神经网络基本知识

神经网络基本知识
神经网络基本知识

神经网络基本知识、BP神经网络

一.概述

1.1神经网络的定义

人工神经网络(Artificial Neural Networks,简写为 ANNs)是由大量类似于生物神经元的处理单元相互连接而成的非线性复杂网络系统。它是用一定的简单的数学模型来对生物神经网络结构进行描述,并在一定的算法指导下,使其能够在某种程度上模拟生物神经网络所具有的智能行为,解决传统算法所不能胜任的智能信息处理的问题。它是巨量信息并行处理和大规模并行计算的基础,神经网络既是高度非线性动力学系统,又是自组织自适应系统,可用来描述认知、决策和控制的智能行为。

1.2 神经网络的发展历史

对人工神经网络的研究始于 1943 年,经历 60 多年的发展,目前已经在许多工程研究领域得到了广泛应用。但它并不是从一开始就倍受关注,它的发展道路曲折、几经兴衰,大致可以分为以下五个阶段:

①奠基阶段:1943 年,由心理学家 McCulloch 和数学家 Pitts 合作,提出第一个神经计算模型,简称 M-P 模型,开创了神经网络研究这一革命性的思想。

②第一次高潮阶段:20 世纪 50 年代末 60 年代初,该阶段基本上确立了从系统的角度研究人工神经网络。1957 年 Rosenblatt 提出的感知器(Perceptron)模型,可以通过监督学习建立模式判别能力。

③坚持阶段:随着神经网络研究的深入开展,人们遇到了来自认识、应用实

现等方面的难题,一时难以解决。神经网络的工作方式与当时占主要地位的、以数学离散符号推理为基本特征的人工智能大相径庭,但是更主要的原因是:当时的微电子技术无法为神经网络的研究提供有效的技术保证,使得在其后十几年内人们对神经网络的研究进入了一个低潮阶段。

④第二次高潮阶段:20 世纪 70 年代后期,由于神经网络研究者的突出成果,并且传统的人工智能理论和 Von.Neumann 型计算机在许多智能信息处理问题上遇到了挫折,而科学技术的发展又为人工神经网络的物质实现提供了基础,促使神经网络的研究进入了一个新的高潮阶段。

⑤快速发展阶段:自从对神经网络的研究进入第二次高潮以来,各种神经网

络模型相继提出,其应用已经很快渗透到计算机图像处理、语音处理、优化计

算、智能控制等领域,并取得了很大的发展。

综上所述,神经网络的研究虽然有起伏,出现了研究的高潮与低潮,但总的方向无疑还是正确的。目前神经网络发展的重点是以应用为导向,研究和利用大脑神经网络的一些特性,设计出具有类似的某些大脑功能的智能系统。神经网络正在蓬勃发展,其理论研究结果和应用范围一时还无法准确预料。

1.3 神经网络的特点

①具有高速信息处理的能力

神经网络是由大量的神经元广泛互连而成的系统,并行处理能力很强,因此具有高速信息处理的能力。

②神经网络的知识存储容量大

在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。

③具有很强的不确定性信息处理能力

由于神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的对不确定性信息的处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图像。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。

④具有很强的健壮性

正是因为神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如专家系统等,具有另一个显著的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。

⑤一种具有高度非线性的系统

神经网络同现行的计算机不同,是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一阈值后才输出一个信号。因此神经网络是一种具有高度非线性的系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为。

⑥十分强的自适应、自学习功能

人工神经网络可以通过训练和学习来获取网络的权值与结构,呈现出很强的自学习能力和对环境的自适应能力。

1.4 神经网络的应用

近年来,人工神经网络独特的结构和信息处理方法,使其在许多实际应用领 域中取得了显著的成绩。神经网络的应用突出的领域有:

①模式识别。如图像识别、语音识别、手写体识别等。

②信号处理。包括特征提取、燥声抑制、统计预测、数据压缩、机器人视觉等。 ③判释决策。如模糊评判、市场分析、系统辩识、系统诊断、预测估值等。1 ④组合优化。包括旅行商问题、任务分配、排序问题、路由选择等。 ⑤知识工程。如知识表示、专家系统、自然语言处理和实时翻译系统等。

⑥复杂控制。包括多变量自适应控制、变结构优化控制、并行分布控制、智能及

鲁棒控制等。

二.基本问题和分类

2.1神经元基本结构

人工神经网络是由大量简单的基本元件—神经元(neuron)相互连接而成的自适应非线性动态系统,神经元是神经网络的基本处理单元,它一般是一个多输入单输出的非线性动态系统,其结构模型如图2.1所示

图2.1神经元结构

其中,i X 为神经元i 个神经元的输入信号,i W 为相应的突触强度或联结权值,()f ?为激励函数,它是作用前面部分的加权和,O 为实际输出。

激励函数可取不同的函数,但常用的基本激励函数有三种,分别是阈值函 数(此时神经元的输出取1或0,反映了神经元的兴奋或抑制)、分段线性函数(这种形式的激励函数可看作是非线性放大器的近似)和 S 型(Sigmoid)函数, 它也

是人工神经网络中最常用的激励函数。人们还在不断研究新的激励函数,如用广义同余函数作激励函数。

2.2基本术语概念

网络训练:要使网络模型实现某种功能,必须对它进行训练,让它逐步学会要做的事情,并把所学到的知识记忆在网络的权值中,人工神经网络的权值的确定不是通过计算,而是通过网络的自身训练来完成的。调整权重类似于智能过程,网络最重要的信息存在于调整过的权重之中。于是,神经网络的关键就在于如何决定每一神经元的权值。

网络学习:就是具体到了神经网络模型是怎么样确定最后的权重的,这就是学习的过程,相应的就有很多学习准则(方法),往往网络的训练和网络的学习是放在一起讲的,都是通过样本集最后到确定好权重在模型中,以备下次使用。

由于训练网络权值的原理不同,从而形成各种各样的神经网络学习规则。常用的学习规则有以下几种:

(1)Hebb 规则

它的基本规则可归纳为:如果某处理单元从另一个处理单元接受到一个输入,并且如果两个单元都处于高度活动状态,这时两单元的连接权重就要被加强。

(2)Delta 规则

Delta 规则是常用的学习规则,其要点是改变单元间的连接权重来减小系统实际输出与应有输出间的误差。这个规则也叫 Widrow 一 Hoff 规则,它首先应用于Adaline 模型中,也可称为最小均方差规则。

(3)反向传播学习方法

此过程涉及两步,首先是正向传播,当数据输入网络,网络从前往后计算每一个单元输出,将每个单元的输出与应用的输出进行比较,并计算误差。第二步是反向传播,从后向前重新计算误差,并修改权重。完成这两步后,才能输入新的数据。

(4)Kohonen 学习规则

该规则只用于无指导训练网络。在学习过程中,处理单元竞争学习的机会。具有高的输出单元是胜利者,有能力阻止它的竞争者并激发相邻的单元。只有胜利者才能被输出,也只有胜利者与其相邻的单元可以调节权重。

(5)Grosberg 学习方法

Grossberg 结合 Hebb 模型,建立了新的模型。Grossberg 模型将每个神经网络划分为由星内(instars)和星外(Outstars)的单元组成。星内单元是接受许多输入的处理单元,而星外单元是指其输出发送到许多其他处理单元的单元。如果一个单元的输入和输出活动激烈,其权重的改变就比较大,如果总的输入或输出小,权重的变化就很小。对不重要的连接,权重可能接近于零。

泛化能力:它是指经训练(学习)后的预测模型对未在训练集中出现(但具有统一规律性)的样本作出正确反映的能力,学习不是简单地记忆已经学过的输入,而是通过对有限个训练样本的学习,学到隐含在样本中的有关环境本身的内在规律性。例如,在有导师学习的网络,通过对已有样本的学习,将所提取的样本对中的非线性映射关系存在权值矩阵中,在其后的工作阶段,当向网络输入训练时未曾见过的非样本数据(与训练集同分布)时,网络也能完成由输入空间相输出空间的正确映射。

2.3神经网络分类

到目前为止,人们已经提出了上百种人工神经网络模型,学习算法更是层出不穷。但是,从人工神经网络的应用价值来看,研究最多的只有十几种,他们是从各个角度对生物神经系统不同层次的描述和模拟,表2-1给出了几种人工神经网络的典型模型。

表 2-1 人工神经网络的典型模型

模型名称有师或无

师学习规则正向或反向传

主要应用领域

AG无Hebb律反向数据分类SG无Hebb律反向信息处理ART-I无竞争律反向模式分类DH无Hebb律反向语音处理CH无Hebb/竞争律反向组合优化AM无Hebb律反向模式存储ABAM无Hebb律反向信号处理CABAM无Hebb律反向组合优化FCM无Hebb律反向组合优化LM有Hebb律正向过程监控DR有Hebb律正向工程检测、控

制LAM有Hebb律正向系统控制OLAM有Hebb律正向信号处理FAM有Hebb律正向知识处理BSB有误差修正正向实时分类Perceptron有误差修正正向线性分类、预

测Adalin/Madaline有误差修正反向分类、噪声抑

制BP有误差修正反向分类

AVQ有误差修正反向数据自组织

CPN有Hebb律反向自组织映射

反向组合优化BM有Hebb/模拟退

CM有Hebb/模拟退

反向组合优化

AHC有误差修正反向控制

ARP有随机增大反向模式匹配、控

制SNMF有Hebb律反向语音、图象处

理而这些网络从结构上也仅可分为多层前向神经网络和动态递归网络两种。前向神经网络是目前应用最广、发展最迅速的人工神经网络之一,其中, BP神经网络是多层前向神经网络的一种,也是人工神经网络模型中最典型、应用最广泛的一种网络模型。在人工神经网络的实际应用中,80%~90%的人工神经网络模型是采用BP前向网络或它的变化形式。

如果按学习方式分为:有导师学习和无导师学习。有导师学习也称为有监督学习。在这种学习方式下,要对一组给定的输入提供应有的输出结果。这组已知的输入-输出数据就称为训练数据。网络根据训练数据的输入和输出来调节本身的权重,使网络的输出符合实际的输出。所以学习过程的目的在于减小网络应有的输出与实际输出之间的误差,这是靠不断调整权重来实现的。无导师学习也称为无监督学习。在学习过程中,只提供输入数据而无相应的输出数据。网络检查输入数据的规律或趋向,根据网络本身的功能,而不靠外部的影响来自行调整权值,其结果是使网络能对属于同一类的模式进行自动分类。

三.BP神经网络

3.1 BP网络模型

误差反向传播算法(Error Back Propagation,EBP,简称BP)在于利用输出层的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误

差。如此下去,就获得了所有其他各层的误差估计。这样就形成了将输出端表现出的误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程。因此,人们就又将此算法称为向后传播算法,简称BP算法。使用BP算法进行学习的多层前向网络称为BP网络。用于训练神经网络权值的反向传播学习理论最早由 Werbos 在 1974 年提出,并由Rumelhart 等在 1985 年发展为 BP 算法。其本质是应用非线性规划方法中的最速下降法修正网络权值虽然这种误差估计本身的精度会随着误差本身的“向后传播”而不断降低,但它还是给多层网络的训练提供了十分有效的办法。所以,多年来该算法受到了广泛的关注。

BP网络是一种按误差反向传播的多层前馈网络,是目前应用最广泛的神经网络模型之一。它能学习和存贮大量的输入——输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。BP 网络由输入层、隐层和输出层构成,每层由许多并行运算的简单神经元组成,网络的层与层之间的神经元采用全互连方式,同层神经元之间无相互连接。其结构如图 3.1 所示。

图3-1:三层BP网络拓扑结构

在 BP 网络拓扑结构中,输入节点与输出节点是由问题的本身决定的,关键在于隐层的层数与隐层节点的数目。对于隐层的层数,许多学者都作了理论的研究,著名的 Kolmogorov 定理证明了只要隐层节点足够多,含一个隐层的神经网络就可以任意精度逼近一个非线性函数。一般来说,BP神经网络的隐层节点数对BP神经网络预测精度有较大的影响:节点数太少,网络不能很好地学习,需要增加训练次数,训练的精度也受到影响;节点数太多,训练时间增加,网络容易过拟合。选取很困难,在实际操作中主要靠经验和试凑法,也有参考公式:

1l n <-、l a <、2log l n =,式中,n 为输入层节点数 ;m 为输出层节点数;a 为0到10之间的常数。在实际问题中,隐含层节点数的选择首先是参考公式来确定节点数的大概范围,然后用试凑法确定最佳的节点数。

3.2 BP 网络基本工作原理

3.3 BP 网络算法实例

这一节,讲解一个具体的例子,在于理解训练和利用一个对数激励函数的隐含神经元的简单单输入单输出推导出误差梯度和怎么样具体的调整权值和阀值量,考虑最简单的模型,有两个输入—输出对()0.7853,0.707、()1.57,1.0,它们是正弦函数图象上的两个点,我们的实际问题可能就是要拟合这个图像,而已知很多点,这两点就是其中两个点,现在看看具体是怎么训练和学习,调整权值和阀值的。

一旦决定了网络结构,训练的第一步就是将权值初始化为任意值,下表3.2给出了这个问题的任选的值,并给出了输入x 和目标t 。然后输入值作用于网络,进行输入的一个前向传递。这个过程的任务就是首先确定u (输入到隐含神经元的加权和),并将它传递个隐含神经元的输出y 。下一步,计算输入到输出的加权和v ,并将它传递到z ,这就完成了前向传递。这时就可以提出网络的目标输出并计算总的误差和了。

表 3-2 初始权值和两个输入输出

对0.7853,0.707x t ==,根据前向传递确定网络输出为

()()010.457010.1430.30.20.78530.457

110.612110.10.40.6120.143

110.53611u v u a a x y e e

v b b y z e e

----=+=+====++=+=-+====++ 预报输出z 和目标输出t 不相等,因此就存在一个预报误差,它可以由平方误差表示。对单一的输入—输出,它是()212E z t =

-,对这个实际问题,它等于()210.5360.7070.01462

E =-=,同理可以算出另外一个训练样本的误差。 3.4 BP 网络模型的不足

对 BP 神经网络,就目前的研究现状而言,主要存在以下几个方面的问题: BP 网络的理论依据坚实,推导过程严谨,所得公式对称优美,物理概念清楚, 通用性强。但是,人们在使用过程中发现 BP 网络也存在许多不足之处,主要包括以下几个方面:

①收敛速度慢

由于 BP 算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂, 因此,误差曲面存在平坦区域。在这些区域中,误差梯度变化较小,即使权值的 调整量很大,误差依然下降缓慢,使训练过程几乎停顿。

② 易陷入局部极小

BP 网络的训练是从某一起始点开始的斜面逐渐达到误差的最小值。对于复杂的网络,其误差函数为多维空间的曲面,就像一个碗,其碗底是最小点。但是这个碗底表面是凹凸不平的,因而在其训练过程中,可能陷入某一小谷区,而这小谷区产生的是一个局部极小值,由此点向各方向变化均使误差增加,以至于使训练无法跳出这一局部极小值。

③网络结构的确定。

BP 神经网络网络结构的确定目前还没有一个固定的模式或是可以套用的公式,结构参数(包括隐层数、隐层神经元数)缺乏理论上的指导,大都是凭经验,严重影响了 BP 神经网络的性能和其应用的推广。

④ 泛化能力差

一般情况下,训练能力差时,泛化能力也差,并且一定程度上,随训练能力

的提高,泛化能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,泛化能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律。

四.BP神经网络的一个改进方法

4.1 对收敛速度的一个改进

传统BP算法是一种利用实际输出与期望输出之间的误差对网络的各层连接权重和各结点的阈值由后向前逐层进行校正的一种监督式学习方法。它根据最小二乘原理和梯度搜索技术,将学习过程分为输入样本的正向传播和误差的反向传播两个阶段。

针对 BP 算法收敛速度慢的问题,提出一种基于局部权值阈值调整的 BP 算法。该算法结合生物神经元学习与记忆形成的特点,针对特定的训练样本,只激发网络中的部分神经元以产生相应的输出,而未被激发的神经元产生的输出值则与目标输出相差较大,那么我们就需要对未被激发的神经元的权值阈值进行调整。所以提出的算法是对局部神经元权值阈值的调整,而不是传统的 BP 算法需要对所有神经元权值阈值进行调整,这样有助于加快网络的学习速度。

该算法的主要思想是在传统 BP 算法的第二阶段加入了隐层神经元的竞争,针对训练样本,神经元权值阈值的调整只发生在获胜神经元相连的路径上。算法简单描述如下:

(1)所有的输入层神经元无条件为获胜神经元。

(2)隐层的神经元之间进行竞争。考察输入向量和隐层神经元与输入层的权值W之间的关系,关系较远的隐层神经元未被激发。因为关系较远,说明神经即

ij

W与输入向量之间的差距较大,则它的输出值就会和目标值有所元记忆的内容

ij

偏离,所以需要调整与它相连的权值阈值,那么该神经元就是竞争获胜的隐层神经元。

(3)所有的输出层神经元无条件为获胜神经元。

该算法每次学习过程调整的是局部神经元的权值和阈值,这样有助于加快学习速度,并且实验结果也证实了这一点。

4.2 对泛化能力的一个改进

泛化能力是神经网络最主要的性能,没有泛化能力的神经网络没有任何使用

价值。如何提高NN的泛化能力一直是该领域研究者所关注的问题。而神经网络的结构复杂性和样本复杂性是影响神经网络泛化能力的主要因素,所以,人们的研究大都集中于此。

在构建网络之前,我们唯一所知的只有训练样本数据,Partridge对用于分类的三层BP网的研究发现,训练集对泛化能力的影响甚至超过网络结构(隐节点数)对泛化能力的影响。有人利用主成分分析法对训练样本进行预处理,这样既可降噪又可降维,降维对减小网络结构提高网络泛化能力有利。然而,在实际应用中,样本的个数远远大于指标的个数,并且当遇到样本数据很大时,人们往往随机选取其中一部分作为训练样本,这样很可能使训练样本集本身没有包含全部样本的特征,使预测的结果出现较大的误差。也有人利用模糊聚类法首先对样本进行分类,然后再从每一类中按一定比例选择训练样本。但是一般聚类算法只擅长处理低维的数据,对高维数据的聚类质量则较差,就会使最终所选取的训练样本有偏差,从而影响到最后预测结果的精度。此处运用因子分析对高维大样本数据先进行预处理,再利用分析所得的公因子进行聚类,这样除了降噪降维外,还可以从大样本集中选出几乎可以包含全部样本特性的训练样本,从而可以解决上述问题。

具体方法是:

(1)先对原始数据样本作因子分析,将样本的多个指标综合为数量较少的几个因子,并得到因子得分。

(2)用因子得分计算各样品间的欧式距离,来进行聚类分析,将样本分成若干小类。

(3)从每小类中按一定比例科学地选取适量样本。

通过以上三步,就可以从大样本数据中选出几乎可以包含全部样本特性的训练样本,从而达到对高维大样本数据的样本数和指标的降维。实验证明,该方法简化了网络结构、加快了网络的收敛速度,对提高网络的泛化能力有一定的帮助。

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

(完整word版)BP神经网络的基本原理_一看就懂

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rinehart和 McClelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x 1、x 2 …x i …x n 分别代表来自神经元1、2…i…n 的输入;w j1、w j2 …w ji …w jn 则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权 值;b j 为阈值;f(·)为传递函数;y j 为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出: (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f (·), 1 (·),则隐层节点的输出为(将阈值写入求和项中): 输出层的传递函数为f 2

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

神经网络

人工神经网络概念 人工神经网络(ArtificialNeuralNetwork,简称ANN)是人工智能领域中的一个重要分支,它是由大量的、简单的处理单元(或称神经元)广泛地互连成网络系统。它反映了人脑智能的许多基本特征,但并不是人脑神经元联系网的真实写照,而只是对其作某种简化、抽象和模拟。人工神经网络是由各种神经元按一定的拓扑结构相互连接而成的,它通过对连续的和间析的输入做出状态反馈而完成信息处理工作。神经网络有许多种类型,主要有前向型、反馈型、随机型和自组织竞争型等。其中前向型神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是其他一些网络的基础。比较成熟的有BP神经网络、径向基函数(RBF)神经网络等。 人工神经元模型 人工神经网络结构和工作机理基本上是以人脑的组织结构(大脑神经元结构)和活动规律为背景的,参照生物神经元网络发展起来的人工神经元网络现己有许多种类型,但是它们中的基本单元一一神经元的结构是基本相同的〔27]。人工神经元是生物神经元的模拟与抽象;按照生物神经元的结构和工作原理,构造一个人工神经元如图3一1所示。人工神经元是人工神经网络的基本单元,从图中可 以看出,它相当于一个多输入单输出的非线性闭值器件。定义表示 其他神经元的轴突输出,亦即该神经元的输入向量表示其他神经元与该神经元R个突触的连接强度,亦即权值向量,其每个元素的值可正可负,分别表示为兴奋性突触和抑制性突触,为神经元的闭值,如果神经元输入向量的加权和大于。,则该神经元被激活,所以渝入向量的加权和也称为激活值;f表示神经元的输入输出关系函数,称为激活函数或传输函数。因为激活值越大,表示神经元的膜电位总和越大,该神经元兴奋所发放的脉冲越多,所以传输函数一般为单调升函数。但它又是一个有限值函数,因为神经元发放的脉冲数是有限的。这样,神经元的输出可以表示为 神经元

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/f713392092.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

人工神经网络复习资料题

《神经网络原理》 、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为 离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+ △)=▼(◎,(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改—进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1 )、信息分布存储和容错性。 (2 )、大规模并行协同处理。 (3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络 设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1 )、空间相加性;(2 )、时间相加性;(3)、阈值作用;(4 )、不应期;(5 )、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x的关系如下图,试述它们分别有几个平衡状态,是 否为稳定的平衡状态? 答:在图(1、中,有两个平衡状态a、b,其中,在a点曲线斜率|F' (X)|>1 ,为非稳定平稳状态;在b点曲线斜率|F' (X)|<1 ,为稳定平稳状态。 在图(2、中,有一个平稳状态a,且在该点曲线斜率|F' (X)|>1 ,为非稳定平稳状态。

人工神经网络基本概念

《神经网络》讲稿 主讲人:谷立臣教授 2003年9月

第1章基本概念 ?作为自然实例的人脑 ?人工神经元模型 ●人工神经网络的拓扑结构及其学习规则?神经网络的学习策略 ?人工神经网络与生物神经网络的比较?人工神经网络的发展与现状 ?人工神经网络与自动控制 ?人工神经网络与设备故障诊断 ?参考文献

?脑神经生理学家告诉我们:人脑借以记忆与思维的最基本单元是神经元,其数量 约为个; ?每一神经元约有个突触; ?神经元间通过突触形成的网络,传递着彼此间的兴奋与抑制;全部大脑神经元构成拓扑上极其复杂的网络群体,由这一网络群体实现记忆与思维。见图1-1。 111210~103410~10

每一个神经元包括细胞体(Cell body或Soma)和突起(Process)两部分。 ◆细胞体是神经元新陈代谢的中心,还是接收与处理信息的部件 ◆突起有两类,即轴突(Axon)与树突(Dendrite)。轴突的长度相差很大,长的可达1米。轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其他神经元发送出生物信息,在轴突中电脉冲的传导速度可达到10~100米/秒。另一类突起——树突(输入),一般较短,但分枝很多,它能接收来自其他神经元的生物电信号,从而与轴突一起实现神经元之间的信息沟通。突起的作用是传递信息。 ◆通过“轴突---突触――树突”这样的路径,某一神经元就有可能和数百个以至更多的神经元沟通信息。那些具有很长轴突的神经元,更可将信息从一脑区传送到另一脑区。

?绝大多数神经元不论其体积﹑形状﹑功能如何,不论是记忆神经元还是运动神经元,均可分为一个输入(或感知)器官,一个代数求和器官,一个长距离传递器官和一个输出器官。见图1-2。 ?既然所有神经元的功能均是相近的,那么何以实现复杂的功能呢?答案是:无一功能是由单个神经元实现的,而是由许多神经元以不同的拓扑结构所共同产生的。这一平行处理性提高了神经网路系统的冗余度与可靠性。

成套电器设备安装接线基础知识培训教材解读

成套电器设备安装接线基础知识培训教材 培训教材 成套安装接线基础知识 作为一个从事成套电气设备行业的员工:要做好本职工作,他必须要掌握有关成套电器设备在用电配电系统中起的作用。同时懂得一些技术知识及最基本的装配、接线技能要求,做到安全生产、文明生产。要学会看懂、领会有关的图纸。图纸是工程技术界的共同语言,设计部门用图纸表达设计思想意图;生产部门用图纸指导加工与制造;使用部门用图纸指导使用、维修和管理;施工部门用图纸编制施工计划、准备材料组织施工等。 从事成套设备行业的员工要想做好本职工作,就必需要树立文明生产的观念。 在日常生产过程中处处以有关工艺要求来提高质量意识,明确质量就是企业的生命的重要性,要讲究工作效益,创造一个良好的工作环境,有了一个舒畅的工作环境,才能更好地提高工作效益,也就是要处处注意周围的环境卫生,同时在日常的工作中,同事之间要互相配合、互相尊重、互相关照;在技术方面要相互交流经验,不断完善自己,养成对完工工作任务做到自检、互检、后报检的良好工作习惯,来确保质量,为企业创造更好的效益。 要想做好本职工作:(1)每个员工必须做到应该知道什么?熟悉什么?能看懂什么?就成套电器产品而言,每个员工应该知道产品的结构形式、用途;应该熟悉产品的性能、内部的结构、主要的技术参数;应该看懂系统图(一次方案图)、平面布置图、原理图、二次接线安装图。(2 )每位员工必须知道什么是三按生产: 按图纸生产;按工艺生产;按技术规范生产。质量管理方面“五不”,①材料不合格不投料;②上道工序不 合格不流入下道工序;③零件、元器件不合格不装配;④装配不合格不检验;⑤检验不合格不出厂。在日常工作中要有一个比较合理的、完整的装配接线计划。电力的生产、输送、分配和使用,需大量的各种类型的电器设备,以构成电力发、输、配的主系统。这些设备主要是指发电机、变压器、隔离开关、断路器、电压互感器、电流互感器、电力电容器、避雷器、电缆、母 线等。它们在电力系统中通常称为一次设备,把这些设备连接在一起组成的电路称为一次接线,也称主接线, 也就是一次方案回路。为了使电力生产、传输、分 配和使用的各环节安全、可靠、连续、稳定、经济、灵活的运行,并随时监视其 工作情况,在主系统外还需装置相当数量的其它设备,如测量仪表、自动装置继电保护远动及控制信号器具等,这些设备通常与电流、电压互感器的二次绕组直流回路或厂用所用的低压回路连接起来,它们构成的回路称为二次回路,接线称二次接线。描述二次回路的图纸称为二次接线或二次回路(其中包括辅助回路)图。 二次接线的图纸一般有三种形式,即原理图、原理展开图和安装接线图(我们通常所用的是二次接线图)。 在二次接线图中所使用的图形符号和文字符号,它不但用于代表二次接线图中的各电器设备与元件的所在位置,而且反映它所发挥的作用。在二次接线图中,断路器、隔离开关、接触器的辅助触头及继电器的触点,所表示的位置是这些设备在正常状态的位置。所谓正常状态就是指断路器、隔离开关、接触器及继电器处于断路和失电状态。所谓常开、常闭触点是指这些设备在正常状态即断路或失电状态下辅助触点是短开或闭合 的。 二次接线的原理图是用来表示继电保护测量仪表、自动装置的工作原理的。通常是将二次接线和一次接线中与二次接线有关部分画在一起。在原理图上,所有仪表、继电器和其他电器都是以整体形式表示的,其相互联系的电流回路、电压回路、直流回路都是综合在一起,而且还表示有关的一次回路的部分。这种接线图的特点是能够使看图者对整个装置的构成和动作过程有一个明确的整体概念,

神经网络的基本原理

神经网络的基本原理 在神经网络系统中,其知识是以大量神经元互连和各互连的权值表示。神经网络映射辨识方法主要通过大量的样本进行训练,经过网络内部自适应算法不断调整其权值,以达到目的。状态识别器就隐含在网络中,具体就在互连形式与权值上。在网络的使用过程中,对于特定的输入模式,神经网络通过前向计算,产生一输出模式,通过对输出信号的比较和分析可以得到特定解。目前,神经网络有近40多种类型,其中BP 网络是最常用和比较重要的网络之一,本文就应用BP 网络进行齿轮计算中相应数据图表的识别映射。 BP 网络模型处理信息的基本原理是:输入信号X i 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k ,网络训练的每个样本包括输入向量X 和期望输出量t ,网络输出值Y 与期望输出值t 之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij 和隐层节点与输出节点之间的联接强度T jk 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 BP 网络的学习过程是通过多层误差修正梯度下降法进行的,称为误差逆传播学习算法。误差逆传播学习通过一个使误差平方和最小化过程完成输入到输出的映射。在网络训练时,每一个输入、输出模式集在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传播到各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;一遍反向传播计算,从输出层至输入层,利用差错矢量对连接权值和阀值,进行逐层修改。 经过训练好的BP 网络即可付诸应用。学习后的网络,其连接权值和阀值均已确定。此时,BP 模型就建立起来了。网络在回想时使用正向传播公式即可。 BP 网络由输入层结点,输出层结点和隐含层结点构成,相连层用全互连结构。图1为典型的三层结构网络模型。 图1 三层网络结构图 神经网络的工作过程主要分为两个阶段:一个是学习期,通过样本学习修改各权值,达到一稳定状态;一个是工作期,权值不变,计算网络输出。 BP 网络的学习过程由正向传播和反向传播两部分组成。在正向传播过程中,输入信息从输入层经隐含层单元逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的路径返回,通过修改各层神经元的权值,使得误差信号最小。当给定一输入模式 12(,,...,)m X x x x =和希望输出模式12(,,...,)n Y y y y = 时,网络的实际输出和实际误差,可用下列公式求出:

神经网络基本概念

二.神经网络控制 §2.1 神经网络基本概念 一. 生物神经元模型:<1>P7 生物神经元,也称作神经细胞,是构成神经系统的基本功能单元。虽然神经元的形态有极大差异,但基本结构相似。本目从信息处理和生物控制的角度,简述其结构和功能。 1.神经元结构 神经元结构如图2-1所示 图2-1

1) 细胞体:由细胞核、细胞质和细胞膜等组成。 2) 树突:胞体上短而多分支的突起,相当于神经元的输入端,接收传入的神经冲 动。 3) 轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神经末梢,传出神经 冲动。 4) 突触:是神经元之间的连接接口,每一个神经元约有104~106 个突触,前一个 神经元的轴突末梢称为突触的前膜,而后一个神经元的树突称为突触的后膜。一个神经元通过其轴突的神经末梢经突触,与另一个神经元的树突连接,以实现信息传递。由于突触的信息传递是特性可变的,随着神经冲动传递方式的变化,传递作用强弱不同,形成了神经元之间连接的柔性,称为结构的可塑性。 5) 细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后能产生兴奋,此时细胞膜内外由电位差,称为膜电位。其电位膜内为正,膜外为负。 2. 神经元功能 1) 兴奋与抑制:传入神经元的冲动经整和后使细胞膜电位提高,超过动作电 位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。传入神经元的冲动经整和后使细胞膜电位降低,低于阈值时即为抑制状态,不产生神经冲动。 2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强与减弱, 因此神经元具有学习与遗忘的功能。 二.人工神经元模型 ,<2>P96 人工神经元是对生物神经元的一种模拟与简化。它是神经网络的基本处理单元。图2-2显示了一种简化的人工神经元结构。它是一个多输入单输出的非线形元件。 图2-2 其输入、输出的关系可描述为 =-= n j i j ji i Q X W I 1 2-1 )I (f y i i = 其中i X (j=1、2、……、n)是从其他神经元传来的输入信号;

人工神经网络及其应用实例解读

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

人工神经网络基础_ANN课程笔记 1、前向神经网络

第一章前向神经网络 一、感知器 1、感知器网络结构 设网络输入模式向量为: 对应的输出为: 连接权向量为: 2、感知器的学习 ?初始化 连接权向量及输出单元的阈值赋予(-1,+1)区间内的随机值,一般为较小的随机非零值。 ?连接权的修正 每个输入模式作如下计算: (a)计算网络输出: (b)计算输出层单元希望输出与实际输出y之间的误差: (c)修正各单元与输出层之间的连接权与阈值:

?对m个输入模式重复步骤,直到误差k d(k=1,2,…,m)趋于零或小于预先给定的误差限ε。 3、感知器的图形解释 ?整个学习和记忆过程,就是根据实际输出与希望输出之间的误差调整参数w 和θ,即调整截割平面的空间位置使之不断移动,直到它能将两类模式恰当划分的过程。 ?学习过程可看作是由式 决定的n维超平面不断向正确划分输入模式的位置移动的过程。 4、感知器的局限性 ?两层感知器只能解决线性可分问题 ?增强分类能力的唯一出路是采用多层网络,即在输入及输出层之间加上隐层构成多层前馈网络。 ?Kolmogorov理论经过严格的数学证明:双隐层感知器足以解决任何复杂的分类问题。 ?简单的感知器学习过程已不能用于多层感知器,必须改进学习过程。

二、BP 神经网络 1、反向传播神经网络 1) 误差逆传播神经网络是一种具有三层或三层以上的阶层型神经网络: ? 上、下层之间各神经元实现全连接,即下层的每一个单元与上层的每个单元 都实现权连接; ? 而每层各神经元之间无连接; ? 网络按有监督的方式进行学习。 2) ? 当一对学习模式提供给网络后,神经元的激活值,从输入层经各中间层向输 出层传播,在输出层的各神经元获得网络的输入响应。 ? 在这之后,按减小希望输出与实际输出误差的方向,从输出层经各中间层逐 层修正各连接权,最后回到输入层,故得名“误差逆传播算法”。 ? 随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断 上升。 2、梯度下降法 1)梯度法是一种对某个准则函数的迭代寻优算法。设J(a)是准则函数,a 为一向量,()k J a 是()k J a 在点k a 的梯度,为一向量,其方向是J(a )增长最快的方向;负梯度方向.则是J(a )减少最快的方向。沿负梯度方向走,可最快地达到最小点。梯度下降法是求函数极小值的选代算法。 2)一般迭代算法: 可表示为:

相关文档
最新文档