代以来出现一系列各不相同、各有特色的兴趣算子,较知名的有Moravec算子、Hannah算子与Foistner等。 本文采用Moravec算子进行特征点提取: Moravec算子的基本思想是,以像素点的四个主要方向上最小灰度方差表示该像素点与邻近像素点的灰度变化情况,即像素点的兴趣值,然后在图像的局部选择具有最大的兴趣值得点(灰度变化明显得点)作为特征点,具体算法如下: (1)计算各像素点的兴趣值IV (interest value),例如计算像素点(c,r)的兴趣值,先在以像素点((cr)为中心的n n的影像窗口中(如图3.3.2所示的 5 5的窗口),计算四个主要方向相邻像元灰度差的平方和。 图3.3.2 Moravec 算子特征点提取示意图 V = V = V = V = 其中k=INT(n/2)。取其中最小者为像元((c,r)的兴趣值: IV(c,r)=V=min{ V , V , V , V } (2)根据给定的阂值,选择兴趣值大于该阐值的点作为特征点的候选点。设V 为事先设定好的闭值,如果V V ,则V为特征点的候选点。 阑值得选择应以候选点中包括需要的特征点,而又不含过多的非特征点。

(3)在候选点中选取局部极大值点作为需要的特征点。在一定大小的窗口内(可不同于兴趣值计算窗口),去掉所有不是最大兴趣值的候选点,只留下兴趣值最大者,该像素即为一个特征点。 在有了以上的特征点提取的基础上,基于特征点匹配算法主要步骤如下: (1)在参考图像T的重叠部分中选取4个区域,每个区域利用Moravec算子找出特征点。 (2)选取以特征点为中心的区域,本文大小选择7X7的区域,在搜索图S 中寻找最相似的匹配。因为有4个特征点,故有4个特征区域,找到相应的特征区域的匹配也有4块。 (3)利用这4组匹配的特征区域的中心点,也就是4对匹配的特征点,代入方程式(3-2-2)求解,所求的解即为两幅图像间的变换系数。 (3-2-2) 该算法的主要优点: (1)图像的特征信息得到了利用,能够有的放矢,不是在盲目的搜索。 (2)误匹配发生的概率小,因为利用了参考图像T包含特征点的特征区域来寻找相应匹配,因此在搜索图S中相应的特征区域容易确认。 该算法的主要缺点: (1)计算的代价高,计算量大。该算法需要计算出特征点以及特征点的匹配点,同时还要将所有4对特征点带入式3-2-2求解变换系数,计算量大。 3.4 本章小结 本章分析了现有的多种图像配准算法以及图像配准中的难点。 第四章图像融合技术 4.1 图像融合技术的基本概念 数字图像融合(Digital Image Fusion)是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术得到的合成图像则可以更全面、更精确地描述所研究的对象。正是由于这一特点,图像融合技术现已广泛地应用于军事、遥感、计算机视觉、医学图像处理等领域中。

相关文档
最新文档