各种储能系统优缺点对比知识交流

各种储能系统优缺点对比知识交流
各种储能系统优缺点对比知识交流

史上最全储能系统优缺点梳理

谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。

现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。

全球现有的储能系统

1、机械储能

机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。

(1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。

不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。

(2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。

压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。

不足之处:一大缺陷在于效率较低。原因在于空气受到压缩时温度会升高,空气释放膨胀的过程中温度会降低。在压缩空气过程中一部分能量以热能的形式散失,在膨胀之前就必须要重新加热。通常以天然气作为加热空气的热源,这就导致蓄能效率降低。还有可以想到的不足就是需要大型储气装置、一定的地质条件和依赖燃烧化石燃料。

(3)飞轮储能:是利用高速旋转的飞轮将能量以动能的形式储存起来。需要能量时,飞轮减速运行,将存储的能量释放出来。飞轮储能其中的单项技术国内基本都有了(但和国外差距在10年以上),难点在于根据

不同的用途开发不同功能的新产品,因此飞轮储能电源是一种高技术产品但原始创新性并不足,这使得它较难获得国家的科研经费支持。

不足之处:能量密度不够高、自放电率高,如停止充电,能量在几到几十个小时内就会自行耗尽。只适合于一些细分市场,比如高品质不间断电源等。

2、电气储能

(1)超级电容器储能:用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量。与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程。充电时间短、使用寿命长、温度特性好、节约能源和绿色环保。超级电容没有太复杂的东西,就是电容充电,其余就是材料的问题,目前研究的方向是能否做到面积很小,电容更大。超级电容器的发展还是很快的,目前石墨烯材料为基础的新型超级电容器,非常火。

Tesla首席执行官Elon Musk早在2011年就表示,传统电动汽车的电池已经过时,未来以超级电容器为动力系统的新型汽车将取而代之。

不足之处:和电池相比,其能量密度导致同等重量下储能量相对较低,直接导致的就是续航能力差,依赖于新材料的诞生,比如石墨烯。

(2)超导储能(SMES):利用超导体的电阻为零特性制成的储存电能的装置。超导储能系统大致包括超导线圈、低温系统、功率调节系统和监控系统4大部分。超导材料技术开发是超导储能技术的重中之重。超导材料大致可分为低温超导材料、高温超导材料和室温超导材料。

不足之处:超导储能的成本很高(材料和低温制冷系统),使得它的应用受到很大限制。可靠性和经济性的制约,商业化应用还比较远。

3、电化学储能

(1)铅酸电池:是一种电极主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。目前在世界上应用广泛,循环寿命可达1000 次左右,效率能达到80%-90%,性价比高,常用于电力系统的事故电源或备用电源。

不足之处:如果深度、快速大功率放电时,可用容量会下降。其特点是能量密度低,寿命短。铅酸电池今年通过将具有超级活性的炭材料添加到铅酸电池的负极板上,将其循环寿命提高很多。

(2)锂离子电池:是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。主要应用于便携式的移动设备中,其效率可达95%以上,放电时间可达数小时,循环次数可达5000 次或更多,响应快速,是电池中能量最高的实用性电池,目前来说用的最多。近年来技术也在不断进行升级,正负极材料也有多种应用。

市场上主流的动力锂电池分为三大类:钴酸锂电池、锰酸锂电池和磷酸铁锂电池。前者能量密度高,但是安全性稍差,后者相反,国内电

动汽车比如比亚迪,目前大多采用磷酸铁锂电池。但是好像老外都在玩三元锂电池和磷酸铁锂电池?

锂硫电池也很火,是以硫元素作为正极、金属锂作为负极的一种电池,其理论比能量密度可达2600wh/kg,实际能量密度可达450wh/kg。但如何大幅提高该电池的充放电循环寿命、使用安全性也是很大的问题。

不足之处:存在价格高(4 元/wh)、过充导致发热、燃烧等安全性

问题,需要进行充电保护。

(3)钠硫电池:是一种以金属钠为负极、硫为正极、陶瓷管为电解质隔膜的二次电池。循环周期可达到4500 次,放电时间6-7 小时,周期往返效率75%,能量密度高,响应时间快。目前在日本、德国、法国、美国等地已建有200 多处此类储能电站,主要用于负荷调平,移峰和改善电能质量。

不足之处:因为使用液态钠,运行于高温下,容易燃烧。而且万一电网没电了,还需要柴油发电机帮助维持高温,或者帮助满足电池降温的条件。

(4)液流电池:利用正负极电解液分开,各自循环的一种高性能蓄电池。电池的功率和能量是不相关的,储存的能量取决于储存罐的大小,因而可以储存长达数小时至数天的能量,容量可达MW 级。这个电池有多个体系,如铁铬体系,锌溴体系、多硫化钠溴体系以及全钒体系,其中钒电池最火吧。

不足之处:电池体积太大;电池对环境温度要求太高;价格贵(这个可能是短期现象吧);系统复杂(又是泵又是管路什么的,这不像锂电等非液流电池那么简单)。

电池储能都存在或多或少的环保问题。

4、热储能

热储能:热储能系统中,热能被储存在隔热容器的媒介中,需要的时候转化回电能,也可直接利用而不再转化回电能。热储能又分为显热储能和潜热储能。热储能储存的热量可以很大,所以可利用在可再生能源发电上。

不足之处:热储能要各种高温化学热工质,用用场合比较受限。

5、化学类储能

化学类储能:利用氢或合成天然气作为二次能源的载体,利用多余的电制氢,可以直接用氢作为能量的载体,也可以将其与二氧化碳反应

成为合成天然气(甲烷),氢或者合成天然气除了可用于发电外,还有其他利用方式如交通等。德国热衷于推动此技术,并有示范项目投入运行。

不足之处:全周期效率较低,制氢效率仅40%,合成天然气的效率不到35%。

引用前人的总结:

PHS- 抽水蓄能;CAES- 压缩空气;Lead-Acid:铅酸电池;NiCd:镍镉电池;NaS:钠硫电池;ZEBRA:镍氯电池;Li-ion:锂电池;Fuel cell:燃料电池;Metal-air:金属空气电池;VRB:液流电池;ZnbBr:液流电池;PSB:液流电池;Solar Fuel:太阳能燃料电池;SMES:超导储能;Flywheel:飞轮; Capacitor/Supercapcitor:电容/超级电容;AL-TES:水/冰储热/冷系统;CES:低温储能系统;HT-TES:储热系统。

总体来说,目前研究发展主要还是集中于超级电容和电池(锂电池、液流电池)上。材料领域的突破才是关键。

可靠储能后的电网会是什么样?

1、支撑实现能源互联网,智能电网

储能是智能电网实现能量双向互动的重要设备。没有储能,完整的智能电网无从谈起。

2、利用储能技术面对新能源考验

主要就是平抑、稳定风能、太阳能等间歇式可再生能源发电的输出功率,提高电网接纳间歇式可再生能源能力。

3、减小峰谷差,提高设备利用率

电网企业在调峰和供电压力得到缓解的同时,可获取更多的高峰负荷收益。

4、提高电网安全可靠性和电能质量

提供应急电源;减少因各种暂态电能质量问题造成的损失。

储能电站总体技术方案

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (10) 3.4并网控制子系统 (14) 3.5储能电站联合控制调度子系统 (16) 4.储能电站(系统)整体发展前景 (19)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

锂电储能基本知识与常见应用场景

目录01丨基础篇02丨市场篇03丨产品篇04丨商务篇05丨销售篇

基础篇 01 储能基本概念 储能应用场景 储能应用行业

基础篇——储能类别 综合能源 综合供能 综合储能 综合能源服务 机械类储能 电化学储能 电气类储能 相变储能 抽水蓄能 高温钠系电池 超级电容 显热储热技术 压缩空气储能 液流电池 超导储能 潜热储能技术 飞轮储能 铅碳电池 储冷技术 锂离子电池 全球储能累计装机容量的技术类型比例 38% 12% 36% 5% 5% 1% 3% 锂离子电池 铅蓄电池 钠硫电池 液流电池 飞轮储能 超级电容 其他

储能基本概念——常用锂电池类型 常用锂电池 正极材料 负极材料 优点缺点 磷酸铁锂磷酸铁锂石墨热稳定好,安全性高, 价格低,循环寿命长 能量密度较低 低温性能差 三元锂除了锂外,还有镍钴锰, 或者镍钴铝三种金属石墨能量密度高热稳定性稍差 钛酸锂磷酸铁锂和三元锂钛酸锂20000次循环寿命 快速充电(4C-6C) 能量密度很低 价格很高 常见形状规格特性 圆柱电芯18650 26650 串并灵活 方壳电芯多种规格铝合金或者不锈钢等材料,结 构强度高 软包电芯多种规格能量密度高,延展性好

储能基本概念——BMS BMS 五大功能: 1、测量与估算:电压、电流、温度检测;SOC 计算等; 2、逻辑保护功能:电压、电流、温度保护 3 、控制功能:预充、充放电控制、均衡、热管理 4、故障诊断:外部短路、绝缘耐压检测、NTC 故障等; 5、通信功能:遥控、遥信、遥测 BMS 硬件基础: 1、电压采样精度 2、电流采样精度 3、长期连续稳定运行 多并串锂电池一致性问题: 1、电压一致性; 2、内阻一致性; 3、容量一致性

铅酸电池储能系统方案设计(有集装箱)

技术方案 2014年1月

目录 目录 (2) 1 需求分析 (3) 2 集装箱方案设计 (3) 2.1 集装箱基本介绍 (3) 2.2 集装箱的接口特性 (5) 2.3 系统详细设计方案 (6) 2.4 集装箱温控方案 (14) 3 电池组串成组方案 (15) 3.1 电池组串内部及组间连接方案 (17) 3.2 系统拓扑图 (19) 4 蓄电池管理系统(BMS) (19) 4.1 BMS系统整体构架 (19) 4.2 BMS系统主要设备介绍 (21) 4.3 BMS系统保护方式 (23) 4.4 BMS系统通信方案 (24)

1需求分析 集装箱式铅酸蓄电池成套设备供货范围包括铅酸蓄电池、附属设备、标准40尺集装箱、备品备件、专用工具和安装附件等。 每个标准40尺集装箱含管式胶体(DOD80 1200次以上)或富液式(DOD80 1400次以上)免维护铅酸蓄电池、电池架及附件、电池管理系统(含外电路)、电池直流汇流设备、设备间的连接电缆及电缆附件(包括铜鼻、螺栓、螺母、弹垫、平垫等)、动力及控制信号接口等。 根据标书要求,综合铅酸电池特性,对于储能系统进行如下设计: 每3个标准40尺集装箱承载2MWh,每个集装箱由336只2V1000Ah管式胶体铅酸电池串联而成,电压672V,电池串容量672kWh。每3个集装箱并联到一台500kWh 储能双向变流器。三个电池堆的总容量可达2MWh,故本方案中三个集装箱为一单元,每个单元配置一套BMS电池管理系统,可监控每颗单体电池工作情况。集装箱中另含烟感探头、消防灭火器、加热器、摄像头、温湿度监测等设备,以保证铅酸电池安全稳定的工作环境,实现远程监控。 2集装箱方案设计 2.1集装箱基本介绍 根据项目要求,同时考虑电池堆的成组方式、集装箱内辅助系统的设计、安装以及日常巡视和检修等各方面,选用40英尺标准集装箱。外部尺寸: 12192*2438*2591mm 。 本项目共需要42个40英尺标准集装箱。集装箱设计静态承重60t,最大 起吊承重45t。 集装箱的主要任务是将铅酸电池、通讯监控等设备有机的集成到1个标准的

飞轮储能关键技术

飞轮储能系统关键技术分析及应用现状 摘要:本文从飞轮储能系统的结构原理入手,首先介绍了飞轮储能系统的结构组成、工作原理及其工作模式,然后对飞轮转子、支承轴承、真空室、电动/发电机及电力电子装置等关键技术进行了全面的分析,并介绍了关键技术的国内外研究现状,在此基础上对飞轮储能的应用现状进行了阐述。 关键词:飞轮储能;关键技术;应用现状 中图分类号:TK02 文献标识码:A 文章编号: 0、前言 随着中国经济的快速发展,能源和环境问题成为了中国快速发展主要阻碍。然而,在能源如此短缺的情况下,使用目前的耗能设备和耗能方式却使得世界上总能量的50%~70%白白的浪费了[1]。因此在开发新能源的同时,研究如何回收存储被白白浪费的能量也是非常重要的。目前的储能方式主要有:化学储能、物理储能和超导储能,在这几种储能方式中化学储能技术比较成熟,并已得到广泛的应用,但是它使用寿命短、受外界条件影响显著、对环境污染严重。超导储能对技术要求高、对环境要求苛刻暂时还不适合大规模应用。由于物理储能是利用物理方法将能量春初起来,所以不存在对环境污染问题比较适合当今的发展要求。物理储能方式主要有抽水储能、压缩空气储能和飞轮储能。在这几种物理储能方式中飞轮储能以其在使用寿命、充电时间、效率方面的突出特点得到了广泛的关注。 1、飞轮储能系统的结构及工作原理 1.1飞轮储能系统基本的结构 飞轮储能系统又称飞轮电池其基本结构是由飞轮、轴承、电动机/发电机、电力电子控制装置、真空室等五个部分组成[2]。其中飞轮是飞轮电池的关键部件,一般选用强度高密度相对较小的复合材料制作;轴承是支撑飞轮的装置,由于磁悬浮支承可以降低摩擦损耗提高系统效率而成为了支撑技术的研究热点;飞轮电池的电机是一个集成部件,可以在电动和发电两种模式下自由切换,以实现机械能和电能的相互转换;电力电子控制装置主要是对输出和回馈的电能进行控制,通过对电力电子控制装置的操作可以实现对飞轮电机的各种工作要求的控制;真空室的功用有两个即为飞轮提供真空环境降低风阻损耗和在飞轮高速旋转破裂时起到保护周围人员和设备的作用。图1给出了一种飞轮储能系统结构简图。 图1 飞轮储能系统结构简图 1.2飞轮储能系统的工作原理 飞轮储能系统是利用高速旋转的飞轮将能量以动能的形式存储起来的装置。它有三种工作模式即充电模式、保持模式、放电模式。充电模式即飞轮转子从外界吸收能量使飞轮转速升高将能量以动能的形式存储起来;放电模式即飞轮转子将动能传递给发电机,发电机将动能转化为电能在经过电力控制装置输出适合于用电设备的电流和电压,实现了机械能到电能的转化;

风帆蓄电池储能技术说明书.

太阳能、风能系统 储能用铅酸蓄电池 技术说明书 风帆股份有限公司工业电池分公司

目录 安全注意事项 (3) 一、概要................................................................................... 错误!未定义书签。 1.风帆储能电池特点 (4) 2.风帆储能电池用途 (4) 3.风帆储能电池使用环境 (4) 二、风帆储能电池的规格型号 (4) 1.名称的组成及其意义 (4) 2.风帆储能电池规格表 (5) 三、风帆储能电池的构造 (5) 四、风帆储能电池的充放电特性及参数........................................... 错误!未定义书签。 1.充放电技术要求及参数...................................................... 错误!未定义书签。 2.充电特性及曲线 (8) 3.放电特性及曲线 (8) 五、风帆储能电池的自放电特性、补充电及寿命 (10) 1.自放电特性及补充电.......................................................... 错误!未定义书签。 2.使用寿命.............................................................................. 错误!未定义书签。 六、风帆储能电池深放电后的充电恢复特性 (12) 七、风帆储能电池的使用注意事项 (12) 1.关于充电.............................................................................. 错误!未定义书签。 2.关于放电.............................................................................. 错误!未定义书签。 3.安装注意事项...................................................................... 错误!未定义书签。 4.日常检查及维护保养........................................................ 错误!未定义书签。3 5.关于贮存............................................................................ 错误!未定义书签。4 6.废弃蓄电池的处置.............................................................. 错误!未定义书签。

储能技术的应用心得

储能技术应用的发展前景阅读报告 摘要:针对电的储能技术主要分为三种:物理储能(抽水蓄能、压缩空气储能和飞轮储能)、电化学储能(液流电池、铅酸电池、锂离子电池、钠硫电池、镍镉电池、镍氢电池和超级电容器等)和电磁储能(如超导电磁储能等)。 一、概述 目前我国储能行业刚刚起步,比较成熟的储能技术是抽水蓄能和铅酸电池,技术进步最快的是电化学储能,其中以液流电池、锂离子电池和钠硫电池最为显著。在实际生产和应用方面,我国已经在实验以及试用不少电化学储能技术,但从整体来看,在实际生产中主要以中低端的镍氢动力电池和铅酸电池为主,更大容量的液流电池、锂离子电池、超级电容器等领域的关键技术虽有突破,但由于缺乏政策支持,未发展到商业化运作和大规模运用的阶段,部分储能技术如磷酸铁力、液流电池等真正的大规模工业化适用刚刚开始,产业化水平很低。 二、能量型和功率型电池分析 能量型储能以高比能量为特点,主要用于高能量输入、输出场合;功率型储能以高比功率为特点主要用于瞬间高功率输入、输出场合。 据了解,功率型储能电池主要用于调频,其特点是能够在短时间内,满足大功率充放电要求。各种电池技术中,以飞轮储能和超级电容的效果最好,前者理论上没有寿命限制,后者单体循环寿命为100万次。 风电一般每年运行2000-3000小时,要保证功率平滑输出,大概每10秒就要充、放电一次,那么储能电池1年的充放电次数就是100万次。高度频繁的充放电情况目前只有飞轮能够承受。但飞轮电池在高温下寿命缩短,具有较低的比能量和比功率,且存在一定的环境污染,镍镉电池与铅酸电池相似存在重金属污染。新兴化学储能如液流电池与钠硫电池是目前适合大规模发展的电力化学储能技术。全钒液流电池循环寿命长、能量转换效率较高,选址和设计灵活,安全环保但比能量和比功率较低适用于可再生能源储能和调峰电源以及应急电源。 近年来,风力发电在中国发展得十分迅猛。截至2012年底,风电累计装机容量达到7532.4万千瓦;但是,由于风能等可再生能源具有不连续、不稳定的非稳态特性,大规模并网后对电网调峰、调频及电能质量均会带来不利影响。因此,随着风电装机容量占电网电力比例的提高,弃风限电现象也频频出现。

飞轮储能技术的发展现状

飞轮储能技术的发展现状 摘要: 飞轮储能技术已成为国际能源界研究的热点之一。从飞轮储能技术的技术进展(包括飞轮本体、转子支承系统、电动/发电机、电力转换器与真空室)角度出发,系统地介绍了该技术国内外的发展现状。 关键词: 飞轮储能系统,电动机/发电机,电力转换器,真空室 近年来,飞轮储能技术发展非常迅速。国内外都积极地投入大量资金和人力在这项储能技术上,目前已经有了可喜成果,以飞轮储能五大关键技术为出发点,分别对其技术发展现状进行阐述。 1飞轮转子技术现状 美国休斯顿大学的德克萨斯超导中心致力于纺锤形飞轮开发,这是一种等应力设计,形状系数等于或接近1,材质同样为玻璃纤维复合材料,储能1kWh、重19kg、飞轮外径30.48cm。美国Beacon 电力公司推出的Beacon 智能化储能系统,其飞轮转子以一种强度高、重量轻的石墨和玻璃纤维复合材料制成,用树脂胶合。美国Satcon 技术公司开发的伞状飞轮,这种结构有利于电机的位置安放,对系统稳定性十分有利,转动惯量大,节省材料,轮毂强度设计合理。 NASA Glenn 中心和美国宾州州立大学高级复合材料制造中心等单位均采用湿法缠绕工艺制备了复合材料飞轮。 2飞轮储能的轴承支承系统技术现状 2.1机械轴承 美国TSI 公司应用高级的润滑剂、先进的轴承材料及设计方法和计算机动态分析,成功地开发出内部含有固体润滑剂的陶瓷轴承,最新又研制的基于真空罩的超低损耗轴承,其摩擦系数只有0.000 01。 2.2被动磁轴承(PMB) 目前对永磁轴承的研究较少,目前主要集中在对超导磁轴承(SMB)的研究上。 西南交通大学超导技术研究所从20 世纪90 年代初期开始,就一直致力于高温超导磁悬浮技术的应用基础研究,2000 年研制成功了世界首辆载人的高温超导磁悬浮实验车。 日本ISTEC 正在对10kWh/400kW 等级飞轮系统中的SMB 进行组装实验,同时加工设计100kWh等级飞轮定子。 德国ATZ 公司则从2005 年开始对5kWh/250kW 等级的飞轮进行研究。ATZ 公司与 L-3MM 合作生产高温超导储能,并即将进行工程应用电性能测试。并且两家机构还达成共

史上最全储能系统大盘点

史上最全储能系统大盘点 2015-05-04 10:30:10来源:无所不能作者:严同 导读:谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research 的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。 不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。 压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。

蓄电池的基本知识大全

铅酸蓄电池基本常识 1、什么是放电效率? 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 2、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A?h)的倍率关系表示。 3、何为电池的小时率放电? 按一定输出电流放完额定容量所需的小时数数,称为放电时率。 4、何为电池的能量密度? 指电池的单位体积所含的电能。 5、铅酸电池使用什么标准? 电池标准分国家标准、行业标准、企业标准三个级别。目前车用电池执行的是编号为JB/T 10262——2001的行业标准。 6、电动车铅酸电池是如何命名的? 车用铅酸电池名称叫做6-DZM-X,其中的X为后缀,X可以是8、10、12,代表电池的容量。6DZM代表6组单格电池组合成一块12V电压的电动车专用阀控密封免维护电池,如果是胶体电池,其标示方法为6-DJM-X。 7、铅酸蓄电池容量标示方法是什么? 应当以C2为准,即以0.5C2电流放电,当电压达到该电池的放电终止电压时的放电时间和电流的乘积应等于或接近额定容量值。比如:一块12V、12Ah 的电池,以5A电流放电,放电终止电压达到10.5V时,时间不能少于140min;

同样,一块12V、10Ah的电池,以5A电流放电到电压达到终止电压10.5V时,时间不能少于120min。其误差为0.1Ah 实际上行业标准规定:10Ah的电池,以5A电流放电到终止电压时间不得小于120min。企业产品实际达到的为130~137min。 8、什么是电池的过充电能力? 行业标准规定,铅酸蓄电池以1.2A电流连续充电48h,实际容量不得低于额定容量的95%。 9、什么是电池的过放电能力? 行业标准规定,铅酸蓄电池开始放电电流为12A±1.2A、以定阻抗方式连续放电2.0h,实际容量不得低于75% 10、什么是电池的低温保存特性? 行业标准规定,铅酸蓄电池在-10℃±0.1℃的环境条件下存放10h,实际容量不能低于70%。 11、如何评价铅酸蓄电池的寿命? 以容量75%的深度放电,寿命不应低于350次。 12、铅酸电池有那些优缺点? (1)优点——价格低廉:铅酸电池的价格为其余类型电池价格的1/4~1/6。一次投资比较低,大多数用户能够承受。 (2)缺点——重量大、体积大、能量质量比低,娇气,对充放电要求严格。 13、为什么电池要储存一段时间后才能包装出货? 电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的

各种储能系统优缺点对比学习资料

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。

不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。 压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。 不足之处:一大缺陷在于效率较低。原因在于空气受到压缩时温度会升高,空气释放膨胀的过程中温度会降低。在压缩空气过程中一部分能量以热能的形式散失,在膨胀之前就必须要重新加热。通常以天然气作为加热空气的热源,这就导致蓄能效率降低。还有可以想到的不足就是需要大型储气装置、一定的地质条件和依赖燃烧化石燃料。

储能电源的应用及其意义

储能系统可以说是调节微电源性能、保证负荷供电质量、维持电网稳定地重要环节,因此研究储能系统设计、开发储能在微网技术中地应用具有十分重要地意义. 、微网地储能技术种类及其特性 伴随着科技地发展,已发明地储能技术形式多种多样.根据微网地特点,适用于微网地储能技术可以分为物理储能、电化学储能和电磁储能,电化学储能可以分为铅酸电池、镉镍电池、氢镍电池、锂离子电池等.物理储能包括抽水蓄能、压缩空气储能、飞轮储能,电磁储能包括超级电容储能和超导磁储能等.文档来自于网络搜索 .蓄电池储能系统构成 蓄电池储能系统主要由电池组、电池管理系统( )、()、隔离变压器、双向变流器、变流器监控装置及辅助设备.系统可以满足频繁充放电及微网孤岛运行功能地需求.系统可根据上级调度指令完成各种充电、放电等高级控制策略,在微电网中应用最为广泛且最具有发展前途.文档来自于网络搜索 能量控制装置控制器通过通信信道接收后台控制指令,根据功率指令地符号及大小控制变流器对电池进行充电或放电,实现对电网有功功率及无功功率地调节. 控制器通过接口与电池管理系统通讯,获取电池组状态信息,可实现对电池地保护性充放电,确保电池运行安全.文档来自于网络搜索 .铅酸电池 铅酸电池主要由铅及其氧化物构成,电解液是硫酸溶液.荷电状态下,主要成分为二氧化铅,主要成分为铅;放电状态下,正负极地主要成分均为硫酸铅,以密度为.~./ (浓度为%~%)地硫酸溶液作为电解液,统称为铅酸蓄电池(亦称“铅蓄电池”).目前铅酸蓄电池在电力系统应用领域地研究重点是电力调峰、提高系统运行稳定性和提高供电质量.阀控铅酸电池地电化学反应式如下:文档来自于网络搜索 充电: (电解池)阳极:,一一阴极:当溶液地密度升到.时,应停止充电:放电: (电解池)负极:一一正极:一文档来自于网络搜索 .锂离子电池 目前锂离子电池地负极一般采用石墨或其嵌锂化合物,正极为氧化钴锂:、:及等过渡金属氧化物,电解液采用锂盐液态非水电解液.锂离子电池地性能主要取决于正负极材料,磷酸铁锂作为新兴地正极材料,其安全性能与循环寿命较其它正极材料具有明显优势.锂电池具有以下几个特点:能量密度高,其理论比容量为/,产品实际比容量可超过 (.,℃);储能密度高;工作电压适中(单体工作电压为.或. );寿命长;正常使用条件下,次循环后电池放电容量不低于初始容量地%;无害,不含任何对人体有害地重金属元素;充放电转化率高(%以上).但是,锂离子电池性能易受工艺和环境温度等因素地影响.文档来自于网络搜索 .超级电容器 超级电容器是一种新型储能装置,通过极化电解质来储能.由于随着超级电容器放电,正、负极板上地电荷被泄放,电解液地界面上地电荷响应减少.由此可以看出:超级电容器地充放电过程始终是物理过程,没有化学反应,因此性能是稳定地,与利用化学反应地蓄电池是不同地.超级电容器具有比功率大、充电速度快地优点,适合大电流和短时间充放电地场合,且使用寿命长,不易老化,是一种绿色能源,缺点是能量存储率有限,价格较为昂贵,还不能完全取代蓄电池提供能源,在电力系统中多用于短时间、大功率功率输出地场合.文档来自于网络搜索 .飞轮储能技术 飞轮储能以动能地形式存储能量,经过功率变换器,完成机械能一电能相互转换.飞轮储能比功率一般大于/,比能量超过/,循环使用寿命长,工作温区较宽,无噪声,无污染,

国内外飞轮储能技术发展现状研究

国内外飞轮储能技术发展现状研究 时间:2011-11-1 来源:北极星电力网 一、大规模发展新能源和推动节能环保亟须发展大容量储能产业 传统能源的日益匮乏和环境日趋恶化,极大地促进了新能源的发展,新能源发电的规模也快速攀升。但风电、太阳能发电自身所固有的随机性、间歇性特征,决定了其规模化发展必然会对电网调峰和系统安全运行带来显著影响,必须要有先进的储能技术作支撑。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全;但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并入常规电网。 中国新能源大发展在即,对储能产业有更急迫的现实需求。预计到2020年风电和太阳能发电装机会突破1.7亿千瓦,占全国发电装机总量的比例会超过15%。但由于目前我国电力系统煤电比例较高,在部分地区又主要是调峰能力差的供热机组,核电发展很快但却不能参与调峰,水电、燃气发电等调峰性能优越的电源所占比例过低,导致现有电力系统接纳新能源的能力很弱。再加上我国能源资源所在地多远离负荷地,不得不实施风电、光电的“大规模集中开发、远距离输送”,这更进一步加大了电网运行和控制风险。随着国内新能源发电规模的快速扩大,电网与新能源的矛盾越来越突出,对储能的需求更为迫切。 大容量储能还可提高能源利用效率,为国家节约巨额投资。为应对城市尖峰负荷,电力系统每年都要新增大量投资用于电网和电源后备容量建设,但利用率却非常低。以上海为例,2004—2006年间,为解决全市每年只有183.25小时的尖峰负荷,仅对电网侧的投资每年就超过200亿元,而为此形成的输配电能力的年平均利用率不到2%。同样是为了应对尖峰负荷,转而采用大容量储能技术,不仅投资会成倍减少,而且由于储能设施占地少、无排放,其节地、节能、减排的效果是其他调峰措施无法比拟的。 二、全球大容量储能技术呈多元化发展格局,中国企业已掌握关键技术,拥有自主知识产权。 全球储能技术主要有化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。钠硫电池的充电效率已可达到80%,能量密度是铅酸蓄电池的3倍,循环寿命更长。日本在此项技术上处于国际领先地位,2004年日本在本国Hitachi自动化工厂安装了当时世界上最大的钠硫电池系统,容量是9.6MW/57.6MWh。液流钒电池的基础材料是钒,该电池具有能量效率高、蓄电容量大、能够100%深度放电、寿命长等优点,已进入商业化阶段。锂离子电池的基础材料是锂,已开始在电动自行车、电动汽车等领域应用,近年来由于磷酸亚铁锂、纳米磷酸铁锂等新材料的开发与应用,大大改善了锂离子电池的安全性能和循环寿命,大容量锂电池储能电站正逐渐兴起。 物理储能中最成熟也是世界应用最普遍的是抽水蓄能,主要用于电力系统的调峰、填谷、调频、调相、紧急事故备用等。其能量转换效率在70%—75%左右。目前世界范围内抽水蓄能电站总装机容量9000万千瓦,约占全球发电装机容量的3%。压缩空气技术早在1978年就实现了应用,但由于受地形、地质条件制约,没有大规模推广。飞轮蓄能的特点是寿命长、无污染,动态特性好,但超大容量的飞轮,目前技术尚不成熟。电磁储能技术现在仍很昂贵,还没有商业化。

储能技术研究进展

储能技术研究进展 能源短缺和环境恶化是全球性问题,开发可再生能源,实现能源优化配置,发展低碳经济,是世界各国的共同选择。但是,可再生能源受天气及时间段的影响较大,具有明显的不稳定、不连续和不可控性。需要开发配套的电能储存装置,来保证发电、供电的连续性和稳定性。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全。但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并人常规电网。 现有的储能技术主要包括物理储能、电化学储能、电磁储能、氢储能、相变储能和热化学储能等类型。其中,物理储能、电化学储能、电磁储能和氢储能主要储存电能,物理储能包括抽水储能、压缩空气储能级飞轮储能等;电化学储能包括铅酸、锂离子、镍镉、液流和钠硫等电池储能;电磁储能包括超导储能和超级电容储能;为了实现氢储能完整的转换链,就要从氢气的制取、储存、发电等方面整体规划,在关键技术上进一步突破。而相变储能和热化学储能主要储存热能或由电能转化的热能,相变储能按材料的组成成分可分为无机类、有机类(包括高分子类)以及复合类储能材料;热化学储能基于热化学反应,而热化学反应体系主要包括金属氢化物体系、氧化还原体系、有机体系、无机氢氧化物体系以及氨分解体系。 1. 物理储能 物理储能一般用于大规模储能领域,主要包括抽水储能、压缩空气储能、飞轮储能等,其中抽水储能是主要的储能方式。物理储能是利用天然的资源来实现的一种储能方式,因此更加环保、绿色,而且具有规模大、循环奉命长和运行费用低等优点。缺点是建设局限性较大,其储能实施的地理条件和场地有特殊要求。而且因为其一次性投资较高,一般不适用于小规模且较小功率的离网发电系统。 1.1 抽水储能 目前在电力系统中应用最广泛的一种物理储能技术,即为抽水储能。它是一种间接的储能方式,用来解决电网高峰与低谷之间的供需矛盾。水库中的水被下半夜过剩的电力驱动水从下水库抽到上水库储存起来,然后在第二天白天和前半夜将水闸打开,放出的水用来发电,并流入到下水库。即使在转化间会有一部分能量因此而流失,但在低谷时压荷、停机等情况下,使用抽水储能电站仍然比增建煤电发电设备来满足高峰用电而来得便宜,具有更佳的效果。除此以外,抽水

太阳能发电储能专用蓄电池Word版

太阳能发电储能专用蓄电池 近年来,太阳电池的光伏发电技术得到了世界各国的高度重视。从欧美的太阳能光伏“屋顶计划”到我国的西部光伏发电项目。太阳能光伏发电已经显示了其强劲的发展势头。随着光伏发电技术的发展和低成本光伏组件的产业化,太阳能灯具、光伏电站和光伏户用电源,均要求蓄电池供应商能够提供全天候运行的蓄电池,而目前光伏系统多采用阀控式密封铅酸蓄电池(以下简称铅酸蓄电池缩写VRLAB)胶体铅酸蓄电池和免维护铅酸蓄电池(不是VRLA蓄电池)作为储能电源。耐候性是指蓄电池适应自然环境的特性。本文主要讨论自然环境下温度对蓄电池寿命、容量的影响及解决方法,以及储能铅酸蓄电池研究发展方向。上述三种产品在河北奥冠电源公司已批量生产,山东皇明太阳能公司做储能蓄电池已配套应用,现场试验效果很好。 一、温度对铅酸蓄电池寿命的影响 VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40℃,温度升高10度,寿命降低一倍,寿命终止的主要原因是:硫酸电解液干涸;热失控;内部短路等。 1、硫酸电解液干涸 硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制因素之一。酸液干涸将造成电池容量降低,甚至失效。造成电池干涸失效这一因素是铅酸电池所特有的。酸液干涸的原因 1.1、气体再化合的效率偏低,析氢析氧、水蒸发 1.2、从电池壳体内部向外渗水 1.3、控制阀设计不当 1.4、充电设备与电池电压不匹配,电池电压过高、发热、失水、干涸而失效。

VRLA铅酸蓄电池受到上述四种因素的影响,其中后三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA铅酸蓄电池寿命的致命因素,VRLA蓄电池不适于在35℃以上高温条件下使用。 2、热失控 蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA 铅酸蓄电池之所以在高温环境下易发生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 3、内部短路 由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生成枝晶穿透隔膜等引起内部短路。深放电之后的蓄电池,其吸附式隔板易出现铅绒或弥散型沉淀,或形成枝晶,导致正负极板微短路。 由于VRLA铅酸蓄电池的负极冗余设计,充电的初、中期充电效率比正极板充电效率高,所以在正极板析氧之前,负极已生成足够的绒面铅,用于使氧进行再化合。在制作蓄电池过程中,以负极活性物质的量作为控制因素,可以减缓电池性能的恶化。 除此而外,目前在铅酸蓄电池中还普遍采用添加剂,用以改善蓄电池性能,如添加锌、镉、锂、钴、铜、镁、等金属盐或氧化物。这些添加剂均为强电解质,在放电过程中其离子向负极迁移。这些金属离子起化合配位作用,降低形成硫酸铅的概率,既是形成了硫酸铅,也比较松软,易于软化或还原。在电池的使用中,应尽量保持温度恒定,避免温度的大起大落,减少枝晶析出产生的机会。

电池储能系统在电力系统中的应用

电池储能系统在电力系统中的应用 孔令怡1,廖丽莹1,张海武2,赵家万3 (1.广西大学电气工程学院,南宁530004;2.德清县供电局,德清313200;3.遵义 供电局,遵义市563000) 摘要:电池储能系统(BESS)是一种新兴的FACTS器件。具有控制有功功率流的能力,能够同时对接入点的有功功率和无功功率进行调节,为高压输电系统提供快速的响应容量,有效提高了电力系统的稳定性、可靠性和电能质量。介绍了电池储能系统的基本原理、特点和国外的应用情况,并对它在电力系统中的不同应用进行了综述。 1引言 迄今为止,由于电力系统缺乏有效地大量储存电能的手段,发电、输电、配电与用电必须同时完成,这就要求系统始终处于动态的平衡状态中,瞬间的不平衡就可能导致安全稳定问题。大功率逆变器的出现为储能电源和各种可再生能源与交流电网之间提供了一个理想的接口。从长远的角度看,由各种类型的电源和逆变器组成的储能系统可以直接连接在配电网中用户负荷附近,构成分布式电力系统,通过其快速响应特性,迅速吸收用户负荷的变化,从根本上解决电力系统的控制问题。 可用在电力系统中的储能电源种类繁多,比较常见的有超导储能(SMES)、电池储能(BESS)、飞轮储能、超级电容器储能、抽水储能、压缩空气储能等。在各种类型的储能电源当中,电池储能系统是一种比较适合电力系统使用的储能电源,具有技术相对成熟、容量大、安全可靠、无污染、噪声低、环境适应性强、便于安装等优点。 2电池储能系统的基本原理 电池储能系统主要有电池组和变流器两部分组成,其变流器主要是基于电压源型变流器,其基本结构如图1所示。

电池组部分一般采用技术比较成熟的钠硫电池或铅酸电池,其中钠硫电池在能量密度、使用寿命、运行效率上有较明显优势,所以钠硫电池的应用更广泛。钠硫电池与铅酸电池特性参数比较如表1所示。 变流器的实质是大容量的电压逆变器,它是连接储能电池和接入电网之间的接口电路,实现了电池直流能量和交流电网之间的双向能量传递。电池储能系统的电路原理图如图2所示。 图2中电池储能系统等效为一个理想的电压源,其电压的幅值为U1,电压相角为H;串联的R、L代表总的功率损耗、线路损耗等;电池储能系统注入电力系统的电流的幅值为I L,电流相角为U;电力系统的接入点的电压幅值为U S,电压相角为D。 在电池储能系统中,电压幅值U1和电压相角H都是可以控制的,当我们需要向系统注入有功功率时,便可以控制H>D,这时电池储能系统的电压相角超前于系统接入点的电压相角,所以有功功率由电池储能系统流入系统;反之亦然。当我们需要向系统注入无功功率时,便可以控制U1>U S,这时电池储能系统的电压幅值高于系统接入点的电压幅值,所以无功功率由电池储能系统流入系统;反之亦然。可见,适当的调整换流器来控制电池储能系统的电压幅值U1和相角H,便可以实现电池储能系统与接入的电力系统之间的有功功率和无功功率的交换。 3电池储能系统在电力系统中应用的目的 电池储能系统在电力系统中有着极为广泛的应用,因为它本身可以快速的对接入点的有功功率和无功功率进行调节,所以可以用来提高系统的运行稳定性、提高供电的质量,当其容量足够大时,甚至可以发挥电力调峰的作用。

相关文档
最新文档