重点高中数学双曲线抛物线知识点总结

重点高中数学双曲线抛物线知识点总结
重点高中数学双曲线抛物线知识点总结

重点高中数学双曲线抛物线知识点总结

————————————————————————————————作者:————————————————————————————————日期:

双曲线

平面内到两个定点,的距离之差的绝对值是常数2a(2a<

)的点的轨迹。

方程 22

22

1(0,0)x y a b a b -=>> 22

22

1(0,0)y x a b a b -=>> 简图

范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或

顶点 (,0)a ± (0,)a ±

焦点 (,0)c ± (0,)c ±

渐近线 b y x a

=± a y x b

=± 离心率 (1)c

e e a =

> (1)c

e e a

=

> 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称

准线方程 2

a x c =±

2

a y c

a 、

b 、

c 的关

系 222c a b =+

考点

题型一 求双曲线的标准方程

1、给出渐近线方程n

y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线

22221x y a b -=共渐近线的方程可设为22

22(0)x y a b

λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。

(1) 虚轴长为12,离心率为

54

; (2) 焦距为26,且经过点M (0,12);

(3) 与双曲线

22

1916

x y -=有公共渐进线,且经过点()

3,23A -。 _x

_ O

_y

_x

_ O

_y

解:(1)设双曲线的标准方程为22221x y a b -=或22

221y x a b

-=(0,0)a b >>。

由题意知,2b=12,c e a ==54

。 ∴b=6,c=10,a=8。

∴标准方程为236164x -=或22

16436

y x -=。 (2)∵双曲线经过点M (0,12),

∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。

又2c=26,∴c=13。∴2

2

2

144b c a =-=。

∴标准方程为

22

114425y x -=。 (3)设双曲线的方程为22

22x y a b

λ

-=

()

3,23A -Q 在双曲线上 ∴()

2

2

233

1916

-= 得1

4

λ=

所以双曲线方程为22

4194

x y -= 题型二 双曲线的几何性质

方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a

=

和222

c a b =+的关系式。 【例2】双曲线22

221(0,0)x y a b a b

-=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且

点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4

5

c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为

1x y

a b

-=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12

2

(1)b a d a b

-=

+,

同理得到点(-1,0)到直线l 的距离22

2

(1)b a d a b

+=

+,

1222

22ab ab

s d d c

a b =+=

=

+。 由s ≥

45c ,得

2ab c ≥4

5

c ,即22252a c a c -≥。 于是得22512e e -≥,即4

2

425250e e -+≤。 解不等式,得

25

54

e ≤≤。由于e >1>0,所以e 的取值范围是552e ≤≤。 【例3】设F 1、F 2分别是双曲线22

221x y a b -=的左、右焦点,若双曲线上存在点A ,使

1290F AF ∠=o ,且︱AF 1︱=3︱AF 2︱,求双曲线的离心率。

解:∵1290F AF ∠=o

∴22

212

4AF AF c +=

又︱AF 1︱=3︱AF 2︱,

∴12222AF AF AF a -==即2AF a =, ∴2

2

222

2212222910104AF AF AF AF AF a c +=+===,

101042c a ==即10

2

e =。 题型三 直线与双曲线的位置关系

方法思路:1、研究双曲线与直线的位置关系,一般通过把直线方程与双曲线方程组成方程

组,即222222

0Ax By C b x a y a b

++=??-=?,对解的个数进行讨论,但必须注意直线与双曲线有一个公共点和相切不是等价的。

2、直线与双曲线相交所截得的弦长:

221212

1

11l k x x y y k =+?-=+

?- 【例4】如图,已知两定点12(2,0),(2,0)F F -,满足条件212PF PF

-=u u u u r u u u r

的点P 的轨迹是曲线E ,直线y=kx-1与曲线E 交于A 、B 两点,如果63AB =,且曲线E 上存在点C ,

使OA OB mOC +=u u u r u u u r u u u r

,求

(1)曲线E 的方程; (2)直线AB 的方程;

y A C

(3)m 的值和△ABC 的面积S 。 解:由双曲线的定义可知,

曲线E 是以12(2,0),(2,0)F F -为焦点的双曲线的左支, 且2c =

,a=1,易知221b c a =-=。

故直线E 的方程为2

2

1(0)x y x -=<, (2)设11A(x ,y ), 22B(x ,y ),

由题意建立方程组22y=kx-1x -y =1

???消去y ,得22

(1)220k x kx -+-=。

又已知直线与双曲线左支交于两点A 、B ,有

222

122122

10,(2)8(1)0,20,

12

0.1k k k k x x k x x k ?-≠?=+->??

-?+=<-?

?-=>?-?

V 解得21k -<<-。 又∵ 2

2

2

12121211()4AB k x x k x x x x =+?-=+?+-

222

2222

22(1)(2)

1()4211(1)

k k k k k k k --+-=+?-?=--- 依题意得2222

(1)(2)

263(1)

k k k +-=-,整理后得422855250k k -+=, ∴2

57k =

或2

54

k =。 但21k -<<-,

∴5

2

k =-

。 故直线AB 的方程为

5

102

x y ++=。 (3)设(,)c c C x y ,由已知OA OB mOC +=u u u r u u u r u u u r

,得1122(,)(,)(,)c c x y x y mx my +=,

∴1212

(,)(

,)(0)c c x x y y x y m m m

++=≠。 又1222451

k

x x k +==--,212122

222()22811k y y k x x k k +=+-=-==--,

∴点458

(

,)C m m

-。 将点C 的坐标代入曲线E 的方程,的

2

28064

1m m

-=, 得4m =±,但当4m =-时,所得的点在双曲线的右支上,不合题意。 ∴4m =,C 点的坐标为(5,2)-,

C 到AB 的距离为

225

(5)2121

3

5(

)12?-++=+, ∴△ABC 的面积11

63323

S =??=。

一、抛物线 高考动向:抛物线是高考每年必考之点,选择题、填空题、解答题皆有,要求对抛物线定义、性质、直线与其关系做到了如指掌,在高考中才能做到应用自如。 (一) 知识归纳 方程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>

22(0)x py p =->

图形

x

y

O

F

l

x

y

O F

l

顶点 (0,0) 对称轴 x 轴

y 轴

焦点 (,0)2

p F (,0)2p F -

(0,)2p F

(0,)2

p F -

离心率 e=1

准线

:2

p l x =-

:2

p l x =

:2

p l y =-

:2

p l y =

(二)典例讲解

题型一 抛物线的定义及其标准方程

方法思路:求抛物线标准方程要先确定形式,因开口方向不同必要时要进行分类讨论,标准方程有时可设为2

y mx =或2

(0)x my m =≠。

x

y

O F

l

x

y

O

F

l

【例5】根据下列条件求抛物线的标准方程。

(1)抛物线的焦点是双曲线2

2

169144x y -=的左顶点;

(2)经过点A (2,-3);

(3)焦点在直线x-2y-4=0上;

(4)抛物线焦点在x 轴上,直线y=-3与抛物线交于点A ,︱AF ︱=5.

解:(1)双曲线方程可化为

22

1916

x y -=,左顶点是(-3,0) 由题意设抛物线方程为2

2(0)y px p =->且32

p

-=-, ∴p=6.

∴方程为2

12y x =-

(2)解法一:经过点A (2,-3)的抛物线可能有两种标准形式: y 2=2px 或x 2=-2py .

点A (2,-3)坐标代入,即9=4p ,得2p =

2

9 点A (2,-3)坐标代入x 2

=-2py ,即4=6p ,得2p =3

4 ∴所求抛物线的标准方程是y 2

29x 或x 2=-3

4y 解法二:由于A (2,-3)在第四象限且对称轴为坐标轴,可设方程为2

y mx =或2

x ny =,

代入A 点坐标求得m=

29,n=-3

4, ∴所求抛物线的标准方程是y 2=29x 或x 2

=-3

4y

(3)令x=0得y=-2,令y=0得x=4,

∴直线x-2y-4=0与坐标轴的交点为(0,-2),(4,0)。 ∴焦点为(0,-2),(4,0)。 ∴抛物线方程为2

8x y =-或2

16y x =。

(4)设所求焦点在x 轴上的抛物线方程为2

2(0)y px p =≠,A (m ,-3),由抛物 线定义得p

52

AF m ==+

, 又2

(3)2pm -=, ∴1p =±或9p =±,

故所求抛物线方程为2

2y x =±或2

18y x =±。 题型二 抛物线的几何性质

方法思路:1、凡设计抛物线上的点到焦点距离时,一般运用定义转化为到准线l 的距离处理,例如若P (x 0,y 0)为抛物线2

2(0)y px p =>上一点,则02

p PF x =+

。 2、若过焦点的弦AB ,11(,)A x y ,22(,)B x y ,则弦长12AB x x p =++,12x x +可由韦达定理整体求出,如遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似得到。

【例6】设P 是抛物线2

4y x =上的一个动点。

(1) 求点P 到点A (-1,1)的距离与点P 到直线1x =-的距离之和的最小值; (2) 若B (3,2),求PB PF +的最小值。

解:(1)抛物线焦点为F (1,0),准线方程为1x =-。 ∵P 点到准线1x =-的距离等于P 点到F (1,0)的距离,

∴问题转化为:在曲线上求一点P ,使点P 到A (-1,1)的距离与P 到F (1,0)的距离之和最小。

显然P 是AF 的连线与抛物线的交点,

最小值为5AF =

(2)同理PF 与P 点到准线的距离相等,如图: 过B 做B Q ⊥准线于Q 点,交抛物线与P 1点。 ∵11

PQ PF =, ∴114PB PF PB PQ BQ +≥+==。 ∴PB PF +的最小值是4。

题型三 利用函数思想求抛物线中的最值问题

方法思路:函数思想、数形结合思想是解决解析几何问题的两种重要的思想方法。

【例7】已知抛物线y =x 2,动弦AB 的长为2,求AB 的中点纵坐标的最小值。

分析一:要求AB 中点纵坐标最小值,可求出y 1+y 2的最小值,从形式上看变量较

多,结合图形可以观察到y 1、y 2是梯形ABCD 的两底,这样使得中点纵坐标y 成为中位线,可以利用几何图形的性质和抛物线定义求解。

解法一:设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x,y)

由抛物线方程y =x 2知焦点1

F(0,

)4

,准线方程1

4

y =-,设点A 、B 、M 到准线的距离分别为|AD 1|、

|BC 1|、|MN|,则|AD 1|+|BC 1|=2|MN|,且

1

MN =2(y+)4

,根据抛物线的定义,有|AD 1|=|AF|、

y

x

A

O

P F

|BC 1|=|BF|,∴1

2(y+

)4

=|AF|+|BF|≥|AB|=2, ∴1

2(y+

)24≥ ∴3y 4≥,即点M 纵坐标的最小值为34

分析二:要求AB 中点M 的纵坐标y 的最小值,可列出y 关于某一变量的函数,然后求

此函数的最小值。

解法二:设抛物线y =x 2上点A(a,a 2),B(b,b 2

),AB 的中点为M(x ,y),则

2

,222b a y b a x +=+=

∵|AB|=2,∴(a ―b)2

+(a 2

―b 2

)=4,则(a +b)2

-4ab +(a 2

+b 2)2

-4a 2b 2

=4

则2x =a +b,2y =a 2+b 2,得ab =2x 2-y,∴4x 2―4(2x 2―y)+4y 2―4(2x 2

―y)=4 整理得1

4122

++

=x x y

43411414124

1141)14(4122=-=-≥-+++=

∴x x y 即点M 纵坐标的最小值为3/4。

练习: 1、以y =±

3

2

x 为渐近线的双曲线的方程是( ) A、3y 2

―2x 2

=6 B、9y 2

―8x 2

=1 C 、3y 2

―2x 2

=1 D 、9y 2

―4x 2

=36 【答案D 】解析:A 的渐近线为2y=3x ±

,B 的渐近线为22y=3x ± C 的渐近线为2

y=3

x ±

,只有D 的渐近线符合题意。 2、若双曲线2

2

1x y -=的左支上一点P (a ,b )到直线y=x 的距离为2,则a+b 的值为

( )

高中数学双曲线抛物线知识点总结

高中数学双曲线抛物线知 识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨 迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a => (1)c e e a => 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲 线22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 5 4 ; (2) 焦距为26,且经过点M (0,12); _x _y _x _y

(3) 与双曲线22 1916 x y - =有公共渐进线,且经过点() 3,23A -。 解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==5 4 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x - =。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴222144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和 (0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥ 4 5 c 。求双曲线的离心率e 的取值范围。

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 22 1(0,0)x y a b a b -=>> 22 22 1(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M(0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M(0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c =26,∴c =13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 331916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e、a、b 、c四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c,直线l过点(a,0)和(0,b ),且点(1, 0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e的取值范围。 解:直线l 的方程为 1x y a b -=,级bx +ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学复习-抛物线知识点归纳总结

高中数学复习-抛物线 抛 物 线 ) 0(22>=p px y )0(22>-=p px y ) 0(22>=p py x )0(22>-=p py x 定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。 {MF M =点M 到直线l 的距离} 范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤ 对称性 关于x 轴对称 关于y 轴对称 焦点 (2 p ,0) (2 p - ,0) (0, 2 p ) (0,2 p - ) 焦点在对称轴上 顶点 (0,0)O 离心率 e =1 准线 方程 2 p x - = 2 p x = 2 p y - = 2 p y = 准线与焦点位于顶点两侧且到顶点的距离相等。 顶点到准线的距离 2 p 焦点到准线的距离 p 焦半径 11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 1. 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,有两不同交点; Δ=0, 直线l 与抛物线相切,有一个切点; Δ<0,直线l 与抛物线相离,无公共点。 x y O l F x y O l F l F x y O x y O l F

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2 12 212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1 或 212 2122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点坐标 ),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点 为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)

双曲线知识点归纳总结

双曲线知识点归纳总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2121F F MF MF =-,当2 12 1F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2 AB By Ax =+的方程可化为11122=+ B y A x 当01 ,01 B A ,双曲线的焦点在y 轴上; 当01 ,01 B A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

高三复习抛物线知识点总结及基础测试

第八节抛物线基础测试题知识梳理 1、抛物线定义 2、抛物线的标准方程与几何性质 抛物线 定义与一个定点F和一条定直线l的距离相等() F l ?的点的轨迹。 标准方程①焦点在x轴上,开口向右:22 y px =②焦点在x轴上,开口向左:22 y px =- ③焦点在y轴上,开口向上:22 x py =④焦点在y轴上,开口向下:22 x py =- 图形①焦点在x轴上,开口向右:22 y px =②焦点在x轴上,开口向左:22 y px =-①② ③焦点在y轴上,开口向上:22 x py =④焦点在y轴上,开口向下:22 x py =-③④ 焦点①(,0) 2 p ;②(,0) 2 p -③(0,) 2 p ;④(0,) 2 p - 顶 点 (0,0) 关 系 p为焦点到准线的距离离 心率 1 e= 准线①焦点在x轴上,开口向右准线: 2 p x=-②焦点在x轴上,开口向左准线: 2 p x= O x y l F P O x y l F P O x y P F O x y P F

第一部分 基础自测 1、抛物线28y x =-的准线方程是() A. 116x = B. 116y = C. 132y = D. 132 x = 2、已知抛物线的焦点坐标是(0,3)-,则抛物线的标准方程是() A. 212x y =- B. 212x y = C. 212y x =- D. 212y x = 3、抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为() A. 2 B. 3 C. 4 D. 5 4、在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点(2,4)P ,则该抛物线的方程是_________. 5、设抛物线28y x =,过焦点F 的直线交抛物线于,A B 两点,过AB 中点M 作x 轴平行线交y 轴于N ,若2MN =,则AB =_________. 第二部分 课堂考点讲解 1、已知抛物线22y x =的焦点是F ,点P 是抛物线上的动点,又有点 (3,2)A . (1)求PA PF +最小值,并求出取最小值时P 点的坐标; (2)求点P 到点1 (,1)2B -的距离与点P 到直线12 x =-的距离之和的最小值. 渐 近 线 ③焦点在 y 轴上,开口向上准线:2 p y =- ④焦点在y 轴上,开口向下准线:2 p y = 统一 定义 到定点F 的距离与到定直线l ()F l ?的距离之比等于定值e 的点的集合.01e <<时, 轨迹是椭圆;1>e 时,轨迹是双曲线,1=e 时,轨迹是抛物线。 (注:焦点要与对应准 线配对使用)

双曲线知识点复习总结

双曲线知识点总结复习 1. 双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为:221(0)x y mn m n - =>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点, 且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线? 2. 双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心 率:c e a =,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通 径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为: 等轴双曲线的渐近线方程为: ,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

抛物线知识点总结

抛物线知识点总结 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

抛物线 1.定义:平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 其数学表达式:|MF |=d (其中d 为点M 到准线的距离) 7、抛物线的几何性质: 标准方程 22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =- ()0p > p 的几何意义:焦点F 到准线l 的距离 图形 顶点 ()0,0 对称轴 x 轴 y 轴 焦点 ,02p F ?? ??? ,02p F ??- ??? 0,2p F ?? ??? 0,2p F ??- ??? 准线方 程 2p x =- 2p x = 2p y =- 2p y = 离心率 1e = 范围 0x ≥ 0x ≤ 0y ≥ 0y ≤ 方程的记忆:一次项是谁焦点就在那一条轴上,一次项系数为正开口正方向,为负开口负方向. 1.若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4

2.若抛物线22(0)y px p =>的焦点到双曲线221x y -=的渐近线的距离为2 ,则p 的值为( ) A . B .6 C . D .3 3.抛物线28y x =的准线方程为( ) A .4x =- B .2x =- C .4y =- D .2y =- 4. 若点P 到点(0,2)F 的距离比它到直线40y +=的距离小2,则点P 的轨迹方程是( ) A .28y x = B .28y x =- C .28x y = D .28x y =- 5.O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,且 ||PF =POF 的面积为( ) A .2 B ...4 6.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,若||3AF =,则||BF =____________。 已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离 为2 .设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 的方程; (2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (3) 当点P 在直线l 上移动时,求AF BF ?的最小值.

高中抛物线知识点归纳总结与练习题及答案

一. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 二. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ?,以及2121,x x x x +,还可进一步求出

b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 1. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2 122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y = =+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存 在,且不等于零)

双曲线知识点归纳总结

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向

右延伸的一条射线;当2 112 F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一 条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2πAB By Ax =+的方程可化为11122=+ B y A x 当01 ,01φπB A ,双曲线的焦点在y 轴上; 当01 ,01πφB A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 6. 离心率与渐近线之间的关系 22 2 22222 1a b a b a a c e +=+== 1)2 1?? ? ??+=a b e 2) 12-=e a b 7. 双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22 22b y a x 0(≠λ

高中抛物线知识点总结

高中抛物线知识点总结 高中抛物线知识点总结 平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线。下面是关于高中抛物线知识点总结的内容,欢迎阅读! 高中数学抛物线知识点总结(一) 抛物线方程 1 设,抛物线的标准方程、类型及其几何性质: 图形 焦点 准线 范围 对称轴轴轴顶点(0,0)离心率 焦点 注:①顶点 . ②则焦点半径 ;则焦点半径为 . ③通径为2p,这是过焦点的所有弦中最短的. ④(或)的参数方程为 (或

)(为参数). 高中数学抛物线知识点总结(二) 抛物线的性质(见下表): 抛物线的焦点弦的性质: 关于抛物线的几个重要结论: (1)弦长公式同椭圆. (2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部 P(x0,y0)在抛物线外部 (3)抛物线y2=2px上的点P(x1,y1)的切线方程是 抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是 (5)过抛物线y2=2px上两点 的两条切线交于点M(x0,y0),则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F. 利用抛物线的几何性质解题的方法: 根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明. 抛物线中定点问题的解决方法: 在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

抛物线知识点归纳总结精品

【关键字】方法、条件、问题、位置、关系 第二章 2.4 抛物线

AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α,则22cos p AB α = 切线 方程 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: 设交点坐标为),(11y x A ,),(22y x B ,则有0 ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法:

设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 将两式相减,可得 a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜 率存在,且不等于零)

高考抛物线知识点总结

高考抛物线知识点总结 1. 抛物线定义: 平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0 2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。 3. 对于抛物线上的点的坐标可设为,以简化运算。 4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有解。 说明: 1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。 2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。 3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。 抛物线的焦点弦的性质: 关于抛物线的几个重要结论:

(1)弦长公式同椭圆. (2)对于抛物线y2=2px(p0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部 (3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p,高二;0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是 (5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F. 利用抛物线的几何性质解题的方法: 根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明. 抛物线中定点问题的解决方法: 在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值

经典双曲线知识点

双曲线:了解双曲线的定义、几何图形和标准方程;了解双曲线的简单几何性质。 重点:双曲线的定义、几何图形和标准方程,以及简单的几何性质. 难点:双曲线的标准方程,双曲线的渐进线. 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点 的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中 靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意: 1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点 坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,. 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、― y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a 或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

高中数学抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2124 p x x = 2 12y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

高中数学复习-抛物线知识点归纳总结

△ =0, 高中数学复习-抛物线 1.直线与抛物线的位置关系 直线一—,抛物线;--, \y 內,消y 得.上Q + 2(垃一切天+沪三0 (1)当k=0时,直线I 与抛物线的对称轴平行, 直线I 与抛物线相切,有一个切点; 直线I 与抛物线相离,无公共点。 △ > 0, 直线l 与抛物线相交,有两不同交点; 有一个交点; (2) 当 k 丰 0 △ V 0,

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2.关于直线与抛物线的位置关系问题常用处理方法 直线| : y kx b 抛物线'厂—I, (P 0) ①联立方程法: y kx b 2 2 2 2k2x22(kb p)x b20 y 2px 设交点坐标为A(x1, y1), B(x2, y2),则有0,以 及x-i x2, x)x2,还可进一步求出 y-i y2 kx1 b kx2 b k(x1 x2) 2b, y-i y2 (kx1 b)(kx2 b) k2x1x2 kb(x1 x2) b2 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a.相交弦AB的弦长 AB k2x1X2 .1 k\ (x1 x2)24x1 x2a . b . 2 Y1 2px1 2 y2 2 px2 将两式相减,可得 (y1 y2)(y1 y?) 2p(* y y2 2p X1 X2 y1 y2 在涉及斜率问题时,k AB 在涉及中点轨迹问题时 为M (x o, y o), 即k AB y o 同理,对于抛物线 X2 ) 2p y y2 ,设线段AB的中点 1 k 2a AB y 1 y2 1 古J? 丫2)24y』2 1 k2 b.中点坐标 X i X2 y- y2 ,y0 2 2 ②点差法: 设交点坐标为A(x1, y1),B(x2, y2),代入抛物线方程,得 力y2 X1 X2 2p 2p p y1 y2 2y o y o x2 2py(p 0),若直线l与抛 物线相交于A、B两点,点M(X。, y o)是弦AB的 中点,则有k AB 捲X2 2X o X o 2p 2p p (注意能用这个公式的条件:1)直线与抛物线 有两个不同的交点,2)直线的斜率存在,且不 等于零)

2019年高二数学双曲线知识点总结

2019年高二数学双曲线知识点总结 双曲线是高二数学中较难的内容,同时也是高中数学的重点。下面给高二同学带来数学双曲线知识点,希望对你有帮助。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y)b=(x',y')则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。 ②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积

相关文档
最新文档