大学物理及验 10-12章习题及答案

大学物理及验 10-12章习题及答案
大学物理及验 10-12章习题及答案

第十章

习题10

10-1.一观察者测得运动着的米尺长0.5m ,问此尺以多大的速度接近观察者?

解:由动尺缩短公式 22

01c

v l l -=,可得

22

115.0c

v -?=

m/s 106.22

3

8?==

c v

10-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18

?=x 处,经历时间为s 00.1=t ?,试计算该过程对应的固有时。 解:以粒子为S '

系,利用t '?=?

0.866t s '?==。

10-3.长度01m l =的米尺静止于'S 系中,与x ′轴的夹角'θ=30°,'S 系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45°。试求:(1)'S 系和S 系的相对运动速度。(2)S 系中测得的米尺长度。

解:(1)米尺相对S '静止,它在,x y ''轴上的投影分别为:

0cos 0.866m x L L θ''==,0sin 0.5m y L L θ''==。

米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y 方

向的长度不变,即:x L L =,y y L L '=

:tan y y x

x

L L L L L θ''=

=

=

把ο

45θ=及,y L L ''

0.5

0.866

=,故 :0.816v c = (2)在S 系中测得米尺长度为0.707m sin 45y L L ==?

10-4.一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?

解:门外观测者测得杆长为运动长度,l l =1a ≤时,可认为能被拉进门,

则:a l ≤

解得杆的运动速率至少为:u =

10-5.两个惯性系中的观察者O 和O '以0.6c (c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇? 解: O 测得相遇时间为t ?:020

0.6L t v c

?=

=

O ' 测得的是固有时t '?:∴ t

t γ?'?=

=88.8910s -=?,

或者,O '测得长度收缩:00.8L

L L L L t v

'===?=

n 808

0.80.820

8.8910s 0.60.6310

L t c -?'?=

==???

10-6.一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少?

解: 335

l l '====n

∴ 45

v c ==

10-7.从S 系观察到有一粒子在01=t 时由m 1001=x 处以速度c v 98.0=沿x 方向运动,

s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到

达的时空坐标2211

,,,x t x t ''''各为多少?(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。

解:利用洛仑兹变换:2u t x t -

'=

,x '=,

0.28==,有:

1122610.960100 1.14710u c

t x t s --

-?'===-?;

222220.96109.8 2.11u c t x c

t s --?'===; m c c c c

u ut x x 14.357)96.0(1096.0100)(12

22111=-?-=--=';

m c c c c c

u ut x x 8222

2221014.2)96.0(11096.08.9)(1?=-?-=--=';

'

8220.980.96 1.014100.96110.98x x x v u c c v u c

v c c c

--===?--?m/s 。

10-8.1000m 的高空大气层中产生了一个π介子,以速度0.8v c =飞向地球,假定该π介子在其自身的静止参照系中的寿命等于其平均寿命6

2.410s -×,试分别从下面两个角度,即地面上观测者相对π介子静止系中的观测者来判断该π介子能否到达地球表面。 解:(1)地面上的观察者认为时间膨胀:

有t ?=

,∴66410t sa -?=

=?

由8

6

0.8310410

9601000l v t m m -=?=????=<,∴到达不了地球;

(2)π介子静止系中的观测者认为长度收缩:

有l l =

600l m == 而6

8

2.4100.8310576600s v t m m -=?=????=<,∴到达不了地球。

10-9.某人测得一静止棒长为l ,质量为m ,于是求得此棒线密度为/ρ=m l 。假定此棒以

速度v 在棒长方向上运动,此人再测棒的线密度为多少?若棒在垂直度方向上运动,它的线密度又为多少?

解:棒以速度v 运动时,质量变为 2

2

11c v m m -=

在棒长方向上运动,长度缩短为 22

11c v l l -=,

则棒的线密度为 2222

11111c v c v l m l m -=???

? ??-==ρ

ρ 棒在垂直度方向上运动时,长度不变,因此它的线密度为

2

2

2

2

1

211c v c v l m l

m -=

-

==

ρ

ρ

10-10.一个电子从静止开始加速到c 1.0,需对它做多少功?,若速度从c 9.0增加到c 99.0又要做多少功?

解:由相对论动能:22

0k E m c m c =-:

(1

)2

6101)0.51101)k E m c =-=?- 2.57MeV =;

(2

)2

20k E m c =

60.5110=? 2.44MeV = 。

10-11.一静止电子(静止能量为MeV 51.0)被1.3MeV 的电势差加速,然后以恒定速度运动。求:(1)电子在达到最终速度后飞越m 4.8的距离需要多少时间?(2)在电子的静止系中测量,此段距离是多少?

解:(1)∵MeV c m 51.02

0=,MeV E k 3.1= ∴MeV E c m mc k 81.12

02=+=,考虑到:2

2

01c v m m -=

202

m c mc =,可求得:81

0.96 2.8810v c m s -==?? , 那么,s v l t 88

1092.210

88.24

.8-?=?==; (2

)由l '=

8.4 2.37l m '==。

10-12.一电子在电场中从静止开始加速,电子的静止质量为kg 1011.931

-?. (1)问电子应通过多大的电势差才能使其质量增加%4.0? (2)此时电子的速率是多少?

解:(1)由220k E m c m c =-,且eU E k =,

004.00

=-m m m , 有:222

000.004eU mc m c m c =-=,∴2

030.004 2.0510m c U V e

==?;

(2)∵01.004m m =

0m m

=,可求得:1

7107.2-??=s m v 。

10-13.已知一粒子的动能等于其静止能量的n 倍,求:(1)粒子的速率,(2)粒子的动量。

解:(1)依题意知:20c nm E k =,又∵22

0k E m c m c =-,

2

2

2

00m c nm c =,有:22211(1)v c n -=+ 整理得:1)

2(++=

n n n c v ;

(2)由420222c m c P E +=,而:2

0)1(c m n E +=,

得:)2(0+=n n c m P 。

10-14.太阳的辐射能来源于内部一系列核反应,其中之一是氢核(H 1

1)和氘核(H 21)聚变为氦核(He 3

2),同时放出γ光子,反应方程为:

γ+→+He H H 3

2211

1

已知氢、氘和He 3

的原子质量依次为u 007825.1、2.014102u 和3.016029u . 原子质量单

位kg 1066.1u 127

-?=. 试估算γ光子的能量。

解: 1.007825 2.014102 3.016029m u u u ?=+-

290.0058980.97910u kg -==?

根据质能方程:29822

19

0.97910(310) 5.5MeV 1.610E mc --????=?==?。

思考题10

10-1.关于狭义相对论,下列几种说法中错误的是下列哪种表述:

(A )一切运动物体的速度都不能大于真空中的光速;

(B )在任何惯性系中,光在真空中沿任何方向的传播速率都相同; (C )在真空中,光的速度与光源的运动状态无关; (D )在真空中,光的速度与光的频率有关。 答:(D )

10-2.下面两种论断是否正确?

(1)在某个惯性系中同时、同地发生的事件,在所有其他惯性系中也一定是同时、同地发生的。

(2)在某个惯性系中有两个事件,同时发生在不同地点、而在与该系有相对运动的其他

惯性系中,这两个事件却一定不同时。 解:(1)正确; (2)正确。 10-3.在惯性系S 和S ',分别观测同一个空间曲面。如果在S 系观测该曲面是球面,在S '系观测必定是椭球面。反过来,如果在S '系观测是球面,则在S 系观测定是椭球面,这一结论是否正确?

答:根据运动的相对性这个结论是正确的。

10-4.一列以速度v 行驶的火车,其中点C '与站台中点C 对准时,从站台首尾两端同时发出闪光。从看来,这两次闪光是否同时?何处在先? 答:根据)(2x c

u

t t ?-

?='?γ,由于0t ?=,0≠?x ,所以0t '?<,即对C '点的观测者来说两次闪光不同时发生,尾部在先。

10-5.一高速列车穿过一山底隧道,列车和隧道静止时有相同的长度0l ,山顶上有人看到当列车完全进入隧道中时,在隧道的进口和出口处同时发生了雷击,但并未击中列车。试按相对论理论定性分析列车上的旅客应观察到什么现现象?这现象是如何发生的? 答:对于地面的观察者雷击是在不同地方同时发生的,但是对于列车上的旅客来说这两个事件不是同时发生的,他应该看到两次雷击现象。

10-6.在相对论中,对动量定义=u r r p mv 和公式/=u r u r

F d p dt 的理解,在与牛顿力学中的的有

何不同?在相对论中,=u r r

F ma 一般是否成立?为甚麽?

解:在相对论中,动量定义=u r r p mv 和公式/=u r u r

F d p dt 中的质量是与运动有关的,是随运动

速度而变化的;而在与牛顿力学中认为质量是恒定不变的。因此在相对论中,=u r r

F ma 是不

成立。

10-7.相对论的能量与动量的关系式是什么?相对论的质量与能量的关系式是什么?

解:相对论的能量与动量的关系式是 4

20222c m c p E +=

相对论的质量与能量的关系式是 2

mc E =

第十一章

习题11

11-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。已知太阳、北极星和天狼星的m λ分别为6

0.5010

m -?,60.4310m -?和

60.2910m -?,试计算它们的表面温度。

解:由维恩定律:m T b λ=,其中:3

10898.2-?=b ,那么:

太阳:3

6

2.8981057960.510

m b

T K λ--?===?; 北极星:3

6

2.8981067400.4310

m b

T K λ--?===?; 天狼星:3

6

2.8981099930.2910m b

T K λ--?===?。

11-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。

解:(1)由m T b λ=,有3

42.898109.66103

m b m T λ--?==

=?; (2)由4M T σ=,有:42

4P T R σπ=?地,那么: 328494(637010) 5.67103 2.3410P W π-=?????=?。

11-3.在加热黑体过程中,其单色辐出度对应的峰值波长由0.69μm 变化到0.50μm ,求总辐出度改变为原来的多少倍?

解:由 b T m =λ 和 4

T M σ=可得,

63.3)5

.069.0()()(4

40400====m m T T M M λλ

11-4.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。设灯泡的钨丝面积为

2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。 解:∵4P T S σ=?黑体,消耗的功率等于钨丝的幅出度,所以,

44840.2591010 5.67102000235P S T W ησ--==?????=。

11-5.天文学中常用热辐射定律估算恒星的半径。现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。已测得该恒星与地球间的距离为l ,若将恒星看作黑体,试求该恒星的半径。(维恩常量b 和斯特藩常量σ均为己知) 解:由m T b λ=恒星,4

M T σ=,

考虑到恒星辐射到地面上单位面积的功率?大球面=恒星表面辐出的功率, 有:2

2

444W l R T ππσ?=?恒星恒星,

∴R =恒星

11-6.分别求出红光(5

710

cm λ-=?),X 射线(ο

A 25.0=λ),γ射线

(ο

A λ2

1024.1-?=)的光子的能量、动量和质量。 解:由公式:h c

E λ

=

,2

E m c =及h

P λ

=

,有:

红光:34819

76.6310310 2.8410710h c

E J λ---???===??, 34

287

6.63109.4710710h P kg m s λ---?===???, 19

36282

2.8410

3.1610(310)

E m kg c --?===??; X 射线:34815

106.63103107.956100.2510hc

E J λ---???===??, 3423

10

6.6310 2.65100.2510h P kg m s λ---?===???, 15

32282

7.956108.8410(310)

E m kg c --?===??; γ射线:348

13126.6310310 1.6101.2410hc

E J λ---???===??, 3422

12

6.6310 5.35101.2410h P kg m s λ---?===???, 13

30282

1.610 1.7810(310)

E m kg c --?===??。

11-7.W 100钨丝灯在K 1800温度下工作。假定可视其为黑体,试计算每秒钟内,在ο

A 5000到ο

A 5001波长间隔内发射多少个光子?

解:设钨丝灯的发射面积为S ,由斯特藩-玻耳兹曼定律可得辐射总功率4

P T S σ=?,

那么,钨丝的发射面积为:42

4

1.6810P S m T σ-==?, 利用普朗克公式:2

5

211

hc kT

h c M e

λλπλ-=

-,

那么,单位时间内从黑体辐射出的在λ?范围内的能量为: 25

2()1hc

kT

h c S

P M T S e

λλλπλλλ

?-??=???=

-

考虑到一个光子的能量为:hc

h ενλ

==,设每秒发射出N 个光子,应有P N λε?=

∴4

4

21

1

hc

kT

P c P N T e λ

λπλ

ε

λσ???=

=

?

?

- 348

7238101374

84

6.6310310510 1.381018002310101

100

5.710(510) 5.67101800

1

e π------??????????=?

?

=????-。

11-8.砷化镓半导体激光器(GaA1As),发射38.010nm λ=?红外光,功率为5.0mW ,计算光子的产生率。

解:设每秒钟发射n 个光子,每个光子的能量为h ν,那么:

P n h ν=,∴339

17348

5108.01010 2.01106.6310310

P P n h hc λν---????====????(个)。

11-9.钾的截止频率为4.62×1014Hz ,用波长为435.8nm 的光照射,能否产生光电效应?若能产生光电效应,发出光电子的速度是多少? 解:(1)由0A h ν=知逸出功34

146.6310

4.6210 1.91A eV ???-==,而光子的能量:

2.85c

h

eV ελ

==。可见A ε>,能产生光电效应;

(2)由光电效应方程:21

2

A mv ε=+

,有v =

∴5

5.7410/v m s ===?。

11-10.波长为ο

A 1的X 光在石墨上发生康普顿散射,如在2

π

θ=处观察散射光。试求:

(1)散射光的波长'λ;(2)反冲电子的运动方向和动能。 解:(1)由康普顿散射公式:2

02sin

2

c θ

λλλλ'?=-=和而康普顿波长:0.02426A c λ=o

知:22

02sin

120.02426A 1.02426A 2c θ

λλλ'=+=+??=o

o ; (2)如图,考察散射粒子的动量,

在x 轴方向上:0

x h p i λ=v

┄① 在y 轴方向上:y h p j λ=-'

v

┄②

①/②有:00/1

tan / 1.02426

h h λλ?λλ'=-=-=-

', ∴1

arctan

arctan 0.976344.314418'1.02426

?=-=-==o o ;

动能:000

291k c c

E h h h c eV λλλλλλ'-=-=?=''。

h n νλv

y

11-11.在康普顿散射中,入射X 射线的波长为3310nm -?,反冲电子的速度为0.6c ,求散射光子的波长和散射方向。

解:反冲电子的动能为 20202

202

02

25.06.01c m c m c m c m mc E k =--=

-=

且有 λλhc

hc

E k -

=

则散射光子的波长为 m 103.425.0120

00

00-?=-=-=

λλλλλc m h h E hc hc k 再由康普顿散射公式 2

sin 2200θ

λλc

m h =

-,可得 5176.02)

(2sin

00=-=

h

c m λλθ

81623.62''==ο

οθ

11-12.试计算氢原子巴耳末系的长波极限波长l m λ和短波极限波长s m λ。

解法一:由巴耳末公式2

24

n B n λ=-,(其中365.6B nm =)

当n →∞时,有短波极限波长:365.6s m B nm λ==;

当3n =时,有长波极限波长:2

2

3364.5658.134

l m nm nm λ=?=-。 解法二:利用玻尔理论:2n c

E E h λ

-=,有:2n h c E E λ=-,考虑到2 3.4E eV =-,

当0n E E ∞==时,有短波极限波长:365.6s m B nm λ==;

当3 1.51n E E eV ==-时,有长波极限波长:2

23364.5658.134

l m

nm nm λ=?=-。

【注:解法一可用巴耳末公式的22

11(

)2H R n ν=-%形式,其中71

1.09710H

R m -=?】

11-13.在氢原子被外来单色光激发后发出的巴尔末系中,仅观察到三条光谱线,试求这三条谱线的波长以及外来光的频率。

解:由巴耳末公式2

211

()2H R n

ν

=-%,由于仅观察到三条谱线,有543n =,,。 “52→”:221111

()25

H R λ=-,有:71 4.3410m λ-=?;

“42→”:2

22

1

11

()24

H R λ=-,有:72 4.8610m λ-=?; “32→”:

2

23

1

11

(

)23

H R λ=-,有:73 6.56310m λ-=?; 一般氢原子核外电子处于基态(1n =),外来光子的能量至少应将电子激发到5n =的

激发态,所以,光子的能量应为:1

5112

5E E E E ε=-=

-,考虑到h εν=,113.6E eV =-,

有:21915134

1124

5(13.6) 1.610 3.151025 6.6310

E Hz h ν----==?-??=???。

11-14.一个氢原子从1=n 的基态激发到4=n 的能态。 (1)计算原子所吸收的能量;

(2)若原子回到基态,可能发射哪些不同能量的光子?

(3)若氢原子原来静止,则从4=n 直接跃回到基态时,计算原子的反冲速率。 解:(1)氢原子从1=n 的基态激发到4=n 的能态,吸收的能量为:

1141213.6

(13.6)12.75416

E E E eV →-?=

-=--= (2)回到基态可能的跃迁有:“43→”、“42→”、“41→”、“32→”、“31→”、“21→”,考虑到:113.6E eV =-、2 3.4E eV =-、3 1.5E eV =-、40.85E eV =-,有: “43→”:43430.65E E E eV →?=-=; “42→”:4242 2.55E E E eV →?=-=; “41→”:414112.75E E E eV →?=-=; “32→”:3232 1.9E E E eV →?=-=; “31→”:313112.1E E E eV →?=-=; “21→”:212110.2E E E eV →?=-=。

(3)首先算出光子的能量:4112.75h E E eV ν=-=,

∵c νλ=,而h

p λ

=(光子), ∴由动量守恒有:H h

m u λ

=

,(设电子的反冲速度为u )

19

41278

12.75 1.610 4.071.6710310

H H E E h u m s m m c λ---??====???。 可见,电子的反冲速度很小,因此不需要考虑相对论效应。

思考题

11-1.绝对黑体与平常所说的黑色物体有何区别?绝对黑体在任何温度下,是否都是黑色的?在相同温度下,绝对黑体和一般黑色物体的辐出度是否一样?

解:绝对黑体吸收所有的外来辐射而不反射,平常所说的黑色物体实际是有反射的,只是反射较弱。绝对黑体在不同温度下具有不同的辐射谱,因此将会呈现不同的颜色。在相同温度下,绝对黑体的辐出度大于一般黑色物体的辐出度。

11-2.你能否估计人体热辐射的各种波长中,哪个波长的单色辐出度最大?

解:人体正常温度为310K C 37=ο

,假设人体辐射为黑体辐射,则由 b T m =λ 可得,单

色辐出度最大的波长为 m 1035.9310

10898.263

--?=?=

=T b m λ为红外波段。

11-3.在光电效应实验中,用光强相同、频率分别为1ν和2ν的光做伏安特性曲线。已知2ν>

1ν,那么它们的伏安特性曲线应该是图?

答:图(C )

11-4.试比较光电效应与康普顿效应之间的异同。 答:光电效应和康普顿效应都通过光和物质的相互作用过程揭示了光具有粒子性的一面。光电效应揭示了光子能量与频率的关系,康普顿效应则进一步揭示了光子动量与波长的光系。两者区别源于产生这两效应的能量范围大不相同,光电效应中光子的波长在光学范围,能量的数量级是几个eV ,金属中电子逸出功的数量级是1eV 。在线性光学范围内的光电效应中,入射光子能量大于或等于逸出功时,一个电子吸收一个光子,电子和光子系统的能量守恒,而因电子受束缚,系统的动量不守恒;康普顿效应中的光子在X 射线波段,具有104eV 数量级的能量,相对来说电子逸出功和电子热运动的能量都可以忽略,原子的外层电子可看作是自由的、静止的。所以康普顿效应反映的是高能光子和低能自由态电子间的弹性碰撞问题,系统的能量和动量都守恒。

11-5.用可见光照射能否使基态氢原子受到激发?为什么? 答:使基态氢原子受到激发所需要的最小能量为:

2113.6

(13.6)10.24

E E E eV ?=-=-

--=, 而可见光的最大能量为:348

10196.6310310 3.1400010 1.610h c E h eV νλ---???====???, 所以用可见光照射不能使基态氢原子受到激发

11-6.氢原子的赖曼系是原子由激发态跃迁至基态而发射的谱线系,为使处于基态的氢原子发射此线系中最大波长的谱线,则向该原子提供的能量至少应为多少?

答:氢原子的赖曼系是从受激态往激态发射光子,此线系中最大波长是从2=n 向基态发射的,故:2113.6

(13.6)10.24

E E E eV ?=-=-

--=。

11-7.用玻尔氢原子理论判断,氢原子巴尔末系(向第一激发态跃迁而发射的谱线系)中最小波长与最大波长之比为多少? 答:由

221

11

(

)2H R n λ=-,∞=n 时波长最小用1λ表示,3=n 时波长最大用2λ表示,有:

12545369H H R R λλ=?=。

第十二章

习题12

12-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1)具有MeV 10动能的电子,可以试算一下它的速度:

2

12k mv E =

?v c ==>光速,所以要考虑相对论效应。 设电子的静能量为20m c ,总能量可写为:20k E E m c =+,用相对论公式:

22224

0E c p m c =+

,可得:p =

=

h

p λ=

=

348

-=

131.210m -=?;

(2)对于具有MeV 10动能的质子,可以试算一下它的速度:

7

4.410/v m s ===?,所以不需要考虑相对论效应。 利用德布罗意波的计算公式即可得出:

34

159.110h m p λ--====?。

12-2.计算在彩色电视显像管的加速电压作用下电子的物质波波长,已知加速电压为

kV 0.25,

(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式:

34127.7610h m p λ--====?;

(2)用相对论公式:设电子的静能为20m c ,动能为:k E eU =,

由2

0222240E eU m c E c p m c

=+=+?????

,有:127.6710m λ-==?。

12-3.设电子与光子的德布罗意波长均为0.50nm ,试求两者的动量只比以及动能之比。 解:动量为 λ

h

p =

因此电子与光子的动量之比为

1=γ

p p e

; 电子与光子的动能之比为

322

104222)(

2-?====.c

m h m ch

pc m p

E E e e

e k ke λλ

λ

γ

12-4.以速度3

610/v m s =?运动的电子射入场强为5/E V cm =的匀强电场中加速,为使电子波长ο

A 1=λ,电子在此场中应该飞行多长的距离?

解:利用能量守恒,有:212E mv eU =

+

,考虑到h p λ==

, 有:222211111[

()][()]222h h

U mv m v e m e m λλ

=-=- 3423132

19311011 6.6310[()9.1110(610)]2 1.6109.111010-----?=-?????? 19172310(4.8210 3.2810)150.63.2V --↑=?-?=太小,舍去

, 利用匀强电场公式U E d =

有:150.6

0.301500

U d m E ===。

12-5.用电子显微镜来分辨大小为1nm 的物体,试估算所需要电子动能的最小值。(以eV 为单位)

解:由于需要分辨大小为1nm 的物体,所以电子束的徳布罗意波长至少为1nm ,

由h

p λ=,有电子的动量为:34

259

6.6310 6.6310/10

p kgm s ---?==?; 试算一下它的速度:255

31

0 6.63107.2810/9.1110p v m s c m --?===?<

2k p E m =,有电子动能的最小值:

252

1931

(6.6310) 2.41029.1110

k E J ---?==??? 1.5eV =。

12-6.设电子的位置不确定度为ο

A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。

解:由不确定关系:x p h ???≈,有34

23106.6310 6.6310kg m/s 0.110

h p x ---??≈

==????, 由2

k e E E m c =+,可推出:

223152 6.6310 1.2410J k p p

E E p p m m --???=?=?=?= ?=?=?。

12-7.氢原子的吸收谱线ο

A 5.4340=λ的谱线宽度为ο

A 102

-,计算原子处在被激发态上的平均寿命。 解:能量hc

E h νλ

==

,由于激发能级有一定的宽度E ?,造成谱线也有一定宽度λ?,两

者之间的关系为:2

hc

E λλ?=

?,由不确定关系,/2E t ???≥h ,平均寿命t τ=?,则:

22

224t E hc c λλτλπλ=?===???h h 10211812(4340.510)5104 3.1431010

s ---?==?????。

12-8.若红宝石发出中心波长m 103.67

-?=λ的短脉冲信号,时距为91(10s)ns -,计算该信号的波长宽度λ?。

解:光波列长度与原子发光寿命的关系为:x c t ?=?,

由不确定关系:2

x p x ???≥h ,有:22

24x x p λλπλλ?==≈

???h ∴722389(6.310) 1.3231031010

nm c t λλ---??===????。

12-9.设粒子作圆周运动,试证其不确定性关系可以表示为h L ≥??θ,式中L ?为粒子角动量的不确定度,θ?为粒子角位置的不确定度。

证明:当粒子做圆周运动时,设半径为r ,角动量为:L rmv r p ==,

则其不确定度P r L ?=?,而做圆周运动时:θ?=?r x , 利用:P x h ???≥代入,可得到:h L ≥??θ。

12-10.计算一维无限深势阱中基态粒子处在0=x 到3/L x =区间的几率。设粒子的势能分布函数为:()00()0U x x L

U x x x L =<<=

∞>?

,,和

解:根据一维无限深势阱的态函数的计算,当粒子被限定在0x L <<之间运动时,其定态

归一化的波函数为:()0()00n n

n x x x L l

x x x L π

ψ=

<<ψ=<>?????,,和, 概率密度为:22()sin 0n n P x x x L l l

π=

<<, 粒子处在0=x 到3/L x =区间的几率:230

2112()sin sin 323

l

n n n P x x l l n πππ=

=-?, 如果是基态,1n =,则3202112()sin sin 0.19519.5%323

l

n P x x l l πππ==-==?。

12-11.一个质子放在一维无限深阱中,阱宽m 1014

-=L 。 (1)质子的零点能量有多大?

(2)由2=n 态跃迁到1=n 态时,质子放出多大能量的光子?

解:(1)由一维无限深势阱粒子的能级表达式:22

2

8n h E n mL =

1n =时为零点能量:234213

1227142

(6.6310) 3.291088 1.6710(10)

h E J m L ----?===????。 (2)由2n =态跃迁到1n =态时,质子放出光子的能量为: 21321121)9.8710E E E E J -?=-=-=?(。

思考题12

12-1.证明玻尔理论中氢原于中的电子轨道是电子德布罗意波长的整数倍。

证明:设电子轨道的半径为n r ,则电子轨道的周长为2n r π,需要证明2n r n πλ=。

玻尔理论中,氢原子中的电子轨道为:2

2

2

002

n h r n r n me

επ== 而电子的德布罗意波长:20222h n me mE ελ==(∵2

204

281h me n E n ε=) 可见电子轨道:2

220022

222n h h r n n n n me me

εεππλπ==?=,是德布罗意波长的整数倍。

12-2.为什么说电子既不是经典意义的波,也不是经典意义的粒子?

答:因为单个的电子是不具有波动的性质的,所以它不是经典意义的波,同时对于经典意义的粒子它的整体行为也不具有波动性,而电子却具有这个性质,所以电子也不是经典意义的粒子。

12-3.图中所示为电子波干涉实验示意图,S 为电子束发射源,发射出沿不同方向运动的电子,F 为极细的带强正电的金属丝,电子被吸引后改变运动方向,下方的电子折向上方,上方的电子折向下方,在前方交叉区放一电子 感光板A ,1S 、2S 分别为上、下方电子束的 虚电子源,21SS S S =,底板A 离源S 的距离 为D ,设a D >>,电子的动量为p ,试求: (1)电子几率密度最大的位置; (2)相邻暗条纹的距离(近似计算)。

答:(1)电子的德布罗意波长:p

h

=

λ,类似于波的干涉现象,在两边的第一级明纹之间分布的电子最多,所以其几率最大的位置应该在2D D h

d a p

λ±=±

?之间; (2)相邻暗条纹的距离:2D D h

x d a p

λ?==。

12-4.在一维势箱中运动的粒子,它的一个定态波函数如图a 所示,对应的总能量为eV 4,若它处于另一个波函数(如图b 所示)的态上时,它的总能量是多少?粒子的零点能是多少? 答:由一维无限深势阱粒子的能级表达式:

20n E E n = 。在a 图中,2n =,

知2

2024E E eV =?=,

所以粒子的零点能01E eV =;

若它处于另一个波函数(图b 所示,3n =)的态上时,

它的总能量是:2

2

30039E E n E eV ===。

12-5.图中所示为一有限深势阱,宽为a ,高为U 。 (1)写出各区域的定态薛定谔方程和边界条件;

(2)比较具有相同宽度的有限深势阱和无限深势阱中粒子的最低能量值的大小。 答:(1)第I 区域定态薛定谔方程:

21122

()2()0d x mE

x d x ψψ+=h

,(24a a x -<<), 第II 区域定态薛定谔方程:

22222

()2()

()0d x m E U x d x ψψ-+=h

,(2a x <-和2a x >); 边界条件:1222a a ψψ-=-()(),1222

a a

ψψ=()()。

(2)无限深势阱中粒子的能量表述式为22222n E n ma π=h ,最低能量值22

12

2E ma

π=h ,显然与a 的平方成反比,粒子的自由范围越大,最低能量值越低,应该说粒子在相同宽度的有限深

势阱比在无限深势阱中的自由范围大一些,所以粒子在有限深势阱中的最低能量值低一些。

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

关于大学物理答案第章

17-3 有一单缝,缝宽为,在缝后放一焦距为50cm 的汇聚透镜,用波长为的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 代入数据得 17-4 用波长为的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 依题意有 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 依题意有 0115.234.0sin 5 2sin 20sin 50===→=--θθ 中央波束的角宽为00475.2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 依题意有 2 )122(2)132(21λλ+?=+? 代入数据得 nm 6.428760057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径)中的柱状感光细胞每平方毫米约×105个。星体的像照亮了几个这样的细胞? 解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为 (2)视网膜上星体的像的直径为 (3)细胞数目应为3.2105.14)104.4(52 3=????=-πn 个 17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。试问汽车离人多远的地方,眼睛恰能分辨这两盏前灯?设夜间人眼瞳孔直径为,入射光波长为550nm.。 解: 17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)此照相机的孔径需多大?光的波长按500nm 计算。 解:装置的光路如图所示。 17-10 一光栅每厘米刻有4000 位)已知?和?谱线的波长分别为656nm 和解: S 1S 2

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

大学物理答案第1~2章

大学物理答案第1~2 章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 质点的运动 1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。 解:22 cos ,sin x y x y dx dy v Rw wt v Rw wt dt dt v v v Rw ==-==-∴=+= 2 222 2 sin ,cos y x x y x y dv dv a Rw wt a Rw wt dt dt a a a Rw ====∴=+= sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为 质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点 作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω2 1-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2 解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则 012132 012221201112()0,2()/2 ()11 222 12 v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=- =-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e kx . 解:取汽艇行驶的方向为正方向,则 020 0,,ln v x v kx dv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v v kx v v v e -==-= ∴=-=-∴=-=-∴=?? 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。 解:人前进的速度V 0,则绳子前进的速度大小等于车移动的速度大小,

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理试题及答案()

第2章 刚体的转动 一、 选择题 1、 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为?A 和?B ,不计滑轮轴的摩擦,则有 (A) ?A =?B . (B) ?A >?B . (C) ?A <?B . (D) 开始时?A =?B ,以后?A <?B . [ ] 2、 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B . (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ] 3、 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ] 4、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2 ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针。 [ ] 5、 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v .

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

大学物理答案第12章汇总

第十二章电磁感应电磁场和电磁波 12- 1 一根无限长平行直导线载有电流 I , 一矩形线圈位于导线平面内沿垂直于载流导线方 向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流 (B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定 题12-1图 分析与解 由右手定则可以判断, 在矩形线圈附近磁场垂直纸面朝里, 磁场是非均匀场, 距 离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感 应电流方向由法拉第电磁感应定律可以判定.因而正确答案为( B ). 12- 2 将形状完全相同的铜环和木环静止放置在交变磁场中, 并假设通过两环面的磁通量 随时间的变化率相等,不计自感时则( ) (A )铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大 分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流?因而正确答案为( A ). 12- 3 有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为 感电动势为12,由i 1变化在线圈2中产生的互感电动势为 0 ,下述论断正确的是 ( ). (A ) M 12 M 21 ,蚣1 @2 M12 ?若它们分别流过 i1 和 i2 的变化电流且石 di 2 dt ,并设由i 2变化在线圈1中产生的互

@2 (B) M 12 M 21 , %1 § 2 (C) M 12 M 21 , ◎1 @2 (D) M 12 M 21 , 蚣1 12 而正确答案为(D ) 12- 4对位移电流,下述说法正确的是( ) (A )位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场. 变化的电场激发磁场, 在这一点位移电流等效于 传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因 而正确答案为(A ). 12- 5 下列概念正确的是( ) (A )感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) ①m LI ,因而线圈的自感系数与回路的电流成反比 (D ) ①m LI ,回路的磁通量越大,回路的自感系数也一定大 分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ). 12— 6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为 5 2 ① 8.0 10 sin 100 n ,式中 ①的单位为Wb t 的单位为s ,求在t 1.0 10 s 时,线 圈中的感应电动势. 分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数 d ① d ^ 和,在此情况下,法拉第电磁感应定律通常写成 E N ,其中书N ①称为磁 dt dt 链. 解线圈中总的感应电动势 分析与解 教材中已经证明M21 = M12,电磁感应定律 %1 M 21di 1 dt M i2-di 2 ?因 dt

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

大学物理第12章习题解答

第十二章 习题答案 12.1 选择题 (1) 对位移电流,下述四种说法哪个正确( ) A. 位移电流是由线性变化磁场产生的. B. 位移电流是指变化的电场. C. 位移电流的热效应服从焦耳-楞次定律. D. 位移电流的磁效应不服从安培环路定理. (2) 空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t),则( ) A. 圆筒内均匀地分布着变化磁场和变化电场. B. 任意时刻通过圆筒内假象的任一球面的磁通量和电通量均为 零. C. 沿圆筒内任意闭合环路上电场强度的环流为零. D. 沿圆筒外任意闭合环路上磁感应强度的环流不为零. (3) 如图12.1(3)所示为一充电后的平行板电容器,A 板带正电,B 板 带负电,开关K 合上时,A ?B 板间位移电流的方向为(按图上所标x 轴 正方向回答) A .x 轴正向 B .x 轴负向 C .x 轴正向或负向 D .不确定 题12.1(3)图 答案:(1) B, (2)B, (3)B. 12.2 填空题 1. S t B l E L S d d ??????-= ① 0d =??S B S ② S t D I l H S L i d d ????∑??+= ③ 试判断下列结论是否包含于或等效于哪一个麦克斯韦方程式的.将确定的方程式用代号填在相应结论的空白处. (1) 变化的电场一定伴随有磁场__________________. (2) 变化的磁场一定伴随有电场__________________. (3) 磁感线是无头无尾的闭合曲线________________. 2.平行板电容器的电容C 为20 μF ,两板上的电压变化率V/s 105.1d d 5?=t U ,则该平行板电容器中的位移电流为____________. 3.一空气平行板电容器的两极板是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为t E d d .若略去边缘效应,则两板间的位移电流为______________. 答案: (1)③①②, (2)3 A, (3)20 R dt dE πε

大学物理第十章答案讲解

第十章 一、填空题 易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为1 10s -,则物体的总能量为, 周期为 。(4510J -?,0.628s ) 易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m ) 易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。(200N/m ,10rad/s ) 易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。(0.02m ,2.5m ,100Hz ,250m.s -1) 易:5、两个谐振动合成为一个简谐振动的条件是 。(两个谐振动同方向、同频率) 易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。(相同) 易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。(偶数) 易:8、弹簧振子系统周期为T 。现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。(T ) 易:9、作谐振动的小球,速度的最大值为,振幅为 ,则 振动的周期为 ;加速度的最大值为 。( 3 4π ,2105.4-?)

易:10、广播电台的发射频率为 。则这种电磁波的波长 为 。(468.75m ) 易:11、已知平面简谐波的波动方程式为 则 时,在X=0处相位为 ,在 处相位为 。 (4.2s,4.199s) 易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅; 圆频率 ;初相 。(10m, 1.2 -s rad π ,0) 中:13、一简谐振动的运动方程为2x 0.03cos(10t )3 π π=+ ( SI 制),则频率ν为 、周期T 为 、振幅A 为 , 初相位?为 。(5Hz , 0.2s , 0.03m , 23 π) 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ;()12 cos(05.0π ω- =t x ) 中:15、A 、B 是在同一介质中的两相干波源,它们的 位相差为π,振动频率都为100Hz ,产生的波以10.0m/s

相关文档
最新文档