严蔚敏数据结构讲义(第03章 栈和队列)

严蔚敏数据结构讲义(第03章 栈和队列)
严蔚敏数据结构讲义(第03章 栈和队列)

第03章栈和队列

3.1栈的基本概念

(一)栈顶top位置的说明:

1.在空栈中,top和base都指向整个栈的起始地址(也就是即将分配的第一个元素的地址);

2.在非空栈中,top始终是指向栈顶元素的下一个元素的地址。

(二)入栈操作(先压后加):Stack[top++]=e

(三)出栈操作(先减后弹):e = Stack[--top]

(四)栈不存在的判断条件:base==NULL

(五)栈空的判断条件:base==top

(六)栈满的判断条件:top – base = MaxSize

三、顺序栈的C语言实现

typedef struct{

SElemType *base; //栈底指针

SElemType *top; //栈顶指针

int StackSize; //顺序栈的初始容量(初始分配的能够容纳的元素个数)

}SqStack;

四、顺序栈的操作

1.初始化栈——构造一个空栈

Status InitStack(SqStack &S)

{

S.base = (SElemType*)malloc(Stack_Init_Size*sizeof(SElemType));

if(S.base==NULL) exit(OverFlow); //存储空间分配失败

S.top = S.base;

S.StackSize = Stack_Init_Size;

}

2.获取栈顶元素——若栈不空,则用e返回S的栈顶元素,并返回OK,否则返回ERROR

Status GetTop(SqStack S,SElemType &e)

{

if(S.top==S.base) return ERROR; //栈空

e = *(top – 1);

return OK;

}

3.入栈——插入元素e作为新的栈顶元素

Status Push(SqStack &S,SElemType e)

{

if(S.top – S.base >= S.StackSize) //栈已满,需要追加存储空间

{

S.base = (SElemType*)realloc(S.base,(S.StackSize+StackIncrement)*sizeof(SElemType));

if(!S.base) exit(OverFlow); //存储空间分配失败

S.top = S.base + S.StackSize;

S.StackSize += StackIncrement;

}

*S.top++ = e; //*指针运算符和++自加运算符优先级相同,但是其结合方向是自右向左

Return OK;

}

4.出栈——若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR

Status Pop(SqStack &S, SElemType &e)

{

if(S.top == S.base) return ERROR;

e = *--S.top;

return OK;

}

五、链栈的操作

1.入栈

int StackPush(LSNode *head, DataType x)

{

LSNode *p;

if((p = (LSNode *)malloc(sizeof(LSNode))) == NULL)

{

printf("内存空间不足无法插入! \n");

return 0;

}

p->data = x;

p->next = head->next; //新结点链入栈顶

head->next = p; //新结点成为新的栈顶

return 1;

}

2.出栈

int StackPop(LSNode *head, DataType *d)

{

LSNode *p = head->next;

if(p == NULL)

{

printf("堆栈已空出错!");

return 0;

}

head->next = p->next; //删除原栈顶结点

*d = p->data; //原栈顶结点元素赋予d

free(p); //释放原栈顶结点内存空间

return 1;

}

3.2栈的应用举例

一、数制转换——例如(1348)10->(2504)8

1.将n(=1348)和8取余得4,入栈;

2.n=n/8(此处是整数相除),重复步骤1,直到商为零;

3.直接将栈遍历输出即可。

程序框架:

void conversion( ) {

initstack(S);

scanf (“%d”,n);

while(n)

{

push(S,n%8);

n=n/8;

}

while(! Stackempty(S)){

pop(S,e);

printf(“%d”,e);

}

}

二、括号匹配的检验

1.凡出现左括弧,入栈;

2.出现右括弧,首先检查栈是否为空,若空则表示右括弧多了,否则和栈顶元素比较,匹配则左括弧出

栈,否则括弧不匹配,出现异常;

3.表达式检验结束时,若栈空则匹配正确,否则表明左括弧多了。

程序框架:

Status matching(string &exp){

int state = 1; //假设匹配

while(i<=Length(exp)&&state){

switch of exp[i]{

case 左括弧: {Push(S,exp[i]); i++; break;}

case ")":{

if(!StackEmpty(S) && GetTop(S)= "(")

{Pop(S,e); i++}

else

{state=0;}

break;

}

case "]": ……

}

if(StackEmpty(S)&&state) return OK;

}

三、回文字符串——回文:顺读与逆读字符串一样(不含空格),如字符串:"madam im adam"

解题思路:

1.读入字符串;

2.去掉空格(原串);

3.将回文字符依次全部压入栈;

4.原串字符与出栈字符依次比较,若不等,非回文,若直到栈空都相等,回文。

四、行编辑程序

——即在行编辑过程中不能进行回退的编辑模式,例如纸带编程模式。

算法如下:

void LineEdit( ){

InitStack(s);

ch=getchar( );

while(ch!=eof){

while(ch!=eof && ch!=‘\n’){//EOF为全文结束符

switch(ch){

case ‘#’ : pop(s,c);

case ‘@’ : clearstack(s); // 重置S为空栈

default : push(s,ch);

}

ch=getchar( ); // 从终端接收下一个字符

}

//将从栈底到栈顶的字符传送至调用过程的数据区;

ClearStack(s);

if(ch!=eof)

ch=getchar( );

}

DestroyStack(s);

}

五、表达式求值

操作数:常数、变量标识符、常量标识符

表达式运算符:算术运算符、逻辑运算符、关系运算符

界限符:括号()、表达式结束符;

(一)表达式中相邻操作符的计算次序

1.优先级高的先计算;

2.优先级相同的自左向右计算;

3.当使用括号时从最内层括号开始计算,逐层向外展开。

(二)表达式的标识方法:

设Exp=S1 + OP + S2 (S1是第一操作数,S2是第二操作数,OP 是操作符),以运算符所在位置命名

1. 前缀式表示(prefix)——波兰式(Polish ——因由波兰的数理逻辑学家J. Lukasiewicz 提出)

OP + S1 + S2

2. 中缀式表示(infix ):

S1 + OP + S2

3. 后缀式表示(postfix )——逆波兰式(reverse Polish )

S1 + S2 + OP

例如:Exp = a ×b + (c - d/e)×f

前缀式:+×ab ×-c/def

中缀式:a ×b+c-d/e ×f ——将括号直接去掉即可

后缀式:ab ×cde/-f ×+

结论:

1. 操作数之间的相对次序不变;

2. 运算符的相对次序中缀式不变,前缀和后缀式发生变化;

3. 中缀式丢失了括号信息,致使运算的次序不确定了,故中缀式无意义;

4. 前缀式的运算规则是:连续出现的两个操作数和在它们之前且紧靠它们的运算符构成一个最小表达式;

5. 后缀式的运算规则为:运算符在式中出现的顺序恰为表达式的运算顺序;每个运算符和在它之前出现

且紧靠它的两个操作数构成一个最小表达式。

6. 计算后缀表达式所花费的时间复杂度为)(n O ,当一个表达式以后缀记号的形式给出时,没有必要直到

运算符的优先级就可以进行准确的计算。

(三) 利用栈对表达式的后缀式求值——先找运算符,再找操作数

1. 基本思想

(1) 设置一个空栈S 。

(2) 依次读取表达式中的元素,如果元素是一个操作数,则将其压入栈S 中;否则,元素为一个计算符,

这时将S 的两个栈顶元素弹出(第一个栈顶元素为右操作数,第二个栈顶元素为左操作数),并采用此运算符做相应的运算操作。然后把两个栈顶元素运算后的结果作为一个新操作数再压入栈中,如此直到整个表达式计算完毕。

(3) 最后栈S 中唯一的元素即为表达式的求值结果。

2.

3. 对后缀式a b c * + d e / f * -(其对应的中缀式为:a + b * c – d / e * f ) 进行计算求值

(四) 利用栈将表达式的中缀式转后缀式

1.基本思想

(1)设置一个空栈S(用来存放操作符)。

(2)依次读取中缀表达式中的元素。

①如果读入的是操作数,则将其直接输出给后缀表达式。

②如果读入的是“(”,则直接入栈,“(”对它之前后的运算符起隔离作用;

③“)”可视为自相应左括号开始的表达式的结束符,如果读入的是“)”,则将栈元素依次弹出并输出,

直至遇到“(”。注意“(”只弹出不输出,“(”也不输出。

④如果读入的是其他操作符,则将其与栈顶元素相比较,若其优先级高于栈顶元素,则将其压入栈S

中;否则(优先级低于或等于的都)从栈中弹出栈顶元素并输出,直到发现优先级更低的元素为止,

再将其压入栈S中。

(3)最后,直至读到输入的表达式的末尾。然后依次将栈元素弹出直到S变空,最后将弹出的元素输出。

求中缀式a + (b - c / d ) * e 对应的后缀式。

答案:a b c d / - e * +

六、迷宫求解

基本思想:

1.若当前位置的当前方向“可通”,则纳入路径,继续前进;

2.若当前方向“不可通”,则换向探索;

3.若四周均“不可通”,则从路径中删除当前位置,后退探索。

详细过程:

1.由当前位置结点开始,依次按东南西北四个方向顺时针向相邻的四个结点进行探索,看哪个方向“可

通”;

2.若某一方向“可通”,则将当前位置纳入路径,按该方向继续前进到下一个结点,并重复1、2;

3.若当前位置的当前方向“不通”,则顺时针更换方向,继续探索;

4.若当前结点的即四个方向(不包括进入方向)均“不可通”,则从路径中删除当前结点,则后退至

上一个位置,继续探索。

3.3队列

一、顺序队列(Sequence Queue)

(一)类型声明

struct Node

{

ElemType data[MaxSize];

int front;

int rear;

};

typedef struct Node SeqQueue;

(二)判断队空

front == rear

(三)入队——入队前要判满

void EnSeqQueue(SeqQueue Q,ElemType x)

{

if(rear == MaxSize -1)

{

printf("队列已满");

exit(0);

}

Q.data[++Q.rear] =x;

}

(四)出队——出队前要判空

ElemType DeSeqQueue(SeqQueue Q, ElemType x)

{

if(front == rear)

{

printf("队列为空,无法进行删除操作!");

exit(0);

}

return Q.data[Q.front++];

}

(五)顺序栈的溢出

1.“下溢”:队列为空时做出队运算产生的溢出;下溢是正常现象。

2.“真上溢”:队列已满仍做入队运算产生的溢出;真上溢是一种错误,应该避免。

3.“假上溢”:

由于入队和出队操作,头、尾指针只增加不减小,致使被删除元素的空间永远无法重新利用,最终导致队列中实际的元素个数远远小于向量空间的规模,而尾指针已超越向量空间的上界而不能做入队操作。

该现象称为“假上溢”。为了避免这一现象的发生,人们提出了循环队列的概念。

二、循环队列(Circular Queue)——可充分利用空间,克服“假上溢”

(一)初始化:front=rear=-1

(二)判断队空:front==-1

(三)判断队满:

1.循环队列满的两种情况:

①front指向第一个元素front=0;rear指向最后一个元素rear=MaxSize -1。

②由于入队操作多于出队操作,致使rear指针追上了front指针:front=rear+1。

2.判满: (front==0 && rear ==MaxSize-1) || (front==rear+1) <=> (rear+1)%MaxSize==front (四)入队:

void EnCirQueue(CirQueue Q,ElemType x)

{

if((Q.rear + 1) % MaxSize == Q.front)

{

printf("队列已满");

exit(0);

}

else

{

Q.rear = (Q.front + 1) % MaxSize;

Q.data[Q.rear] = x;

}

}

(五)出队

ElemType DeCirQueue(CirQueue Q)

{

if(Q.front == -1)

{

printf("队列已空");

exit(0);

}

else

{

if(Q.front==Q.rear)

Q.front = Q.rear = -1;

else if(Q.first == MaxSize -1)

Q.front = 0;

else

Q.front++;

}

}

三、链队列

(一)类型声明

typedef struct QueueNode // 结点类型

{

QElemType data; //数据域

struct QNode *next; //指针域

} QNode;

typedef struct // 链队列类型

{

QNode *front; // 队头指针

QNode *rear; // 队尾指针

} LinkQueue;

(二)初始化

void LinkedQueueInit(LikedQueue Q)

{

Q=(LinkedQueue)malloc(sizeof(LinkedQueue));

q=(LinkedQueue)malloc(sizeof(LinkedQueue));

q->next=NULL;

Q->rear=Q->front=q;

}

(三)判断队空

Q->front==Q->rear

(四)入队

void EnLinkedQueue(LinkedQueue Q,ElemType x)

{

q=(LinkedQNode)malloc(sizeof(LinkedQNode);

if(q==NULL)

{

printf("申请空间失败");

exit(0);

}

q->data=x;

q->next=NULL;

Q->rear->next=q;

Q->rear=q;

}

(五)出队

ElemType DeLinkedQueue(LinkedQueue Q)

{

if(Q->front==Q->rear)

{

printf("队列已空");

exit(0);

}

q=Q->front->next;

Q->front->next=q->next;

x=q->data;

free(q);

if(Q->front->next==NULL) Q->rear=Q->front;

return x;

}

四、队列实现方法的比较

1.顺序队列空间利用率低,需要事先分配空间,易出现“假上溢”现象。

2.循环队列克服了“假上溢”现象,但仍然需要事先分配好空间。

3.链队列克服了顺序队列空间固定的缺点,在对链队列进行入队操作时,不需要考虑上溢和队满问题。

4.链队列和链表一样,需要增加结点的空间开销,并且还有运行malloc和free的开销。

完整版数据结构习题集第3章栈和队列

第3章栈和队列 一、选择题 1.栈结构通常采用的两种存储结构是(A )。 A、顺序存储结构和链表存储结构 B、散列和索引方式 C、链表存储结构和数组 D、线性链表结构和非线性存储结构 2.设栈ST 用顺序存储结构表示,则栈ST 为空的条件是( B ) A、ST.top-ST.base<>0 B、ST.top-ST.base==0 C、ST.top-ST.base<>n D、ST.top-ST.base==n 3.向一个栈顶指针为HS 的链栈中插入一个s 结点时,则执行( C ) A、HS->next=s; B、s->next=HS->next;HS->next=s; C、s->next=HS;HS=s; D、s->next=HS;HS=HS->next; 4.从一个栈顶指针为HS 的链栈中删除一个结点,用x 保存被删除结点的值,则执行( C) A 、x=HS;HS=HS->next; B 、HS=HS->next;x=HS->data; C 、x=HS->data;HS=HS->next; D 、s->next=Hs;Hs=HS->next; 5.表达式a*(b+c)-d 的后缀表达式为( B ) A、abcdd+- B、abc+*d- C、abc*+d- D、-+*abcd 6.中缀表达式A-(B+C/D)*E 的后缀形式是( D ) A、AB-C+D/E* B、ABC+D/E* C、ABCD/E*+- D、ABCD/+E*- 7.一个队列的入列序列是1,2,3,4,则队列的输出序列是( B ) A、4,3,2,1 B、1,2,3,4 C、1,4,3,2 D、3,2,4,1 8.循环队列SQ 采用数组空间SQ.base[0,n-1]存放其元素值,已知其头尾指针分别是front 和rear,则判定此循环队列为空的条件是() A、Q.rear-Q.front==n B、Q.rear-Q.front-1==n C、Q.front==Q.rear D、Q.front==Q.rear+1 9.循环队列SQ 采用数组空间SQ.base[0,n-1]存放其元素值,已知其头尾指针分别是front 和rear,则判定此循环队列为满的条件是() A、Q.front==Q.rear B、Q.front!=Q.rear C、Q.front==(Q.rear+1)%n D、Q.front!=(Q.rear+1)%n 10.若在一个大小为6 的数组上实现循环队列,且当前rear 和front 的值分别为0 和3,当从 队列中删除一个元素,再加入两个元素后,rear 和front 的值分别为() A、1,5 B、2, 4 C、4,2 D、5,1 11.用单链表表示的链式队列的队头在链表的()位置 A、链头 B、链尾 C、链中 12.判定一个链队列Q(最多元素为n 个)为空的条件是() A、Q.front==Q.rear B、Q.front!=Q.rear C、Q.front==(Q.rear+1)%n D、Q.front!=(Q.rear+1)%n 13.在链队列Q 中,插入s 所指结点需顺序执行的指令是() A 、Q.front->next=s;f=s; B 、Q.rear->next=s;Q.rear=s;

数据结构_实验三_栈和队列及其应用

实验编号:3四川师大《数据结构》实验报告2016年10月29日 实验三栈和队列及其应用_ 一.实验目的及要求 (1)掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们; (2)本实验训练的要点是“栈”的观点及其典型用法; (3)掌握问题求解的状态表示及其递归算法,以及由递归程序到非递归程序的转化方法。 二.实验内容 (1)编程实现栈在两种存储结构中的基本操作(栈的初始化、判栈空、入栈、出栈等); (2)应用栈的基本操作,实现数制转换(任意进制); (3)编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列); (4)利用栈实现任一个表达式中的语法检查(括号的匹配)。 (5)利用栈实现表达式的求值。 注:(1)~(3)必做,(4)~(5)选做。 三.主要仪器设备及软件 (1)PC机 (2)Dev C++ ,Visual C++, VS2010等 四.实验主要流程、基本操作或核心代码、算法片段(该部分如不够填写,请另加附页)(1)编程实现栈在两种存储结构中的基本操作(栈的初始化、判栈空、入栈、出栈等); A.顺序储存: 代码部分: 栈" << endl; cout << " 2.出栈" << endl; cout << " 3.判栈空" << endl; cout << " 4.返回栈顶部数据" << endl; cout << " 5.栈长" << endl; cout << " 0.退出系统" << endl;

cout << "你的选择是:" ; } 链式储存: 代码部分: 栈"<>select; switch (select){ case 0:break; case 1: cout<<"push data:"; cin>>e; if(push(L,e)){

严蔚敏版数据结构课后习题答案-完整版

第1章绪论 1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。 解:数据是对客观事物的符号表示。在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。 数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 数据对象是性质相同的数据元素的集合,是数据的一个子集。 数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 存储结构是数据结构在计算机中的表示。 数据类型是一个值的集合和定义在这个值集上的一组操作的总称。 抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。是对一般数据类型的扩展。 1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。 解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。抽象数据

类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。 1.3 设有数据结构(D,R),其中 {}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r = 试按图论中图的画法惯例画出其逻辑结构图。 解: 1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。 解: ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={} 基本操作: InitComplex(&C,re,im) 操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C)

数据结构:栈和队列学习资料

数据结构:栈和队列

单选题: 1.在一个具有n个单元的顺序栈中,假定以地址低端作为栈底,以top作为栈顶指针,则当做退栈处 理时,top变化为_____。 A. top不变 B. top=-n C. top=top-1 D.top=top+1 2.向顺序栈中压入元素时,是_____。 A.先移动栈顶指针,后存入元素 B.先存入元素,后移动栈顶指针 3.在一个顺序存储的循环队列中,队首指针指向队首元素的_____。 A.前一个位置 B.后一个位置 C.队首元素位置 4.若进栈序列为1,2,3,4,进栈过程中可以出栈,则_____不可能是一个出栈序列。 A.3,4,2,1 B.2,4,3,1 C.1,4,3,2 D.3,2,1,4 5.在具有n个单元的顺序存储的循环队列中,假定front和rear分别为队首指针和队尾指针,则判断队 空的条件是_____。 A.front= =rear+1 B.front+1= =rear C.front= =rear D.front= =0 6.在具有n个单元的顺序存储的循环队列中,假定front和rear分别为队首指针和队尾指针,则判断队 满的条件是_____。 A.\rear % n= =front B.(rear-1) % n= =front C.(rear-1) % n= =rear D.(rear+1) % n= =front 7.向一个栈项指针为hs的链栈中插入一个*s结点时,则执行_____。 A.hs->next=s; B.s->next=hs->next; hs->next=s; C.s->next=hs;hs=s; D.s->next=hs; hs=hs->next; 8.在一个链队列中,假定front和rear分别为队首指针和队尾指针,则进行插入*s结点的操作时应执 行_____。 A.front->next=s; front=s; B.rear->next=s; rear=s; C.front=front->next; D.front=rear->next; 9.栈的特点是_______队的特点是______ A.先进先出 B.先进后出B|A 10.栈和队列的共同点是_______。 A.都是先进后出 B.都是先进先出 C.只允许在端点处插入和删除元素 D.没有共同点 11.一个栈的进栈序列是a,b,c,d,e,则栈的不可能的输出序列是________。 A.edcba B.decba C.dceab D.abcde 12.若己知一个栈的进栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi(1top!=-1 B.st->top==-1 C.st->top!=MaxSize-1 D.st->top==MaxSize-1 18.判定一个顺序栈st(最多元素为MaxSize)为栈满的条件是_______。 A.st->top!=-1 B.st->top==-1 C.st->top!=MaxSize-1 D.st->top==MaxSize-1 19.最不适合用作链栈的链表是________。 A.只有表头指针没有表尾指针的循环双链表 B.只有表尾指针没有表头指针的循环双链表 C.只有 表尾指针没有表头指针的循环单链表 D.只有表头指针没有表尾指针的循环单链表 20.向一个栈项指针为hs的链栈中插入一个s所指结点时,则执行_______。 A.hs->next=s; B.s->next=hs->next;hs->next=s; C.s->next=hs;hs=s; D.s->next=hs;hs=hs->next;

数据结构堆栈与队列实验报告

实验二堆栈和队列 实验目的: 1.熟悉栈这种特殊线性结构的特性; 2.熟练并掌握栈在顺序存储结构和链表存储结构下的基本运算; 3.熟悉队列这种特殊线性结构的特性; 3.熟练掌握队列在链表存储结构下的基本运算。 实验原理: 堆栈顺序存储结构下的基本算法; 堆栈链式存储结构下的基本算法; 队列顺序存储结构下的基本算法; 队列链式存储结构下的基本算法; 实验内容: 第一题链式堆栈设计。要求 (1)用链式堆栈设计实现堆栈,堆栈的操作集合要求包括:初始化StackInitiate(S),非空否StackNotEmpty(S),入栈StackiPush(S,x),出栈StackPop(S,d),取栈顶数据元素StackTop(S,d); (2)设计一个主函数对链式堆栈进行测试。测试方法为:依次把数据元素1,2,3,4,5入栈,然后出栈并在屏幕上显示出栈的数据元素; (3)定义数据元素的数据类型为如下形式的结构体, Typedef struct { char taskName[10]; int taskNo; }DataType; 首先设计一个包含5个数据元素的测试数据,然后设计一个主函数对链式堆栈进行测试,测试方法为:依次吧5个数据元素入栈,然后出栈并在屏幕上显示出栈的数据元素。 第二题对顺序循环队列,常规的设计方法是使用対尾指针和对头指针,对尾指针用于指示当前的対尾位置下标,对头指针用于指示当前的対头位置下标。现要求: (1)设计一个使用对头指针和计数器的顺序循环队列抽象数据类型,其中操作包括:初始化,入队列,出队列,取对头元素和判断队列是否为空; (2)编写主函数进行测试。 程序代码: 第一题: (1)源程序"LinStack.h"如下: #define NULL 0 typedef struct snode { DataType data; struct snode *next; } LSNode; /*(1)初始化StackInitiate(LSNode ** head) */ void StackInitiate(LSNode ** head) /*初始化带头结点链式堆栈*/

数据结构第三章栈和队列3习题

第三章栈和队列试题 一、单项选择题 1.栈的插入和删除操作在()进行。 A. 栈顶 B. 栈底 C. 任意位置 D. 指定位置 2.当利用大小为n的数组顺序存储一个栈时,假定用top==n表示栈空,则向这个栈插入一个元素时, 首先应执行()语句修改top指针。 A. top++; B. top--; C. top = 0; D. top; 3.若让元素1,2,3依次进栈,则出栈次序不可能出现()种情况。 A. 3, 2, 1 B. 2, 1, 3 C. 3, 1, 2 D. 1, 3, 2 4.在一个顺序存储的循环队列中,队头指针指向队头元素的()位置。 A. 前一个 B. 后一个 C. 当前 D. 后面 5.当利用大小为n的数组顺序存储一个队列时,该队列的最大长度为()。 A. n-2 B. n-1 C. n D. n+1 6.从一个顺序存储的循环队列中删除一个元素时,需要()。 A. 队头指针加一 B. 队头指针减一 C. 取出队头指针所指的元素 D. 取出队尾指针所指的元素 7.假定一个顺序存储的循环队列的队头和队尾指针分别为front和rear,则判断队空的条件为()。 A. front+1 == rear B. rear+1 == front C. front == 0 D. front == rear 8.假定一个链式队列的队头和队尾指针分别为front和rear,则判断队空的条件为()。 A. front == rear B. front != NULL C. rear != NULL D. front == NULL 9.设链式栈中结点的结构为(data, link),且top是指向栈顶的指针。若想在链式栈的栈顶插入一 个由指针s所指的结点,则应执行操作()。 A. top->link = s; B.s->link = top->link; top->link = s; C. s->link = top; top = s; D. s->link = top; top = top->link; 10.设链式栈中结点的结构为(data, link),且top是指向栈顶的指针。若想摘除链式栈的栈顶结点, 并将被摘除结点的值保存到x中,则应执行操作()。 A. x = top->data; top = top->link; B. top = top->link; x = top->data; C. x = top; top = top->link; D. x = top->data; 11.设循环队列的结构是 #define MaxSize 100 typedef int ElemType;

数据结构练习 第三章 栈和队列

数据结构练习第三章栈和队列 一、选择题 1.栈和队列的共同特点是( )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2.向顺序栈中压入新元素时,应当()。 A.先移动栈顶指针,再存入元素 B.先存入元素,再移动栈顶指针C.先后次序无关紧要 D.同时进行 3.允许对队列进行的操作有( )。 A. 对队列中的元素排序 B. 取出最近进队的元素 C. 在队头元素之前插入元素 D. 删除队头元素 4.用链接方式存储的队列,在进行插入运算时( ). A. 仅修改头指针 B. 头、尾指针都要修改 C. 仅修改尾指针 D.头、尾指针可能都要修改 5.设用链表作为栈的存储结构则退栈操作()。 A. 必须判别栈是否为满 B. 必须判别栈是否为空 C. 判别栈元素的类型 D.对栈不作任何判别 6.设指针变量front表示链式队列的队头指针,指针变量rear表示链式队列的队尾指针,指针变量s指向将要入队列的结点X,则入队列的操作序列为()。 A.front->next=s;front=s; B. s->next=rear;rear=s; C. rear->next=s;rear=s; D. s->next=front;front=s; 7.设指针变量top指向当前链式栈的栈顶,则删除栈顶元素的操作序列为()。 A.top=top+1; B. top=top-1; C. top->next=top; D. top=top->next; 8.队列是一种()的线性表。 A. 先进先出 B. 先进后出 C. 只能插入 D. 只能删除 9.设输入序列1、2、3、…、n经过栈作用后,输出序列中的第一个元素是n,则输出序列中的第i个输出元素是()。 A. n-i B. n-1-i C. n+l -i D.不能确定 10.设输入序列为1、2、3、4、5、6,则通过栈的作用后可以得到的输出序列为()。 A. 5,3,4,6,1,2 B. 3,2,5,6,4,1 C. 3,1,2,5,4,6 D. 1,5,4,6,2,3 11.队列的删除操作是在()进行。 A.队首 B.队尾 C.队前 D.队后 12.当利用大小为N 的数组顺序存储一个栈时,假定用top = = N表示栈空,则退栈时,用()语句修改top指针。 A.top++; B.top=0; C.top--; D.top=N; 13.队列的插入操作是在()进行。

数据结构栈和队列实验报告.doc

南京信息工程大学实验(实习)报告 实验(实习)名称栈和队列日期2017.11.8 得分指导老师崔萌萌 系计算机系专业软件工程年级2016 班次(1) 姓名学号 一、实验目的 1、学习栈的顺序存储和实现,会进行栈的基本操作 2、掌握递归 3、学习队列的顺序存储、链式存储,会进行队列的基本操作 4、掌握循环队列的表示和基本操作 二、实验内容 1、用栈解决以下问题: (1)对于输入的任意一个非负十进制数,显示输出与其等值的八进制数,写出程序。(2)表达式求值,写出程序。 2、用递归写出以下程序: (1)求n!。 (2)汉诺塔程序,并截图显示3、4、5个盘子的移动步骤,写出移动6个盘子的移动次数。

3、编程实现:(1)创建队列,将asdfghjkl依次入队。(2)将队列asdfghjkl依次出队。 4、编程实现创建一个最多6个元素的循环队列、将ABCDEF依次入队,判断循环队列是否队满。 三、实验步骤 1.栈的使用 1.1 用栈实现进制的转换: 代码如下: #include #include using namespace std; int main() { stack s; //栈s; int n,radix; printf("请输入要转换的十进制非负整数: "); scanf("%d",&n); printf("请输入目标进制: "); scanf("%d",&radix);

printf("转换为%d进制: ",radix); while(n) { s.push(n%radix); n /= radix; } while(!s.empty()) { //非空 printf("%d",s.top()); s.pop(); } printf("\n"); return 0; } 运行结果如下: 2.2 求表达式的值 代码如下: #include #include #include #include #define true 1 #define false 0 #define OPSETSIZE 8 typedef int Status;

严蔚敏数据结构题集(C语言版)完整

严蔚敏 数据结构C 语言版答案详解 第1章 绪论 1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。 解:数据是对客观事物的符号表示。在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。 数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 数据对象是性质相同的数据元素的集合,是数据的一个子集。 数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 存储结构是数据结构在计算机中的表示。 数据类型是一个值的集合和定义在这个值集上的一组操作的总称。 抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。是对一般数据类型的扩展。 1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。 解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。抽象数据类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。 1.3 设有数据结构(D,R),其中 {}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r = 试按图论中图的画法惯例画出其逻辑结构图。 解: 1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。 解: ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={} 基本操作: InitComplex(&C,re,im) 操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C) 操作结果:销毁复数C Get(C,k,&e) 操作结果:用e 返回复数C 的第k 元的值 Put(&C,k,e) 操作结果:改变复数C 的第k 元的值为e

数据结构栈和队列习题及答案

习题三栈和队列 一单项选择题 1. 在作进栈运算时,应先判别栈是否(① ),在作退栈运算时应先判别栈是否(② )。当栈中元素为n个,作进栈运算时发生上溢,则说明该栈的最大容量为(③ )。 ①, ②: A. 空 B. 满 C. 上溢 D. 下溢 ③: A. n-1 B. n C. n+1 D. n/2 2.若已知一个栈的进栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,...,pn,若p1=3,则p2为( )。 A 可能是2 B 一定是2 C 可能是1 D 一定是1 3. 有六个元素6,5,4,3,2,1 的顺序进栈,问下列哪一个不是合法的出栈序列?() A. 5 4 3 6 1 2 B. 4 5 3 1 2 6 C. 3 4 6 5 2 1 D. 2 3 4 1 5 6 4.设有一顺序栈S,元素s1,s2,s3,s4,s5,s6依次进栈,如果6个元素出栈的顺序是s2,s3,s4, s6, s5,s1,则栈的容量至少应该是() A.2 B. 3 C. 5 D.6 5. 若栈采用顺序存储方式存储,现两栈共享空间V[1..m],top[i]代表第i个栈( i =1,2)栈顶,栈1的底在v[1],栈2的底在V[m],则栈满的条件是()。 A. |top[2]-top[1]|=0 B. top[1]+1=top[2] C. top[1]+top[2]=m D. top[1]=top[2] 6. 执行完下列语句段后,i值为:() int f(int x) { return ((x>0) ? x* f(x-1):2);} int i ; i =f(f(1)); A.2 B. 4 C. 8 D. 无限递归 7. 表达式3* 2^(4+2*2-6*3)-5求值过程中当扫描到6时,对象栈和算符栈为(),其中^为乘幂。 A. 3,2,4,1,1;(*^(+*- B. 3,2,8;(*^- C. 3,2,4,2,2;(*^(- D. 3,2,8;(*^(- 8. 用链接方式存储的队列,在进行删除运算时()。 A. 仅修改头指针 B. 仅修改尾指针 C. 头、尾指针都要修改 D. 头、尾指针可能都要修改 9. 递归过程或函数调用时,处理参数及返回地址,要用一种称为()的数据结构。 A.队列 B.多维数组 C.栈 D. 线性表 10.设C语言数组Data[m+1]作为循环队列SQ的存储空间, front为队头指针,rear为队尾指针,则执行出队操作的语句为() A.front=front+1 B. front=(front+1)% m C.rear=(rear+1)%(m+1) D. front=(front+1)%(m+1) 11.循环队列的队满条件为 ( ) A. (sq.rear+1) % maxsize ==(sq.front+1) % maxsize; B. (sq.front+1) % maxsize ==sq.rear C. (sq.rear+1) % maxsize ==sq.front D.sq.rear ==sq.front

数据结构栈和队列

实验二栈和队列 一、实验目的 1. 掌握栈的顺序表示和实现 2. 掌握队列的链式表示和实现 二、实验内容 1. 编写一个程序实现顺序栈的各种基本运算。 2. 实现队列的链式表示和实现。 三、实验步骤 1. 初始化顺序栈 2. 插入元素 3. 删除栈顶元素 4. 取栈顶元素 5. 遍历顺序栈 6. 置空顺序栈 7. 初始化并建立链队列 8. 入链队列 9. 出链队列 10. 遍历链队列 四、实现提示 1. /*定义顺序栈的存储结构*/ typedef struct { ElemType stack[MAXNUM]; int top; }SqStack; /*初始化顺序栈函数*/ void InitStack(SqStack *p) {q=(SqStack*)malloc(sizeof(SqStack) /*申请空间*/) /*入栈函数*/ void Push(SqStack *p,ElemType x)

{if(p->toptop=p->top+1; /*栈顶+1*/ p->stack[p->top]=x; } /*数据入栈*/ } /*出栈函数*/ ElemType Pop(SqStack *p) {x=p->stack[p->top]; /*将栈顶元素赋给x*/ p->top=p->top-1; } /*栈顶-1*/ /*获取栈顶元素函数*/ ElemType GetTop(SqStack *p) { x=p->stack[p->top];} /*遍历顺序栈函数*/ void OutStack(SqStack *p) { for(i=p->top;i>=0;i--) printf("第%d个数据元素是:%6d\n",i,p->stack[i]);} /*置空顺序栈函数*/ void setEmpty(SqStack *p) { p->top= -1;} 2. /*定义链队列*/ typedef struct Qnode { ElemType data; struct Qnode *next; }Qnodetype; typedef struct { Qnodetype *front; Qnodetype *rear; }Lqueue; /*初始化并建立链队列函数*/ void creat(Lqueue *q)

数据结构栈和队列实验报告

《数据结构》课程实验报告 实验名称栈和队列实验序号实验日期 姓名院系班级学号 专业指导教师成绩 教师评语 一、实验目的和要求 (1)理解栈和队列的特征以及它们之间的差异,知道在何时使用那种数据结构。 (2)重点掌握在顺序栈上和链栈上实现栈的基本运算算法,注意栈满和栈空的条件。 (3)重点掌握在顺序队上和链队上实现队列的基本运算算法,注意循环队队列满和队空的条件。 (4)灵活运用栈和队列这两种数据结构解决一些综合应用问题。 二、实验项目摘要 编写一个程序algo3-1.cpp,实现顺序栈的各种基本运算,并在此基础上设计一个主程序并完成如下功能:(1)初始化栈s; (2)判断栈s是否非空; (3)依次进栈元素a,b,c,d,e; (4)判断栈s是否非空; (5)输出栈长度; (6)输出从栈顶到栈底元素; (7)输出出栈序列; (8)判断栈s是否非空; (9)释放栈。 编写一个程序algo3-3.cpp,实现顺序环形队列的各种基本运算,并在此基础上设计一个主程序并完成如下功能: (1)初始化队列q; (2)判断队列q是否非空; (3)依次进队列a,b,c; (4)出队一个元素,输出该元素; (5)输出队列q的元素个数; (6)依次进队列元素d,e,f; (7)输出队列q的元素个数; (8)输出出队序列; (9)释放队列。

三、实验预习内容 栈的顺序存储结构及其基本运算实现(初始化栈,销毁栈,求栈的长度,判断栈是否为空,进栈,取栈顶元素,显示栈中元素) 队列的顺序存储结构及其基本运算实现(初始化队列,销毁队列,判断队列是否为空,入队列,出队列) 三、实验结果与分析 3-1 #define maxsize 100 #include #include using namespace std; typedef char ElemType; typedef struct { ElemType data[maxsize]; int top; } SqStack; void InitStack(SqStack * &s) { s=(SqStack *)malloc(sizeof(SqStack)); s->top=-1; } int StackEmpty(SqStack *s) { return(s->top==-1); } int Push(SqStack *&s,ElemType e) { if(s->top==maxsize-1) return 0; s->top++; s->data[s->top]=e; return 1; } int Pop(SqStack *&s,ElemType &e) { if(s->top==-1) return 0; e=s->data[s->top];

严蔚敏版数据结构复习题

数据结构复习题集 一、判断题 1.线性表的长度是线性表所占用的存储空间的大小。( F ) 2.双循环链表中,任意一结点的后继指针均指向其逻辑后继。( F ) 3.在对链队列做出队操作时,不会改变front指针的值。( F ) 4.如果两个串含有相同的字符,则说它们相等。( F ) 5.如果二叉树中某结点的度为1,则说该结点只有一棵子树。(T ) 6.已知一棵树的先序序列和后序序列,一定能构造出该树。( F ) 7.图G的一棵最小代价生成树的代价未必小于G的其它任何一棵生成树的代价。(T ) 8.图G的拓扑序列唯一,则其弧数必为n-1(其中n为顶点数)。( F ) 9.对一个堆按层次遍历,不一定能得到一个有序序列。(T ) 10.直接选择排序算法满足:其时间复杂度不受数据的初始特性影响,为O(n2)。(T ) 11. 线性表的逻辑顺序与物理顺序总是一致的。( F ) 12. 线性表的顺序存储表示优于链式存储表示。( F ) 13.线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。(T ) 14. 二维数组是其数组元素为线性表的线性表。( F )

15. 每种数据结构都应具备三种基本运算:插入、删除和搜 索。(T ) 16.(101,88,46,70,34,39,45,58,66,10)是堆;(T ) 17.将一棵树转换成二叉树后,根结点没有左子树;( F ) 18.对不含相同元素的同一输入序列进行两组不同的、合法的入栈和出栈组合操作,所得的输出序列也一定相同;(F) 19.哈夫曼树是带权外部路径长度最短的树,路径上权值较大的结点离根较近( T ) 20.用一组地址连续的存储单元存放的元素一定构成线性表。(F) 21.堆栈、队列和数组的逻辑结构都是线性表结构。( T ) 22.给定一组权值,可以唯一构造出一棵哈夫曼树。( F) 23.相对于索引文件的基本数据,索引表包含的信息量相对少得多,因此。索引表可以常驻内存。( T) 24.在平均情况下,快速排序法最快,堆积排序法最节省空间。( T) 25.快速排序法是一种稳定性排序法。( F ) 二.选择题: 1.一个栈的输入序列为12345,则下列序列中是栈的输出序列的是(A)。 A.23415 B.54132 C.31245 D.1425 3 2.设循环队列中数组的下标范围是1~n,其头尾指针分别为f和r,则其元素个数为(D)。 A.r-f B.r-f+1 C.(r-f) mod n +1 D.(r-f+n) mod n 3.二叉树在线索化后,仍不能有效求解的问题是(D)。

数据结构老师给的复习要点(严蔚敏版)

第一章 1. 怎样理解“算法+数据结构=程序”这个公式?举例说明。 算法是语句序列解决特定问题的固有程序片段。数据结构是确定数据间的关系。从具体问题抽象出一个合适的数学模型、然后设计一个解决此数学模型的算法,最后编写出程序。寻求数学模型的是指就是数据结构要完成的工作。参看书p1前两段的描述。 2. 数据结构的概念,它包含哪三方面的内容? 数据结构:是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间饿关系和操作的学科。参看书p3 包含三方面的内容:1、数据之间的逻辑关系2、数据在计算机中的存储方式3、在数据上定义的运算的集合。 3. 数据、数据元素、数据项的基本概念。举例说明数据元素和数据项的联系与区别。 数据:描述客观事物的数字、字符以及所有能直接输入到计算机中并被计算机程序处理的符号的集合。 数据元素:数据的基本单位,在计算机程序中通常作为一个整体进行考虑或处理。 数据项:数据项是具有独立含义的最小标识单位,是数据元的一个具体值,是数据记录中最基本的、不可分的有名数据单位。 例1:class A { int c[123]; int i; }; class B { A a; } B b; b.a是数据项,B是数据元素 例2:一本书的数目信息为一个数据元素,而数目信息中每一项(如书名、作者名等)为一个数据项 4. 从逻辑结构来看,数据结构有哪四种基本结构,各自的特点是什么? 1、集合(数据元素之间同属于一个集合,再无其他关系) 2、线性结构(数据元素之间存在一对一的关系) 3、树形结构(数据元素之间一对多的关系) 4、图状结构或网状结构(数据元素之间多对多的关系) 5. 从物理结构来看,数据结构有哪两种基本结构,各自的特点是什么? 1、顺序存储结构 特点:借助元素在存储器中的相应位置来表示数据元素之间的逻辑关系。 2、链式存储结构 特定:借助元素在存储地址的指针表示数据元素之间的逻辑关系。 6. 算法的5个特征,4个评价标准是什么? 特征:有穷性、确定性、可行性、输入、输出。 评价标准:正确性、可读性、健壮性、效率与低存储量需求。 7. 描述时间复杂度。

《数据结构练习题》栈和队列

栈和队列 1 简述栈和线性表的区别。 2 简述栈和队列这两种数据结构的相同点和不同点。 3 如果进栈的元素序列为A,B,C,D,则可能得到的出栈序列有多少种?写出全部的可能序列。 4 如果进栈的元素序列为1,2,3,4,5,6,能否得到4,3,5,6,1,2和1,3,5,4,2,6的出栈序列?并说明为什么不能得到或如何得到。 5 写出下列程序段的运行结果(栈中的元素类型是char): main( ) { SEQSTACK s,*p; char x, y; p = &s; initstack(p); x = ′c′; y = ′k′; push(p,x); push(p,′a′); push(p,y); x = pop(p); push(p,′t′); push(p,x); x = pop(p); push(p,′s′);

while(!empty(p)) { y = pop(p); printf(″%c″,y);} printf(″%c\n″,x); } 6 将一个非负十进制整数转换成二进制数,用非递归算法和递归算法来实现。 7 写一算法将一顺序栈中的元素依次取出,并打印元素值。 8 设单链表中存放着n个字符,试编一算法,判断该字符串是否有中心对称关系,例如xyzzyx,xyzyx都算是中心对称的字符串。 9 写出下列程序段的运行结果(队列中的元素类型是char): main( ) { SEQQUEUE a, *q; char x, y; q = &a; x=′e′; y=′c′; initqueue(q); enqueue(q,′h′); enqueue(q,′r′); enqueue(q,y); x = dequeue(q);

《数据结构》实验二 栈和队列

《数据结构》实验指导及报告书 2014 / 2015 学年第 1学期 姓名: 学号: 班级: 指导教师:徐江 计算机科学与工程学院 2014

实验二栈和队列 一、实验目的 1、掌握栈的结构特性及其入栈,出栈操作; 2、掌握队列的结构特性及其入队、出队的操作,掌握循环队列的特点及其操作。 二、实验内容和要求 1、阅读下面程序,将函数Push和函数Pop补充完整。要求输入元素序列1 2 3 4 5 e,运行结果如下所示。 #include #include #define ERROR 0 #define OK 1 #define STACK_INT_SIZE 10 /*存储空间初始分配量*/ #define STACKINCREMENT 5 /*存储空间分配增量*/ typedef int ElemType; /*定义元素的类型*/ typedef struct{ ElemType *base; ElemType *top; int stacksize; /*当前已分配的存储空间*/ }SqStack; int InitStack(SqStack *S); /*构造空栈*/ int push(SqStack *S,ElemType *e); /*入栈*/ int Pop(SqStack *S,ElemType *e); /*出栈*/ int CreateStack(SqStack *S); /*创建栈*/ void PrintStack(SqStack *S); /*出栈并输出栈中元素*/ int InitStack(SqStack *S){ S->base=(ElemType *)malloc(STACK_INT_SIZE *sizeof(ElemType)); if(!S->base) return ERROR;

数据结构实验二题目一栈和队列实验报告

数据结构实验报告 实验名称:实验2——栈和队列 学生姓名: 班级: 班内序号: 学号: 日期: 一、实验要求 1、实验目的:进一步掌握指针、模板类、异常处理的使用 掌握栈的操作的实现方法 掌握队列的操作的实现方法 学习使用栈解决实际问题的能力 学习使用队列解决实际问题的能力 2、实验内容: 根据栈和队列的抽象数据类型的定义,按要求实现一个栈或一个队列。要求: 实现一个共享栈 实现一个链栈 实现一个循环队列 实现一个链队列 编写测试main()函数测试线性表的正确性 二、程序分析 2.1 存储结构 顺序栈、链栈和顺序队列

顺序栈链栈顺序队列 2.2 关键算法分析 A、实现一个共享栈: a、伪代码实现 入栈操作:如果栈满,则抛出上溢异常; 判断是插在栈1还是栈2,如果在栈1插入,则栈顶指针top1加1,在top1处 填入x,如果在栈2插入,则栈顶指针top2加1,在top2处填入x。 出栈操作:如果栈空,则抛出下溢异常; 判断是栈1出栈还是栈2,如果是栈1,则输出栈1栈顶元素,并且top1减1, 如果是栈2,则输出栈2栈顶元素,并且top2加1。 得到栈顶元素操作:如果栈空,则抛出下溢异常; 判断是栈1出栈还是栈2,如果是栈1,则输出栈1栈顶元素,如果是栈2,则 输出栈2栈顶元素。 b、算法实现: void shareseqstack::push(int x,int pushnumber)//进栈操作 {if(top1+1==top2)//异常处理 throw "上溢"; if(pushnumber==1)//判断栈1还是栈2 data[++top1]=x; if(pushnumber==2) data[--top2]=x; } void shareseqstack::pop(int popnumber)//出栈操作 {if(popnumber==1) //异常处理 { if(top1==-1) throw "下溢";

相关文档
最新文档