化学动力学发展史及相关定理的理解

化学动力学发展史及相关定理的理解
化学动力学发展史及相关定理的理解

化学动力学发展史及相关定理的理解

化学动力学发展史及相关定理的理解

摘要:文章对化学动力学的发展史以及相关理论和定律进行了详细的分析和阐述,并且对相关公式进行了分析。

关键词:化学;动力学;发展史;反应速度;

引言

化学动力学作为物理化学的三大分支学科之一已有一百多年的历史。通过对浙江大学出版的高等燃烧学第一章的化学动力学的认真的阅读和相关文章及文献资料的查询,对化学动力学的发展史和相关定律和定理有了较为详细的认识。

1、化学动力学发展历程

1.1 宏观反应动力学阶段

化学动力学作为一门独立的学科,它的发展历史始于质量作用定律的建立[ 3 ]。宏观反应动力学阶段是研究发展的初始阶段,大体上是从19世纪后半叶到20世纪初,主要特点是改变宏观条件,如温度、压力、浓度等来研究对总反应速率的影响,其间有3次诺贝尔化学奖颁给了与此相关的化学家。这一阶段的主要标志是质量作用定律的确立和阿伦尼乌斯公式的提出。

1850年,Wilhelmy通过研究蔗糖的水解反应得出了一级反应的速率方程。1867

年,Guldberg和Waage在总结了大量实验的基础上提出了质量作用定律。19世纪80年代, van’t Hoff及Arrhenius在对质量作用定律所进行的研究中,进一步提出了有效碰撞、活化分子及活化能的概念。但后来证明,质量作用定律只是描述基元反应动力学行为的定理,在总包反应层次上并不正确。van’t Hoff对化学反应中反应物浓度与反应速率之间的关系进行了明确的阐述,

并提出了化学反应具有可逆性的概念。他还从热力学角度提出了化学反应中大量分子与温度之间的近似规律。van’t Hoff由于对化学动力学和溶液渗透压的首创性研究[ 4 ]而荣获了1901年的首届诺贝尔化学奖。

1889年,Arrhenius提出了关于化学反应速度的Arrhenius公式,即著名的化学反应速度指数

式。

(1)式中K—反应温度T(K)时的反应速度常数

K o—频率因子

E a—活化能

这个公式所揭示的物理意义使化学动力学理论迈过了一道具有决定意义的门槛[ 5 ]。

1.2 基元反应动力学阶段

基元反应动力学阶段始于20世纪初至20世纪50年代前后,这是宏观反应动力学向微观反应动力学过渡的重要阶段。其主要贡献是反应速率理论的提出、链反应的发现、快速化学反应的研究、同位素示踪法在化学动力学研究上的广泛应用以及新研究方法和新实验技术的形成,由此促使化学动力学的发展趋于成熟。在此阶段有3次诺贝尔化学奖颁给了对化学动力学发展做出贡献的化学家。20世纪30年代, Eyring和Polanyi在简单碰撞理论的基础上,借助量子力学方法提出了过渡态理论,为元反应机理的微观描述奠定了基础,推动了化学反应过程瞬态物种的物理化学研究[ 1 ] ,也为现代化学动力学的发展提供了重要的思想观念和理论方法。

链反应的发现是化学动力学发展的又一里程碑。1913年, Bodenstein率先提出了链反应的概念。1918年,Nernst在Bodenstein链反应概念的基础上提出了HCl光化学合成的链反应机理,将活性中间体定义为自由基,形成了链反应研究的雏形。在20世纪20年代中叶以前,“链反应”在化学上并不具有普遍的意义,仅仅被用来解释某些个别反应; 1927~1928年两年间,

链反应的概念开始为人们认同。

1.3 分子反应动力学阶段

20世纪中期,随着激光技术、分子束技术、微弱信号检测技术和计算机技术的突破,特别是激光技术的应用极大地推动了分子反应动力学的发展[ 12 ] 。为分子反应动力学的研究发展做出巨大贡献的不仅有交叉分子束方法,也有碰撞脉冲锁模(CPM)飞秒激光技术。

首次将分子束技术用于化学动力学研究的科学家是Moon和Bull,而Datz和Taylor则首先把交叉分子束方法应用于钾原子和溴化氢碰撞过程的研究。在20世纪60年代, Herschbach 和李远哲等人实现了在单次碰撞下研究单个分子间发生的反应机理的设想,他们将激光、光电子能谱与分子束结合,使化学家有可能在电子、原子、分子和量子层次上研究化学反应所出现的各种动态,以探究化学反应和化学相互作用的微观机理和作用机制,揭示化学反应的基本规律。这就是分子反应动力学的核心所在。因此,分子反应动力学的研究和发展在很大程度上取决于研究者所掌握的实验技术的精密性,以及在微观水平上能够运用这些技术对化学反应过

程进行多大程度的调控和测量。分子束技术开创了化学动力学研究手段革新的新篇章,为控制化学反应的方向与过程提供了重要的手段。

研究态-态反应的基本实验手段是分子束和激光。具体的实验方法相当多,例如交叉分子束,闪光光谱,激光诱导荧光,化学激光,红外化学发光等。当前主要采用的方法有交叉分子束、红外化学发光和激光诱导荧光三种,其中交叉分子束则是最重要的实验数据提供手段,是研究分子碰撞的理想方法。

常用的交叉分子束由束源、准直器、速度选择器、散射室、可移动检测器等几个主要部分组成。分子束是在高真空的容器中飞行的一束分子,它是由束源中发射出来的。

2、化学动力学的研究对象及意义

是研究化学反应速率(rate of reaction)和反应机理(mechanism of reaction)的化学分支学科。化学动力学的主要内容包括以下几点:

1) 确定化学反应的速率以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率 的影响;

2) 确定化学反应的速率以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的

影响;

3) 确定化学反应的速率以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的

影响。

通过化学动力学的研究,可以知道如何控制反应条件,提高主反应的速率,增加产品产量,抑制副反应的速率,减少原料消耗,减少副产物,提高纯度,提高产品质量。化学动力学也研究如何避免危险品的爆炸、材料的腐蚀、产品的变质与老化等问题。所以化学动力学的研究有理论与实践上的重大意义。

3、化学动力学的各种定律、理论及公式的分析

3.1 化学反应速度

化学反应速度的定义为反应物浓度或生成物浓度随时间的变化速率,其数学表达式为: (2)

式中 C —反应物或生成物的浓度 对于某恒容反应:

hH gG dD a +→+A (3)

dt dC r A A = dt dC r D D = dt dC r G G = dt dC r H

H = (4)

对于上述整个反应来讲,其反应速度:

dt

h dC dt g dC dt d dC -dt a dC -r H

G D A ?=?=?=?= (5)

从而有如下关系:

h

r

g r d r a r r H G D A ==== (6)

反应速度的测定主要有化学方法和物理方法,用化学分析方法测定C 随t 的变化,其优点是能够直接得到浓度的绝对值,但缺点是操作复杂,且分析速度慢;用物理的方法检测C 随t 的变化,像折射率、旋光度、吸光度、电导、电动势、粘度等,其优点是连续、快速、方便,其缺点是无法直接测得浓度。

3.2 基元反应与总包反应

基元反应的定义为由反应物经一步反应直接生成产物的反应。也被称作简单反应;总包反应的定义为反应不是经过简单的一步就完成,而是要通过生成中间产物的许多反应步骤来完成,其中每一步反应称作基元反应。例如:对H2与O2的燃烧,其总包反应:

O H 2O H 222→+

(7)

dc r dt

上述反应经历两个步骤:

H HO O H 222+→+ (7-a ) O OH O H 2+→+ (7-b ) H O H H OH 22+→+ (7-c ) 其中的每一步反应都是一个基元反应,且每一步反应又为双分子反应。

3.3 质量作用定律

数质量作用定律的定义为在一定温度下,基元反应的反应速度与反应物浓度成正比,浓度的方次为计量方程的反应物的计量系数。若存在某基元反应:

dD cC bB a +→+A (8)

其反应速度可表示为:

b

B a A A A A

C C K dt

dC -r == (9) 其中K A —化学反应速度常数。

3.4 反应级数

针对式(8)其反应级数是a+b,对于其余情况反应级数由实验测得。这说明一般反应级数与反应方程式无关,反应级数可正、可负、可为零。

3.5 阿累尼乌斯定律

1889年,Arrhenius 通过大量实验与理论的论证,揭示了在恒定浓度的条件下,反应速率常数对温度的依赖关系,建立了著名的Arrhenius 定理,即式(1)。其对数式和微分式分别为:

RT

Ea

-lnK lnK o = (10-a )

2

RT

Ea

dT dlnK = (10-b ) 阿累尼乌斯定律既适用于基元反应, 也适用于一些具有反应物浓度幂乘积形式的总包反应

阿累尼乌斯定律具有广泛的应用,它可以用来求解活化能Ea 。例如:

已知在温度T 1时化学反应速度为K 1,在温度T 2时化学反应速度为K 2,求活化能E a 解:根据阿累尼乌斯方程对数式可知:

当T=T 1时,1

o 1RT Ea

-lnK lnK = ①

当T=T 2时,2

o 1RT Ea

-lnK lnK = ②

联立①和②可得

)T 1-T 1(R Ea K K ln 2112= 从而)

T 1

-T 1(K K Rln Ea 2

112=

阿累尼乌斯定律可以帮助构建化学动力学模型,诸如菜籽油在亚临界水中的动力学模型, 小桐子油脂肪酸在超临界甲醇中酯化反应的动力学模型等。

3.6 链式化学反应

链式化学反应的定义为很多化学反应不是一步就能完成从反应物向反应产物的转化,而

是由于形成及其活跃的组分而引发一系列连续、竞争的中间反应,导致从反应物转化形成反

应产物。链式反应是化学反应中最普通、最复杂的反应形式,其各个中间反应均属于基元反应,链式反应基本过程包括以下几个步骤: a) 链的激发(引发)

在外界因素(热力、高能分子碰撞)作用下稳定的组分断裂生成一个基或若干个基(也称为自由基、根或游基),由原反应物产生基的过程,该过程需要足够的能量分裂原反应物分子以产生基。是反应最艰难的阶段。 b) 链的传播

自由基与分子相互作用,旧的自由基消失的同时重新产生一个或几个自由基。 c) 链的终止(中断)

两个基形成一个稳定的组分,直至反应物浓度消耗至尽,或由于基销毁的速度大于基生成的速度,导致链的终止。产生基的基元反应为启链反应,而基被破坏的基元反应为终链反应。

链式化学反应的分类:

1)不分支链反应(或直链反应):如果反应产物中基的数目与反应物中基的数目的比值α=1。即:如果一个自由基与分子反应的结果是旧的自由基消失,但同时产生一个新的自由基,此时自由基的数目不变。

不分支链式反应示例:

反应机理: HCl 2H Cl 22→+ (11) 链的激发: M Cl Cl M Cl 2++→+ (11-a ) 链的传播: Cl HCl H Cl 2+→+ (11-b ) 链的终止: 2Cl Cl Cl →+ (11-c ) 2)分支链反应: 如果α=1。即如果新的自由基数目大于原自由基数目则称分支链反应。

分支链式反应示例:

反应机理: O H 2O 2H 222→+ (12) 链的激发: H 2H 2→ (12-a ) 链的传播: O OH O H 2+→+ H OH H O 2+→+ H O H H OH 22+→+ (11-b )

链的终止: O H OH H 2→+ (11-c ) 2H H H →+ 2O O O →+

4、总结

通过查阅资料和阅读书本,可以发现现代化学动力学的研究层次和研究方法都越来越深入、越来越精细、越来越先进。同时使自己的对化学动力学有了系统认识和深刻的理解,也使得自己搜集资料的能力得到了较好的锻炼。

参考文献

[1] 岑可法,姚强,洛仲泱,李绚天编,《高等燃烧学》,浙江大学出版社,2000.

[2] 李一哲,王华,李法社,包桂荣.菜籽油在亚临界水中的水解反应动力学模型研究[J].工业加热,2014,43(3):9-12

[3] 赵学庄. 化学反应动力学原理. 北京: 高等教育出版社, 1984

[4] Van Houten J. J Chem Educ, 2001, 78 (12) : 1570

[5] 赵匡华. 化学通史. 北京:高等教育出版社, 1990

[6] 李法社1.小桐子油脂肪酸在超临界甲醇中酯化反应动力学的研究[J].太阳能学

报,2010,31(5):531-535

[7] 姚兰英,彭蜀晋.化学动力学的发展与百年诺贝尔化学奖[J].今日化,2005,20(1):59-64

哈工大现代控制理论复习题

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号 里打√,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x = ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 二、(15分)考虑由下式确定的系统: 2 33 )(2+++= s s s s G 试求其状态空间实现 的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 []? ? ? ???=?? ????+??????? ?????--=??????21212113103210x x y u x x x x 能观测标准形为 []? ? ? ???=??????+??????????? ?--=??????21212110133120x x y u x x x x 对角标准形为 []? ? ? ???-=??????+????????????--=??????21212112112001x x y u x x x x 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 x x ?? ????--=3210 求其状态转移矩阵。 解:解法1。 容易得到系统状态矩阵A 的两个特征值是2, 121-=-=λλ,它们是不相同的,故系统的

第九章 化学动力学基本原理

第九章 化学动力学基本原理 第一次课: 课程名称:物理化学 本课内容:§9.1引言 §9.2反应速率和速率方程 授课时间: 90 分钟 一、教学目的 通过本次教学,使学生了解明确反应速率,反应级数,反应分子数等概念,掌握反应速率的表示方法方程,并能熟练应用。 二、教学意义 通过本次授课,主要使学生了解动力学的基本概念,掌握反应速率的表示方法,了解动力学研究的意义。 三、教学重点 反应速率,反应级数,反应分子数,反应速率的表示方法 四、教学难点 反应速率的表示方法 五、教学方式 以电子课件为主,辅以少量板书的课堂讲授。 六、讲授内容 §9.1引言 1.化学动力学的任务和目的 2.化学动力学发展简史 3.反应机理的概念 §9.2反应速率和速率方程 1.反应速率的表示法 2.反应速率的实验测定 3.反应速率的经验表达式 4.反应级数 5.质量作用定律 七、讲授方法 §9.1引言 1.化学动力学的任务和目的 首先讲述化学动力学基本任务即研究各种因素对反应速率的影响,进而揭示化学反应发生的具体过程(即反应机理)。 2.化学动力学发展简史 以图片的形式向学生生动的展示化学动力学发展简史,加深学生的印象。3.反应机理的概念 以实例讲述学生所熟悉的许多化学反应并不是简单的一步反应就能实现的,而是经历了一系列具体步骤而最终实现的,从而引出反应机理的概念,即组成宏观总反应的基元反应的总和及其序列,称为“反应机理”或“反应历程”。 §9.2 反应速率和速率方程 1.反应速率的表示法 重点讲述反应速率的表示方法,所谓反应速率就是化学反应进行的快慢程度。国际上已普遍采用以反应进度随时间的变化率来定义反应速率。

现代控制理论大作业

现代控制理论 (主汽温对象模型) 班级: 学号: 姓名:

目录 一. 背景及模型建立 1.火电厂主汽温研究背景及意义 2.主汽温对象的特性 3.主汽温对象的数学模型 二.分析 1.状态空间表达 2.化为约当标准型状态空间表达式并进行分析 3.系统状态空间表达式的求解 4.系统的能控性和能观性 5.系统的输入输出传递函数 6.分析系统的开环稳定性 7.闭环系统的极点配置 8.全维状态观测器的设计 9.带状态观测器的状态反馈控制系统的状态变量图 10.带状态观测器的闭环状态反馈控制系统的分析 三.结束语 1.主要内容 2.问题及分析 3.评价

一.背景及模型建立 1.火电厂主汽温研究背景及意义 火电厂锅炉主汽温控制决定着机组生产的经济性和安全性。由于锅炉的蒸汽容量非常大、过热汽管道很长,主汽温调节对象往往具有大惯性和大延迟,导致锅炉主汽温控制存在很多方面的问题,影响机组的整个工作效率。主汽温系统是表征锅炉特性的重要指标之一,主汽温的稳定对于机组的安全运行至关重要。其重要性主要表现在以下几个方面: (1) 汽温过高会加速锅炉受热面以及蒸汽管道金属的蠕变,缩短其使用寿命。例如,12CrMoV 钢在585℃环境下可保证其应用强度的时间约为10万小时,而在 595℃时,其保证应用强度的时间可能仅仅是 3 万小时。而且一旦受热面严重超温,管道材料的强度将会急剧下降,最终可能会导致爆管。再者,汽温过高也会严重影响汽轮机的汽缸、汽门、前几级喷嘴和叶片、高压缸前轴承等部件的机械强度,从而导致设备损坏或者使用年限缩短。 (2) 汽温过低,会使得机组循环热效率降低,增大煤耗。根据理论估计可知:过热汽温每降低10℃,会使得煤耗平均增加0.2%。同时,汽温降低还会造成汽轮机尾部的蒸汽湿度增大,其后果是,不仅汽轮机内部热效率降低,而且会加速汽轮机末几级叶片的侵蚀。此外,汽温过低会增大汽轮机所受的轴向推力,不利于汽轮机的安全运行。 (3) 汽温变化过大会使得管材及有关部件产生疲劳,此外还将引起汽轮机汽缸的转子与汽缸的胀差变化,甚至产生剧烈振动,危及机组安全运行。 据以上所述,工艺上对汽温控制系统的质量要求非常严格,一般控制误差范围在±5℃。主汽温太高会缩短管道的使用寿命,太低又会降低机组效率。所以必须实现汽温系统的良好控制。而汽温被控对象往往具有大惯性、大延时、非线性,时变一系列的特性,造成对象的复杂性,增加了控制的难度。现代控制系统中有很多关于主汽温的控制方案,本文我们着重研究带状态观测器的状态反馈控制对主汽温的控制[1] 。 2.主汽温对象的特性 2.1主汽温对象的静态特性 主汽温被控对象的静态特性是指汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构和布置将直接影响过热器的静态特性。现代大容量锅炉多采用对流过热器、辐射过热器和屏式过热器。对流过热器布置在450℃~1000℃烟气温度的烟道中,受烟气的横向和纵向冲刷,烟气以对流方式将热量传给管道。而辐射过热器则是直接吸收火焰和高温烟气的辐射能。屏式过热器布置在炉膛内上部

电化学原理知识点

电化学原理知识点

电化学原理 第一章绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极原电池(-)电解池(+) 阴极:发生还原反应的电极原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在 的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向 的水分子性质,受这种相互作用的水分子层称为 水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值, 反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、 液态物质和溶剂,这一标准态就是它们的纯物质 状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: i i i x αγ=∑=221i i z m I I A ?-=± γlog

注:上式当溶液浓度小于0.01mol ·dm-3 时才 有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2) 离子运动速度。 当量电导(率):在两个相距为单位长度的平行 板电极之间,放置含有 1 克当量电解质的溶液 时,溶液所具有的电导称为当量电导,单位为Ω -1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量 电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动是独 立的,这时电解质溶液的当量电导等于电解质全 部电离后所产生的离子当量电导之和: 同一离子在任何无限稀溶液中极限当量电导值 不变! L A G κ= KV =λN c N c k 1000=λ-++=000λλλ

电化学原理及其应用(习题及答案)

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是(C) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是Zn |Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+ Eθ(Cu2+/Cu)=(1) , Eθ(Sn4+/Sn2+)=(2) 则有(C) A. (1) = (2) B. (1)<(2) C. (1)>(2) D. 都不对 二、填空题 1.将下列方程式配平 3PbO2 + 2 Cr3+ + ____H2O___ =1Cr2O72—+ 3Pb2+ + __2H+___ (酸性介质) 2MnO2 + 3 H2O2 +__2OH-___ =2MnO4—+ ___4H2O______ (碱性介质)2.现有三种氧化剂Cr2O72—,H2O2,Fe3+,若要使Cl—、Br—、I—混合溶液中的I—氧化为I2,而Br-和Cl-都不发生变化,选用Fe3+最合适。(EθCl2/Cl-=1.36V, EθBr2/Br-=1.065V, EθI2/I-=0.535V) 3.把氧化还原反应Fe2++Ag+=Fe3++Ag设计为原电池,则正极反应为Ag++ e = Ag,负极反应为Fe3++e= Fe2+ ,原电池符号为Pt︱Fe3+(c1),Fe2+(c2)‖Ag+(c3)︱Ag。 4.在Mn++n e=M(s)电极反应中,当加入Mn+的沉淀剂时,可使其电极电势值降低,如增加M的量,则电极电势不变 5.已知EθAg+/Ag=0.800V, K sp=1.6×10—10则Eθ(AgCl/Ag)= 0.222V。 6.已知电极反应Cu2++2e=Cu的Eo为0.347V,则电极反应2Cu - 4e =2Cu2+的Eθ值为0.347V 。7.用氧化数法配平下列氧化还原反应。 (1)K2Cr2O7+H2S+H2SO4K2SO4+Cr2(SO4)3+S+H2O K2Cr2O7+3H2S+4H2SO4 =K2SO4+Cr2(SO4)3+3S+7H2O

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题 一、选择题: 1、某反应的速率常数k=0.0462分-1,又知初始浓度为0.1mol.dm-3,则该反应的半衰期为: (A) 1/(6.93×10-2×0.12) (B) 15分(C) 30分(D) 1/(4.62×102×0.1)分 答案:(B) 2、某一级反应, 当反应物的浓度降为起始浓度的1%时,需要t1秒, 若将反应物的浓度提高一倍, 加快反应速率, 当反应物浓度降低为起始浓度的1%时, 需时为t2, 则: (A ) t1﹥t2(B) t1=t2 (C) t1﹤t2(D) 不能确定二者关系 答案:(B) 3、某反应物反应掉7/8所需的时间恰好是它反应掉1/2所需时间的3倍, 则该反应的级数是: (A) 零级(B) 一级反应(C) 三级反应(D) 二级反应 答案:(B )

4、反应A→B(Ⅰ);A→D(Ⅱ), 已知反应Ⅰ的活化能E1大于反应Ⅱ的活化能E2, 以下措施中哪一种不能改变获得B和D的比例: (A)提高反应温度(B) 降低反应温度 (C) 延长反应时间(D) 加入适当的催化剂 答案:C 5、由基元步骤构成的复杂反应:2A→2B+C A+C→2D,以C物质的浓度变化表示反应速率的速率方程(已知:-dC A/dt=K A1C A2-K A2C B2C c+K A3C A C C ) 则 (A)dC c/dt=K A1C A2-K A2C B2C c+K A3C A C C (B)dC c/dt=1/2K A1C A2-1/2K A2C B2C c+1/2K A3C A C C (C)dC c/dt=2K A1C A2-2K A2C B2C c+2K A3C A C C (D)dC D/dt=-K A3C A C C 答案:(B) 6、反应Ⅰ, 反应物初始浓度C0’, 半衰期t1/2’, 速率常数K1, 反应Ⅱ, 反应物初始浓度C0”, 半衰期t1/2”, 速率常数K2,

哈工大现代控制理论复习题

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号 里打√,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x =&,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 二、(15分)考虑由下式确定的系统: 2 33 )(2+++= s s s s G 试求其状态空间实现的能 控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 能观测标准形为 对角标准形为 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 求其状态转移矩阵。 解:解法1。 容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵 A 可以对角化。矩阵A 对应于特征值2,121-=-=λλ的特征向量是 取变换矩阵 []???? ??--==-1112121ννT , 则 ? ? ????--=-21111 T 因此, ?? ? ???--==-20011 TAT D

从而, 解法2。拉普拉斯方法 由于 故 ?? ? ???+-+---=-==Φ----------t t t t t t t t At e e e e e e e e A sI L e t 222211 2222])[()( 解法3。凯莱-哈密尔顿方法 将状态转移矩阵写成 A t a I t a e At )()(10+= 系统矩阵的特征值是-1和-2,故 )(2)()()(10210t a t a e t a t a e t t -=-=-- 解以上线性方程组,可得 t t t t e e t a e e t a 2120)(2)(-----=-= 因此, ?? ? ???+-+---=+==Φ--------t t t t t t t t At e e e e e e e e A t a I t a e t 2222102222)()()( 四、(15分)已知对象的状态空间模型Cx y Bu Ax x =+=,&,是完全能观的,请画出观测器 设计的框图,并据此给出观测器方程,观测器设计方法。 解 观测器设计的框图: 观测器方程: 其中:x ~是观测器的维状态,L 是一个n ×p 维的待定观测器增益矩阵。 观测器设计方法: 由于 )](det[])(det[)](det[T T T T L C A I LC A I LC A I --=--=--λλλ 因此,可以利用极点配置的方法来确定矩阵L ,使得T T T L C A -具有给定的观测器极点。具体的方法有:直接法、变换法。 五、(15分)对于一个连续时间线性定常系统,试叙述Lyapunov 稳定性定理,并举一个二阶系统例子说明该定理的应用。 解 连续时间线性时不变系统的李雅普诺夫稳定性定理: 线性时不变系统Ax x =&在平衡点0=e x 处渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q ,李雅普诺夫矩阵方程Q PA P A T -=+有惟一的对称正定解P 。

第十一章 化学动力学基础(一)习题

化学动力学基础(一) 一、简答题 1.反应Pb(C 2H 5)4=Pb+4C 2H 5是否可能为基元反应?为什么? 2.某反应物消耗掉50%和75%时所需要的时间分别为t 1/2和 t 1/4,若反应对该反应物分别是一级、二级和三级,则t 1/2: t 1/4的比值分别是多少? 3.请总结零级反应、一级反应和二级反应各有哪些特征?平行反应、对峙反应和连续反应又有哪些特征? 4.从反应机理推导速率方程时通常有哪几种近似方法?各有什么适用条件? 5.某一反应进行完全所需时间时有限的,且等于k c 0(C 0为反应物起始浓度),则该反应是几级反应? 6. 质量作用定律对于总反应式为什么不一定正确? 7. 根据质量作用定律写出下列基元反应速率表达式: (1)A+B→2P (2)2A+B→2P (3)A+2B→P+2s (4)2Cl 2+M→Cl 2+M 8.典型复杂反应的动力学特征如何? 9.什么是链反应?有哪几种? 10.如何解释支链反应引起爆炸的高界限和低界限? 11.催化剂加速化学反应的原因是什么? 二、证明题 1、某环氧烷受热分解,反应机理如下: 稳定产物?→??+?+??→??++??→??? +??→?432134 33k k k k CH R CH R CH RH CO CH R H R RH

证明反应速率方程为()()RH kc dt CH dc =4 2、证明对理想气体系统的n 级简单反应,其速率常数()n c p RT k k -=1。 三、计算题 1、反应2222SO Cl SO +Cl →为一级气相反应,320℃时512.210s k --=?。问在320℃ 加热90min ,22SO Cl 的分解百分数为若干?[答案:11.20%] 2、某二级反应A+B C →初速度为133105---???s dm mol ,两反应物的初浓度皆为 32.0-?dm mol ,求k 。[答案:11325.1---??=s mol dm k ] 3、781K 时22H +I 2HI →,反应的速率常数3-1-1HI 80.2dm mol s k =??,求2H k 。[答 案:113min 1.41---??=mol dm k ] 4、双光气分解反应32ClCOOCCl (g)2COCl (g)→可以进行完全,将反应物置于密 闭恒容容器中,保持280℃,于不同时间测得总压p 如下: [答案: 1.1581a =≈;-14-12.112h 5.8710s k -==?] 5、有正逆反应均为一级反应的对峙反应: D-R 1R 2R 32L-R 1R 2R 3CBr 已知半衰期均为10min ,今从D-R 1R 2R 3CBr 的物质的量为1.0mol 开始,试计算10min 之后,可得L-R 1R 2R 3CBr 若干?[答案:0.375mol] 6、在某温度时,一级反应A →B ,反应速率为0.10mol ·dm -3·s -1时A 的转化率 为75%,已知A 的初始浓度为0.50mol ·dm -3,求(1)起始反应初速率;(2)速率常数。[答案:r 0=0.40s -1 ; k = 0.80 dm 3·mol -1·s -1 ] 7、在某温度时,对于反应A+B →P ,当反应物初始浓度为0.446和0.166mol ·dm -3 时,测 得反应的半衰期分别为4.80和12.90min ,求反应级数。[答案:2] 8、某二级反应,已知两种反应物初始浓度均为0.1mol ·dm -3,反应15min 后变

现代控制理论大作业 北科

现代控制理论大作业分析对象:汽车悬架系统 指导老师:周晓敏 专业:机械工程 姓名:白国星 学号:S2*******

1.建模 悬架是车轮或车桥与汽车承载部分之间具有弹性的连接装置的总称,具有传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等作用。传统汽车悬驾系统是被动悬驾,其参数不能改变,无法控制其对不同路面激励的响应,因此对不同路面的适应性较差。为提高汽车的行驶平顺性、操纵稳定性和制动性等性能,人们开始用主动悬架系统来代替传统的被动悬架系统。主动悬架系统能根据路面的情况通过一个动力装置改变悬挂架的参数,改善汽车的各方面性能。 对悬驾系统进行仿真计算首先要建立悬驾系统动力学模型,随后对所建立的模型进行仿真分析。为了简化模型,取汽车的一个车轮的悬驾系统进行研究,该模型可简化为一维二自由度的弹簧阻尼质量系统,图1所示为该模型的模拟图。 图1 悬架系统模型的模拟图 其中u为动力装置的作用力,w为路面位移,x1为车身位移,x2为悬驾位移,用车身位移来度量车身的振动情况,并视为系统的输出。路面状况以w为尺度,并视为系统的一个干扰输入。当汽车从平面落入坑时,w可用一个阶跃信

号来模拟。u 为主动悬架的作用力,它是系统的控制量。 进行受力分析,由牛顿第二规律可得车身悬架系统的动力学方程为: ()()()()() 1121212212122s s t m x K x x b x x u m x K x x b x x u K w x ?=-+-+?? =-+--+-??& &&&&&&& 设系统状态变量为: []1 2 12x x x x x =&& 则上面系统动力学方程可改写为状态空间表达式: x Ax Bu y Cx Du =+?? =+?& 其中: ()1 1 1 1222 200 100001s s s t s K K b b A m m m m K K K b b m m m m ????????--=????-+??-??? ? 12 200 001 01t B m K m m ?? ??????=????-???? []1000C = []00D = u u w ??=???? Matlab 系统模型程序代码: m1=800;m2=320;ks=10000;b=30000; kt=10*ks;

哈尔滨工业大学2010《现代控制理论基础》考试题A卷及答案

哈工大2010年春季学期 现代控制理论基础 试题A 答案 一.(本题满分10分) 如图所示为一个摆杆系统,两摆杆长度均为L ,摆杆的质量忽略不计,摆杆末端两个质量块(质量均为M )视为质点,两摆杆中点处连接一条弹簧,1θ与2θ分别为两摆杆与竖直方向的夹角。当12θθ=时,弹簧没有伸长和压缩。水平向右的外力()f t 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻尼,而且位移足够小,满足近似式sin θθ=,cos 1θ=。 (1)写出系统的运动微分方程; (2)写出系统的状态方程。 【解】 (1)对左边的质量块,有 ()2111211cos sin sin cos sin 222 L L L ML f k MgL θθθθθθ=?-?-?- 对右边的质量块,有 ()221222sin sin cos sin 22 L L ML k MgL θθθθθ=?-?- 在位移足够小的条件下,近似写成: ()112124f kL ML Mg θθθθ=--- ()21224kL ML Mg θθθθ=--

即 112442k g k f M L M ML θθθ??=-+++ ??? 21244k k g M M L θθθ??=-+ ??? (2)定义状态变量 11x θ=,21x θ=,32x θ=,42x θ= 则 12 2133441344244x x k g k f x x x M L M ML x x k k g x x x M M L =?? ???=-+++ ???? ? =????=-+? ????? 或写成 11 22334401 000014420001000044x x k g k x x M L M f ML x x x x k k g M M L ? ? ?? ?????????? ??-+???? ? ??????????=+??? ? ????? ?????????????????? ?????-+?? ? ? ?????? ? 二.(本题满分10分) 设一个线性定常系统的状态方程为= x Ax ,其中22R ?∈A 。 若1(0)1?? =??-??x 时,状态响应为22()t t e t e --??=??-?? x ;2(0)1??=??-??x 时,状态响应为 2()t t e t e --?? =??-?? x 。试求当1(0)3??=????x 时的状态响应()t x 。 【解答】系统的状态转移矩阵为()t t e =A Φ,根据题意有 221()1t t t e t e e --????==????--???? A x 22()1t t t e t e e --????==????--???? A x 合并得

现代控制理论大作业

现代控制理论 直流电动机模型的分析 姓名:李志鑫 班级:测控1003 学号:201002030309

2 1直流电动机的介绍 1.1研究的意义 直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。[1] 1.2直流电动机的基本结构 直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。 直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分: - 图1.1 ①磁极: 电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。 ②电枢: 电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。 ③电刷: 电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。 直流电动机的启动

电动机从静止状态过渡到稳速的过程叫启动过程。电机的启动性能有以下几点要求: 1)启动时电磁转矩要大,以利于克服启动时的阻转矩。 2)启动时电枢电流要尽可能的小。 3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。 直流电动机调速可以有: (1)改变电枢电源电压; (2)在电枢回路中串调节电阻; (3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。 本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。如图1.2 Bm 电枢线路图1.2 ——定义为电枢电压(伏特)。 ——定义为电枢电流(安培)。 ——定义为电枢电阻(欧姆)。 ——定义为电枢电感(亨利)。 ——定义为反电动势(伏特)。 ——定义为励磁电流(安培)。 ——定义为电机产生的转矩(牛顿?米) ——定义为电机和反射到电机轴上的负载的等效粘带摩擦系数(牛顿?米∕度?秒) —定义为电机和反射到电机轴上的负载的等效转动惯量(千克?米)。 1.3建立数学模型 电机所产生的转矩,正比于电枢电流I与气隙磁通Φ的乘积,即: Φ (1-1) 而气隙磁通Φ又正比于激励电流,故式(1-1)改写为 (1-2)

电化学原理知识点

电化学原理 第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动 i i i x αγ=∑ =2 2 1i i z m I I A ?-=±γlog L A G κ= KV =λN c N c k 1000=λ- ++=000λλλ

现代控制理论大作业

现代控制理论大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分类号:TH89 单位代码:10110 学号: 中北大学 综合调研报告题目: 磁盘驱动器读写磁头的定位控制 系别: 计算机科学与控制工程学院 专业年级: 电气工程与智能控制2014级 姓名: 何雨贾晨凌朱雨薇贾凯张钊中袁航 学号: 14070541 39/03/04/16/33/47 指导教师: 靳鸿教授崔建峰讲师 2017年5月7日

摘要 硬盘驱动器作为当今信息时代不可缺少的存储设备,在人们日常生活中正扮演着越来越重要的角色,同时它也成为信息时代科学技术飞速发展的助推器。然而,随着信息量的日益增长,人们对硬盘驱动器存储容量的要求越来越高。但另一方面由于传统硬盘驱动器的低带宽、低定位精度,导致磁头很难准确地定位在目标磁道中心位置,从而限制了存储容量的持续增加。 自IBM公司于1956年向全球展示第一台磁盘存储系统R.AMAC以来,随着存储介质、磁头、电机及半导体芯片等相关技术的不断发展,硬盘的存储容量成倍增长、读写速度不断提高。要保证可靠的读写性能,盘片的转速控制和磁头的定位控制问题具有重要意义。其中磁头的定位控制主要包括寻道控制与定位跟踪控制两个问题,如PID控制、自适应控制、模态切换控制等,这些控制方法大大提高了硬盘磁头伺服系统的性能。为达到更高的精度,磁头双级驱动模型成近年的研究热点,多种控制策略已有相关报道,但目前仍处于实验水平。 关键词: 磁盘驱动器;磁头;定位;控制 Abstract Hard disk drive (HDD), acted as requisite storage equipment in current information age,plays a more and more vital role in people’s daily life, and it becomes a roll booster in rapid development of science and technology. However, with the increase of information capacity, we put forward a severe request for HDD data storage capacity. Unfortunately, due to the low bandwidth, low positioning accuracy in conventional HDD, magnetic head is hard to be positioned onto the destination track center, thus it limits the continuing increase in storage capacity. Since IBM brought the first disk-the random access memory accounting machine(RAMAC) to market in 1956, the storage capacity and read/write speed have continuously increased along with the development of the techniques of media,read/write head, actuators and semiconducting chips. The problems of R/W head's settling control is definitely important in order to ensure the reliability of read and write performance. Track seeking and track following are two main stages of the hard disk servo system. Researchers have developed kinds of control strategies to implement the servo control from PID control to advanced control methods.Dual-stage actuator has attracted many researchers and engineers for its broaderbandwidth compared with single-stage actuator. Key Words:Hard Disk Drive;Heads; Location; Control

高三化学一轮复习:电化学原理及其应用

电化学原理及其应用 1.家蝇的雌性信息素可用芥酸(来自菜籽油)与羧酸X在浓NaOH溶液中进行阳极氧化得到。 电解总反应式为: 则下列说法正确的是( ) A.X为C2H5COOH B.电解的阳极反应式为:C21H41COOH+X-2e-+2H2O―→C23H46+2CO2-3+6H+ C.电解过程中,每转移a mol电子,则生成0.5a mol雌性信息素 D.阴极的还原产物为H2和OH- 解析:A项根据原子守恒可判断X为C2H5COOH;B项由于电解质溶液为浓NaOH,因此阳极反应式应为C21H41COOH+X-2e-+60H-―→C23H46+2CO2-3+4H2O;C项根据电解总反应可知每生成1 mol雌性信息素转移2 mol电子,则C项正确;D项阴极的还原产物为H2,OH-并非氧化还原产物. 答案:AC 2.下列关于铜电极的叙述正确的是( ) A.铜锌原电池中铜是负极 B.用电解法精炼粗铜时,粗铜作阴极 C.在镀件上电镀铜时可用金属铜做阳极 D.电解稀硫酸制H2和O2时铜做阳极 解析:铜锌原电池中锌活泼,锌做负极;电解精炼铜时,粗铜中的铜失去电子,做阳极; 电镀铜时,应选用铜片做阳极,镀件做阴极,含有铜离子的溶液做电镀液。电解稀硫酸时,铜做阳极,失电子的是铜而不是溶液中的OH-,因而得不到氧气。 答案:C 3.普通水泥在固化过程中自由水分子减少并产生Ca(OH)2,溶液呈碱性。根据这一特点,科学家发明了电动势(E)法测水泥初凝时间,此法的原理如图所示,反应的总方程式为:2Cu +Ag2O===Cu2O+2Ag。 下列有关说法不正确的是( ) A.工业上制备普通水泥的主要原料是黏土和石灰石

哈尔滨工业大学《现代控制理论基础》考试题B卷及答案

哈工大2010 年春季学期 现代控制理论基础 试题B 答案 题号 一 二 三 四 五 六 七 八 卷面分 作业分 实验分 总分 满分值 10 10 10 10 10 10 10 10 80 10 10 100 得分值 第 1 页 (共 8 页) 班号 姓名 一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 22 322 31 211111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

现代控制理论大作业

现代控制理论大作业 一、位置控制系统----双电位器位置控制系统 由系统分析可知,系统的开环传递函数: 2233.3 s =s s 2*0.07s*s 205353G ()(+1)*(++1) 另:该系统改进后的传递函数: 223.331s =s s 2*0.07s*s 3455353G ( )(+1)*(++1) 1、时域数学模型 <1>稳定性 >> s=tf('s'); >> G=33.3/(s*(s/20+1)*(s^2/53^2+2*0.07*s/53+1)); >>sys=feedback(G,1); >> sys Transfer function: 9.915e007 ----------------------------------------------------------- 53 s^4 + 1453 s^3 + 1.567e005 s^2 + 2.978e006 s + 9.915e007 >> pzmap(sys) 由零极点图可知,该系统有四个极点,没有零点,其中两个在左半s 开平面上,两个在s 平面的虚轴处,则,四个极点的坐标分别是:

>> p=pole(sys) p = 0.0453 +45.2232i 0.0453 -45.2232i -13.7553 +26.9359i -13.7553 -26.9359i 系统的特征方程有的根中有两个处于s的右半平面,系统处于不稳定状态 <2>稳态误差分析 稳态误差分析只对稳定的系统有意义,系统(G)处于不稳定状态,所以不做分析。改进后系统(G1)如下,求其特征方程的极点: >> s=tf('s'); >> G1=3.33/(s*(s/345+1)*(s^2/53^2+2*0.07*s/53+1)); >> sys2=feedback(G1,1); >>p=pole(sys2); p = 1.0e+002 * -3.4492 -0.0206 + 0.5258i -0.0206 - 0.5258i -0.0338 可以看出,改进后的传递函数G1的四个极点都在s平面的右半开平面上,则系统G1是稳定的,故对此系统做稳态误差分析: 由系统G1的开环传递函数在原点处有一个极点,故属于1型系统。系统是电位器位置控制,信号的输入应该是一种瞬时变化,类似于系统的阶跃响应,所以查稳态误差与系统结构参数、输入信号特性之间关系一览表,可得系统G1的稳态误差为零。 <3>动态响应分析(主要是单位阶跃响应,其他响应一般是用于静态性能的测试) ①系统的单位阶跃响应: >> s=tf('s'); >> G=33.3/(s*(s/20+1)*(s^2/53^2+2*0.07*s/53+1)) >>sys=feedback(G,1); >> step(sys)

相关文档
最新文档