第三讲-超声探头的原理与组成

第三讲-超声探头的原理与组成
第三讲-超声探头的原理与组成

第3章 医用超声换能器与探头

第3章 医用超声换能器与探头 超声诊断仪是通过探头产生入射超声波(发射波)和接收反射超声波(回波)的,它是诊断设备的重要部件。高频电能激励探头中的晶体产生机械振动,反射超声波的机械振动又可以通过探头转换为电脉冲。也就是说探头能将电能转换成声能,又能够将声能转换成电能,所以探头又称作超声换能器。其原理来自于晶体的压电效应。 §3.1压电效应 压电效应泛指晶体处于弹性介质中所具有的一种声-电可逆特性,此现象为法国物理学者居里兄弟于1880年所发现,故也称居里效应(图3-7)。 图3-1晶体的压电效应 具有压电效应性质的晶体,称为压电晶体。目前常用于超声探头的晶体片有锆酸铅、钛酸钡、石英、硫酸锂等人工或天然晶体。钛酸钡及锆酸铅是在高温下烧结的多晶陶瓷体,把毛坯烧结成陶瓷体后,经过适当的研磨修整,

得到所需的几何尺寸,再用高压直流电场极化后,就具有压电性质,成为换能器件。 3.1.1正压电效应 在晶体或陶瓷的一定方向上,加上机械力使其发生形变,晶体或陶瓷的两个受力面上,产生符号相反的电荷;形变方向相反,电荷的极性随之变换,电荷密度同外施机械力成正比,这种因机械力作用而激起表面电荷的效应,称为正压电效应,如图3-7(a)。 3.1.2逆压电效应 在晶体或陶瓷表面沿着电场方向施加电压,在电场作用下引起晶体或陶瓷几何形状应变,电压方向改变,应变方向亦随之改变,形变与电场电压成比例,这种因电场作用而诱发的形变效应,称为逆压电效应,如图3-7(b)。 一般情况下,压电效应是线性的,然而,当电场过强或压力很大时,就会出现非线性关系。 晶体和陶瓷片因切割方位和几何尺寸的不同,产生机械振动的固有频率也不同,当外加的交变电压的频率与固有频率一致时,产生的机械振动最强;当外加的机械力的频率与固有频率一致时,所产生的电荷也最多。在超声波诊断仪中激励脉冲的频率必须与探头的固有频率相同。 §3.2压电换能器的特性 压电换能器的特性参量很多,现只简单介绍以下3种。 3.2.1频率特性 压电换能器的晶体本身是一个弹性体,因此有其固有的谐振频率,当所施力的频率等于其固有频率时,它将产生机械谐振,由于正压电效应而产生

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考 编号被测工件厚度选择探头和斜率选择探头和斜率 14—5mm6×6 K3 不锈钢:1.25MHz 铸铁:0.5—2.5 MHz 普通钢:5MHz 26—8mm8×8 K3 39—10mm9×9 K3 411—12mm9×9 K2.5 513—16 mm9×9 K2 617—25 mm13×13 K2 726—30 mm13×13 K2.5 831—46 mm13×13 K1.5 947—120 mm13×13( K2—K1) 10121—400 mm18×18 ( K2—K1) 20×20 ( K2—K1) 超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1,外观检查. 2,致密性试验和水压强度试验. 3,焊缝射线照相. 4,超声波探伤. 5,磁力探伤. 6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。

医用超声探头浅析

医用超声探头浅析 概 论 超声探头是医用超声仪器的心脏。不管何种超声诊断仪 ,A 型、B 型、或M 型,其探头结构大致相同,主要都是由换能器(压电材料,又称压电晶体、压电振子)组成,并将换能器安放在由塑胶包裹的探头腔中。 以A超探头为例说明探头的基本结构: ① 压电晶片/换能器,作用主要是在 发射时将电信号转换成超声波,在接收时将 超声波转换成电信号。 ② 吸声背块,作用是吸收晶体背向 辐射的超声,减少或消除晶体两端之间超声 的多次反射造成的干扰;增大晶片阻尼,使 发射脉冲窄,从而提高分辨率。 ③ 匹配层,主要作用是使晶体辐射 的超声有效进入人体,实现对人体组织的检 查。换能器和人体之间声阻抗匹配。 ④ 电极、导线,用于传到电信号。 ⑤ 声隔离层,位于壳体与振动体之 图0-1,医用超声探头结构 间声,防止超声传至外壳引起反射产生干扰。 ⑥ 保护层和外壳,主要用于保护仪器。 压电晶体利用了正向压电效应和逆向压电效应来完成声--电的转换。医用压电材料种类繁多,如压电单晶体(石英、酒石酸钾钠、磷酸二氢铵、铌酸钾、硫酸锂等)、 压电多晶体(钛酸钡、偏铌酸铅、锆钛酸铅、铌镁-锆-钛酸铅等)、压电高分子聚合物(聚偏二氟乙烯等)、复合压电材料(聚偏二氟乙烯+锆钛酸铅复合(PVDF+PZT)等)。 各类压电材料特性不尽相同,但是都能满足特定的需求,在医用超声仪器中应用广泛。 由于压电材料的特性千差万别,导致超声探头的参数、特性也差异很大。对于不同的医用场合,要选用不同的探头完成操作。因此,对超声探头的参数、特性的研究显得极为重要。 本文结合具体应用场合和具体机型,来说明医用超声仪器探头特性参数的选取。

超声波探伤仪探头分类

超声波探伤仪探头分类 资料整理:无损检测资源网

超声波探伤仪探头的分类 超声波探伤仪探头主要由压电晶片组成。探头可发射及接收超声波。探头由于其结构的不同可分为直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、可变角探头(纵波、横波、表面波、兰姆波)、双探头(一个探头发射,另一个探头接收)、聚焦探头(将声波聚集为一细束)、水浸探头(可浸在液体中)以及其它专用探头(如探高压瓷瓶的S型或扁平探头或探人体用的医用探头)等。 1.超声波探伤仪探头之一:直探头 直探头也称平探头,可发射及接受纵波。 直探头主要由压电晶片、阻尼块(吸收块)及保护膜组成。 (1)压电晶片压电晶片的厚度与超声频率成反比。例如锆钛酸铅(PZT-5)的频率厚度常数为1890千赫/毫米,晶片厚度为1毫米时,自然频率为1.89兆赫,厚度为0.7毫米时,自然频率约2.5兆赫。电压晶片的直径与扩散角成反比。电压晶片两面敷有银层,作为导电的极板,晶片底面接地线,晶片上面接导线引至电路上。 (2)保护膜直探头为避免晶片与工件直接接触而磨损晶片,在晶片下粘合一层保护膜,有软性保护和硬性保护两种。软性的可用塑料薄膜(厚约0.3毫米),与表面粗糙的工件接触较好。硬性可用不锈钢片或陶瓷片。保护膜的厚度为二分之一波长的整数倍,声波穿透率最大。厚度为四分之一波长的奇数倍时,穿透率最小。晶片与保护膜粘合后,探头的谐振频率将降低。保护膜与晶片粘合时,粘合层应尽可能的薄,不得渗入空气。粘合剂的配方为 618环氧树脂:二乙烯三胺:邻苯二甲酸二丁酯=100:8:10 粘合后加一定的压力,放置24小时,再在60℃~80℃温度下烘干4小时。 (3)阻尼块阻尼块又名吸收块,其作用为降低降低晶片的机械品质系数,吸收声能量。如果没有阻尼块,电振荡脉冲停止时,压电晶片因惯性作用,仍继续振动,加长了超声波的脉冲宽度,使盲区增大,分辨力差。吸收块的声阻抗等于晶片的声阻抗时,效果最佳,常用的吸收快配方

医用超声探头III

第3节医用超声探头 一、压电换能器 超声诊断仪是通过探头产生入射超声波(发射波)和接收反射超声波(回波)的,它是诊断设备的重要部件。高频电能激励探头中的晶体产生机械振动,反射超声波的机械振动又可以通过探头转换为电脉冲。也就是说探头能将电能转换成声能,又能够将声能转换成电能,所以探头又称做超声换能器。其原理来自于晶体的压电效应。 1.压电效应 压电效应泛指晶体处于弹性介质中所具有的一种声-电可逆特性,此现象为法国物理学者居里兄弟于1880年所发现,故也称居里效应(图7-4)。 图7-4 晶体的压电效应 具有压电效应性质的晶体,称为压电晶体。目前常用于超声探头的晶体片有锆酸铅、钛酸钡、石英、硫酸锂等人工或天然晶体。钛酸钡及锆酸铅是在高温下烧结的多晶陶瓷体,把毛坯烧结成陶瓷体后,经过适当的研磨修整,得到所需的几何尺寸,再用高压直流电场极化后,就具有压电性质,成为换能器件。 (1)正压电效应在晶体或陶瓷的一定方向上,加上机械力使其发生形变,晶体或陶瓷的两个受力面上,产生符号相反的电荷;形变方向相反,电荷的极性随之变换,电荷密度同外施机械力成正比,这种因机械力作用而激起表面电荷的效应,称为正压电效应,如图7-4(a)。 (2)逆压电效应在晶体或陶瓷表面沿着电场方向施加电压,在电场作用下引起晶体或陶瓷几何形状应变,电压方向改变,应变方向亦随之改变,形变与电场电压成比例,这种因电场作用而诱发的形变效应,称为逆压电效应,如图7-4(b)。

一般情况下,压电效应是线性的,然而,当电场过强或压力很大时,就会出现非线性关系。 晶体和陶瓷片因切割方位和几何尺寸的不同,产生机械振动的固有频率也不同,当外加的交变电压的频率与固有频率一致时,产生的机械振动最强;当外加的机械力的频率与固有频率一致时,所产生的电荷也最多。在超声波诊断仪中激励脉冲的频率必须与探头的固有频率相同。 2.压电换能器的特性 压电换能器的特性参量很多,现只简单介绍以下3种。 (1)频率特性压电换能器的晶体本身是一个弹性体,因此有其固有的谐振频率,当所施力的频率等于其固有频率时,它将产生机械谐振,由于正压电效应而产生最大电信号。另一方面,当所施加电的频率和压电晶体固有频率一致时,由于逆压电效应则应发生机械谐振,谐振时振幅最大,弹性能量也最大,这时,压电体获得最大形变振动,通过介质产生超声波输出。实验证明,当所施加力或电的频率不与晶体固有频率一致时,压电换能器晶体产生的电信号幅度和变形振动幅度都将变小,可见,它们都是频率的函数。 图7-5 压电晶体的电流-频率特性 如果对压电晶体施加一定值的电压,改变所加电压的频率,回路电流或阻抗将随其变化,当电压频率为某一频率fm时,电流出现最大值Imax,当电压频率为另一频率fn时,电流出现最小值Imin。压电晶体的电流随频率而变化的现象(见图7-5),说明了压电换能器晶体的等效阻抗是一个随频率而变化的量。如果继续增加电压的频率,还可以发现有规律地出现一系列电流的波动,且波动的最大值(对应fm1、fm2…)是依次减小的,而波动最小值(对应fn1、fn2…则是依次增大的,fm称为压电振子的最小阻抗频率(又可称为最大传输频率);fn称为最大阻抗频率(又可称为最小传输频率)。 (2)换能特性换能器的换能特性包括两个方面:电能-机械能-超声能,超声能-机械能-电能。前者属于发射过程,后者属于接收过程。能量间转换必然产生损失(产生了无益的能耗),以转换效率来表征换能器这一性能: 电机转换效率=输出的机械功率/输入的电功率 机声转换效率=辐射的超声功率/输入的机械功率 因此:电声转换效率=辐射的超声功率/输入的电功率

2017医用超声探头表面消毒要求与效果评价方法

2017 医用超声探头表面消毒要求与效果评价方法1范围 本标准规定了医用超声探头表面消毒要求、消毒效果评价、消毒方法评价和消毒评价的检测方法本标准适用于各级各类医疗机构使用的医用超声探头。 2规范性引用文件 下列文件对于本文件的应用是必不可少的,凡是注日期的引用文件,仅注明日期的版本适用本文件。凡是不注期的引用文件,其最新版本(包括所有修改单)适用于本文件。 GB 15982《医院消毒卫生标准》 WS/T327—2011消毒剂杀灭分枝杆菌实验评价要求 WS/T367—2012医疗机构消毐技术规范 《消毒管理办法》2002年原卫生部 《消毒技术规范》2002年版原卫生部 《基层医疗机构医院感染管理基本要求》(2013) 国家卫生和计划生育委员会 3术语和定义 下列术语和定义适用于本文件。 3.1 医用超声探头medical ultrasonic probe 医学超声诊断仪将高频电能转换为超声机械能向外辐射并接收超声回波将声能转换为电能的一种声-电转换器件。本标准所述的医用超声探头,包括医用超声诊断仪上所使用的所有类型的探头。 3.2 医用超声探头感染风险程度分类 本标准仅根据医用探头被污染和传播污染导致的风险程度将医用探头分为低度风险、中度风险及高度风险三类 3.2.1 低度风险医用超声探头 接触完整皮肤的医用超声探头

3.2.2 中度风险医用超声探头 接触粘膜或者不完整皮肤的医用探头。 3.2.3 高度风险医用超声探头 接触无菌组织、器官或者无菌医疗操作区域的医用探头。 4 消毒要求 4 1 医用超声探头应实行一人一用一消毒,消毒作用时间应≤2min。 4.2 低度风险医用超声探头应在表面清洁的基础上进行消毒。 4.3 中度风险医用超声探头应在表面清洁的基础上进行高水平消毒并使用无菌保护套/膜。 4.4 高度风险医用超声探头应在表面清洁的基础上进行高水平消毒并使用无菌保护套/膜。 4.5 医用超声探头表面消毒使用的消毒产品应符合国家法律法规、规范和本标准要求,与医用超声探头有良好的生物相容性并对人体无伤害。 5 消毒效果评价 5.1低度风险医用超声探头表面消毒效果应符合GB 15982要求,细菌菌落总数<200CFU/件。 5.2中度风险医用超声探头表面消毒效果应符合GB 15982要求,细菌菌落总数<20CFU/件。 5.3高度风险医用超声探头头经高水平消毒应符合本标准5.2要求,特殊用途的医用超声如术中、穿刺、内镜,超声治疗等医学超声探头的消毒,执行与其用途相关标准. 6 消毒方法评价 消毒方法评价分实验室试验和现场试验. 6.1 实验室杀灭微生物试验要求 6.1.1 实验室杀灭微生物效果评价指标耍求见表1

超声基础知识

1. 请叙述常见的医用超声探头有哪几种类型?每种探头的用途。 (凸阵-腹部妇产科、线阵-浅表器官术中、相控阵-心脏及颅脑、微凸阵-腔内) 2. 医生在使用超声设备时,非常关注设备的分辨率和穿透力,请叙述 工作频率与二者的关系。 (频率越高,分辨率越好,穿透力越差,频率越低,分辨率越差,穿透力越好) 3. 请叙述现代超声设备是如何解决分辨率和穿透力这对矛盾的。 (宽频带探头 + 变频技术) 4. 请简述超声设备用于医学诊断的优点(三条以上)。 (实时成像、无辐射、可移动/成本低、应用多普勒技术检测血流)5. 请简述超声显示模式中,B模式、M模式的工作原理。 (B模式:将回声信号以光点的形式显示出来,回声强则光点亮,回声弱则光点暗,光点随探头移动连续扫查,呈现出脏器的解剖切面,是二维空间显示,又称二维法)。 (M模式:系在单声束B型扫描基础上加入慢扫描锯齿波,将光点转换成曲线,使回声光点从左向右自行移动扫描,在示波器上显示。 横轴(X)代表光点慢扫描时间;纵轴(Y)代表被测结构所处的深度位臵,曲线向上示界面前移,曲线向下示界面后移。当探头固定一点扫查时,从光点的移动可以观察反射体的深度及其活动情况,显示出时间位臵曲线图)。 6. 请简述探头作为能量转换器件的工作原理。 (经过人工极化过的压电陶瓷即探头在机械应力的作用下会在电极表面产生电荷,反之,若对陶瓷施以一个电场,陶瓷也会产生应变,这种机械能转变成电能,电能转变成机械能的现象称为压电效应,由机械能转化成电能称正压电效应,由电能转化成机械能成逆压电效应,超声波的发射应用了逆压电效应,接收应用了正压电效应,探头应用这种压电效应原理发射并接收超声波,经过主机处理在显示屏上得到图象)。 7. 简述医用超声诊断设备的构成。 (由探头、主机、监视器、记录设备组成)。 8. 什么叫帧频?高帧频对于临床诊断有何益处?

机械探头医用超声

超声基本术语解释 机械探头:有电机带动其转轴位于探头曲面的焦点上的旋转头单向转动,旋转头上镶嵌着两个聚焦换能器,当换能器旋转到面向反射镜方向时,发射超声脉冲,经抛物面发射后即形成一排平行的直线扫描波束,实现了机械扫描。其优点在于扇形机械扫描探头具有远区探查视野大,与人体声耦合接触面积小,切向与侧向分辨率相同。适用于心脏、小器官、眼科、内腔管道和腹部脏器的超声检查。 环阵探头:在机械扇扫超声诊断设备中采用圆环阵动态分段聚焦方法的原理和线阵的动态聚焦一样,环阵探头将一个圆形活塞换能器分割成一个小的中心圆盘和若干个同心圆的远换,这些圆环和圆盘组成阵元,其辐射面积相等,但在电学上和声学上都是相互隔离的。对每个阵元的电信号施加适当的延迟,就能实现沿中心轴任何距离的聚焦,这与声透镜的作用相仿,因此其到了“电子聚焦透镜”的作用。 帧频:在这里指每秒成像的帧数。当仪器每秒的成像速度达24 帧以上者,称为实时成像,它可以作各种静态及活动脏器的显示与记录,比如心脏血管的搏动、胎动、胎心以及血液流动等均可在图像中直接观察,而且实时成像易于寻找较小病灶及显示与邻近结构、脏器之间的空间关系;准实时成像的帧频在16~23 帧/ 秒,可隐约显示一些脏器的活动,但动作不连续;静态成像是指成像速度比较慢,成像一帧需要0.5~10 秒,不能显示活动脏器的动态。帧频越高,越能使图像系统显示平稳。 通道:可等同于物理通道。对接收通道而言,通道即指具有接收隔离、前置放大、TGC 控制等具体电路的硬件。在多声束形成技术中,每一物理通道(对应一个阵元)将分为多个虚拟通道(或称逻辑通道),产生不同的延迟时间后与相邻的阵元信号相加,形成不同的声束。 存储幅数:在系统的存储器内存储图像的幅数。 动态范围:指被接收信号的动态变化幅度,单位为分贝(dB ),动态范围越大,其信号应用区域就越广,而病灶的包容量就越大 动态聚焦:动态聚焦是指动态接收聚焦、在一条接收声束中多次改变焦点,并把各焦点附近的回波信号拚接成一条完整的接收声束。

超声探头简介

超声探头 句光宇1、超声波传感器工作的原理 1)压电效应 某些晶体材料受到外力作用时,不仅发生变形,而且 部被极化表面产生电荷;当外力去掉后,又回到原来状态, 这种现象称为压电效应。 在自然界多数晶体具有压电效应, 但压电效应十分微 弱。随着对材料的深入研究, 发现石英晶体、钛酸钡、锆 钛酸铅等材料是性能优良的压电材料。 ●正压电效应: ?一些晶体结构的材料,当沿着一定方向受到外力作用时,部产生极化现象,同时在 某两个表面上产生符号相反的电荷; ?而当外力去掉后,又恢复不带电的状态; ?当作用力方向改变时,电荷的极性也随着改变; ?晶体受作用力产生的电荷量与外力的大小成正比,这种机械能转换为电能的现象称 为正压电效应。 ●逆压电效应: ?如果给晶体施加以交变电场,晶体本身则产生机械变形,这种现象称为逆压电效应, 又称电致伸缩效应。 ?压电效应具有可逆性。 2)石英与压电瓷的压电效应机理 压电式超声波传感器(超声波探头)是利用压电元件的逆压电效应,将高频交变电场转换成高频机械振动而产生超声波(发射探头);再利用正压电效应将超声振动波转换成电信号(接收探头)。发射探头和接收探头结构基本相同,有时可用一个探头完成两种任务。 ●石英晶体的压电效应

X 轴:电轴或1轴; Y 轴:机械轴或2轴; Z 轴:光轴或3轴。 ◆ “纵向压电效应”:沿电轴(X 轴)方向的力作用下产生电荷 ◆ “横向压电效应”:沿机械轴(Y 轴)方向的力作用下产生电荷 ◆ 在光轴(Z 轴)方向时则不产生压电效应。 ? 当沿x 轴方向加作用力Fx 时,则在与x 轴垂直的 平面上产生电荷 x x F d Q ?=11 d 11——压电系数(C/N ) ? 作用力是沿着y 轴方向电荷仍在与x 轴垂直的平面 y y x F b a d F b a d Q 1112-== (1112d d -=) ? 切片上电荷的符号与受力方向的关系 图(a )是在X 轴方向受压力,图(b )是在X 轴方向受拉力, 图(c )是在Y 轴方向受压力,图(d )是在Y 轴方向受拉力。 ? 切片上电荷的符号与受力方向的关系: ◆ 正负电荷是互相平衡的,所以外部没有带电现象。 ◆ 在X 轴方向压缩,表面A 上呈现负电荷、B 表面呈现正电荷。 ◆ 沿Y 轴方向压缩,在A 和B 表面上分别呈现正电荷和负电荷 。

超声波距离传感器技术原理与应用

超声波距离传感器技术原理与应用 2007-4-24 10:16:00 兆洲科技供稿收藏 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括: (1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 (2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。 (3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 结构与工作原理 当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。 如超声波传感器,一个复合式振动器被灵活地固定在底座上。该复合式振动器是谐振器以及,由一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器的一个结合体。谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。 室外用途的超声波传感器必须具有良好的密封性,以便防止露水、雨水和灰尘的侵入。压电陶瓷被固定在金属盒体的顶部内侧。底座固定在盒体的开口端,并且使用树脂进行覆盖。(参见图4)对应用于工业机器人的超声波传感器而言,要求其精确度要达到1mm,并且具有较强的超声波辐射。 利用常规双压电晶片元件振动器的弯曲振动,在频率高于70kHz的情况下,是不可能达到此目的的。所以,在高频率探测中,必须使用垂直厚度振动模式的压电陶瓷。在这种情况下,压电陶瓷的声阻抗与空气的匹配就变得十分重要。压电陶瓷的声阻抗为2.6×107kg/m2s,而空气的声阻抗为4.3×102kg/m2s。5个幂的差异会导致在压电陶瓷振动辐射表面上的大量损失。一种

2021年超声探头简介

超声探头 欧阳光明(2021.03.07) 句光宇1、超声波传感器工作的原理 1)压电效应 某些晶体材料受到外力作用时,不仅 发生变形,而且内部被极化表面产生电 荷;当外力去掉后,又回到原来状态,这 种现象称为压电效应。 在自然界中大多数晶体具有压电效应, 但压电效应十分微弱。随着对材料的深入研究, 发现石英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压电材料。 ●正压电效应: ?一些晶体结构的材料,当沿着一定方向受到外力作用时,内 部产生极化现象,同时在某两个表面上产生符号相反的电荷; ?而当外力去掉后,又恢复不带电的状态; ?当作用力方向改变时,电荷的极性也随着改变; ?晶体受作用力产生的电荷量与外力的大小成正比,这种机械 能转换为电能的现象称为正压电效应。 ●逆压电效应: ?如果给晶体施加以交变电场,晶体本身则产生机械变形,这 种现象称为逆压电效应,又称电致伸缩效应。

? 压电效应具有可逆性。 2)石英与压电陶瓷的压电效应机理 压电式超声波传感器(超声波探头)是利用压电元件的逆压电效应,将高频交变电场转换成高频机械振动而产生超声波(发射探头);再利用正压电效应将超声振动波转换成电信号(接收探头)。发射探头和接收探头结构基本相同,有时可用一个探头完成两种任务。 ● 石英晶体的压电效应 X 轴:电轴或1轴; Y 轴:机械轴或2轴; Z 轴:光轴或3轴。 ◆ “纵向压电效应”:沿电轴(X 轴)方向的力作用下产生电 荷 ◆ “横向压电效应”:沿机械轴(Y 轴)方向的力作用下产生 电荷 ◆ 在光轴(Z 轴)方向时则不产生压电效应。 ? 当沿x 轴方向加作用力Fx 时,则在与 x 轴垂直的 平面上产生电荷 x x F d Q ?=11d11——压电系数(C/N ) ? 作用力是沿着y 轴方向电荷仍在与x 轴垂直的平面 y y x F b a d F b a d Q 1112 -== (1112d d -=) ? 切片上电荷的符号与受力方向的关系 图(a )是在X 轴方向受压力,图(b )是在X 轴方向受拉力, 图(c )是在Y 轴方向受压力,图(d )是在Y 轴方向受拉力。

超声波斜探头结构及工作原理

超声波探头根据不同的用途分为许多种类,有纵波直探头、纵波斜探头、横波斜探头、表面波探头、爬坡探头等等。其中纵波直探头和横波斜探头在工作检测中最为常见。直探头与横波斜探头在结构与工作原理等方面有诸多相似之处,本文介绍横波斜探头的结构、探头工作原理以及影响探头性能的主要因素。 1、探头结构 超声波斜探头由吸声材料、外壳、阻尼块、斜楔块和产生超声波的压电晶片等原件组成。如图1为超声波斜探头结构示意图。 图1.超声波斜探头结构示意图 吸声材料作用是吸收晶片背面、斜块四周发散的超声波噪声;探头外壳有金属外壳和塑料外壳,外壳起到支撑固定、保护以及电磁屏蔽等作用。探头阻尼对压电晶片的振动起阻尼作用,一是可使晶片起振后尽快停下来,减少晶片余震,减小超声波脉冲宽度,提高超声检测分辨力;二是吸收晶片向背面发射的超声波,减少始脉冲杂波;三是同样起到支撑晶片的作用。斜楔块一般采用机玻璃制成,其作用是改变晶片产生的声束角度。压电晶片是整个探头的“心脏”,是探头产生超声波的最关键的元件,一般压电晶片采用石英、压电陶瓷等具 有压电效应的材料制作而成。 2、工作原理 超声波仪器电路产生的电脉冲作到具有压电效应的晶片,使压电晶片产生逆压电效,晶片发生轴线方向和垂直轴线的径向振动,如图2所示。晶片径向振动产生杂波被吸声材料吸收,而轴向振动产生的超声波声束才是有用的声束。晶片振动方向即为超声波质点振动方向,质点振动方向与超声波声束传输方向相同,则可推断出晶片轴向振动产生的有用声束为纵波声束,斜楔块的超声波声速为有机玻璃的纵波声速。当晶片接收到一个电脉冲完成一次逆压电效应,将被固定在晶片上的阻尼块阻止余震,减少超声波余波,从而较小超声波脉冲宽度。 图2.压电晶片轴向和径向振动示意图 晶片产生的纵波声束通过具有一定角度的斜楔块和耦合剂层进入工件,声束在耦合剂与工件接触界面发生波形转换。当纵波声束以小于第一临界角的角度进入工件,工件的声束为纵波和横波,且纵波声束的角度大于横波。入射角大于第一临界角小于第二临界角,工件的声束为纯横波。图3 为入射纵波声束角度小于第一临界角,图4为入射纵波声束角度大于第一临界角且小于第二临界角。 图3.入射纵波声束角度小于第一临界角

相关文档
最新文档