八年级上数学全等三角形典型例题一

八年级上数学全等三角形典型例题一
八年级上数学全等三角形典型例题一

全等三角形典型例题:

例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求

证:AF ⊥BE .

练习1:如图,在△ABC 中,∠BAC=90°,AB=AC ,

AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE ,

如果CE=3,BD=7,请你求出DE 的长度。

例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N,

求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。

例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系.

⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分).

⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分)

图1 图2 图3

C

B A l B C

A B C D

E l A B C l

E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF

B

A

F

E

练习2:

如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。

若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

例四:如图1,已知,AC ⊥CE ,AC=CE , ∠ABC=∠CDE=90°,

问BD=AB+ED 吗?

[分析] :

(1)凡是题中的垂直往往意味着会有一组90°角,得到一组等量关系;

(2)出现3个垂直,往往意味着要运用同(等)角的余角相等,得到另一组等量关系; (3)由全等得到边相等之后,还要继续往下面想,这几组相等的边能否组合在一起:

如如图6,除了得到三组对应边相等之外,还可以得到AC=BD 。

解答过程:得到△ABC ≌CDE 之后,可得到BC=DE ,AB=CD ∴ BC+CD=DE+AB (等式性质) 即:BD=AB+DE

[变形1]:如图7, 如果△ABC ≌△CDE ,请说明AC 与CE 的关系。 [注意]:两条线段的关系包括:大小关系(相等,一半,两倍之类)

位置关系(垂直,平行之类)

[变形2]:如图,E 是正方形ABCD 的边DC 上的一点,过点A 作FA ⊥AE 交CB 的延长线于点F , 求证:DE=BF

[分析]:注意图形中有多个直角,利用同角的余角相等或等式性质可到一组锐角相等。

图6

C

5

C

图7

F

E

[变形3]:如图8,在△ABC 中,∠BAC=90°,AB=AC ,AE 是过点A 的直线,

BD ⊥AE ,CE ⊥AE ,

如果CE=3,BD=7,请你求出DE 的长度。

[分析

] :说明相等的边所在的三角形全等,

题中“AB=AC ”,发现:AB 在Rt △ABD 中,AC 在Rt △CAE 中, 所以尝试着去找条件,去说明它们所在的两个Rt △全等(如图9) 于是:已经存在了两组等量关系:AB=AC ,直角=直角, 再由多个垂直利用同角的余角相等,得到第三组等量关系。

解:由题意可得:在Rt △ABD 中,∠1+∠ABD=90°(直角三角形的两个锐角互余) 又∵ ∠BAC=90°(已知), 即∠1+∠CAE=90° ∴ ∠ABD=∠CAE (等角的余角相等) 故在△ABD 与△CAE 中,

∠BDA=∠AEC=90°(垂直定义)

∠ABD=∠CAE (已求)

AB=AC (已知)

∴ △ABD ≌△CAE (AAS ) ∴ AE=BD=7,AD=EC=3 (全等三角形的对应边相等) ∴ DE=AE -AD =7-3=4

[变形4]:在△ABC 中,∠ACB= 900,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E 。 (1)当直线MN 绕点C 旋转到图9的位置时,△ADC ≌△CEB ,且 DE=AD+BE 。你能说出其中的道理吗? (2)当直线MN 绕点C 旋转到图10的位置时, DE =AD-BE 。说说你的理由。

(3)当直线MN 绕点C 旋转到图11

C

C

等腰三角形、等边三角形的全等问题:

[必备知识]:

如右图,由∠1=∠2,可得∠CBE=∠DBA ;反之,也成立。

例五:已知在△ABC 中,AB=AC ,在△ADE 中,AD=AE ,且∠1=∠2,请问BD=CE 吗?

[分析]这类题目的难点在于,需要将本来就存在于同一个三角形中的一组相等的边, 分别放入两个三角形中,看成是一组三角形的对应边,

∴ 题目中所给的△ABC 与△ADE 是用来干扰你的思路的,应该去想如何把两组相等的边联系到一起, 加上所求的“BD=CE ”,你会发现BD 在△ABD 中,CE 在△ACE 中,

这样一来,“AB=AC ”可以理解为:AB 在△ABD 中,AC 在△ACE 中,它们是一组对应边;

“AD=AE ”可以理解为:AD 在△ABD 中,AE 在△ACE 中,它们是一组对应边;

所以只需要说明它们的夹角相等即可。

关键还是在于:说明“相等的边(角)所在的三角形全等” 解: ∵ ∠1=∠2(已知)

∴ ∠1+∠CAD=∠2+∠CAD (等式性质)

即: ∠BAD=∠CAE ∴ 在△ABD 与△ACE 中,

AB=AC (已知) ∠BAD=∠CAE (已求) AD=AE

∴ △ABD ≌△ACE (SAS )

∴ BD=CE (全等三角形的对应边相等)

[变形1]:如图14,已知∠BAC=∠DAE ,∠1=∠2,BD=CE ,

A

B

E

图13

A

D

请说明△ABD ≌△ACE.吗?为什么?

[分析]:例三是两组边相等,放入一组三角形中,利用SAS 说明全等, 此题是两组角相等,那么该如何做呢?

[变形2]:过点A 分别作两个大小不一样的等边三角形,连接BD ,CE ,请说明它们相等。

[分析]:此题实际上是例三的变形,只不过将等腰三角形换成了等边三角形,只要你根据所求问题,把BD 看成在△ABD 的一边,CE 看成△ACE 的一边,自然就得到了证明的方向。 解:∵△ABC 与△ADE 是等边三角形,

∴ AB=AC , AD=AE ∠BAC=∠DAE=60° ∴ ∠BAC+∠CAD=∠DAE+∠CAD (等式性质) 即: ∠BAD=∠CAE

[变形3]:如图16—18,还是刚才的条件,把右侧小等边三角形的位置稍加变化,,连接BD ,CE ,请说明它们

这里仅以图17进行说明

解:∵ △ABC 与△ADE 是等边三角形, ∴ AB=AC , AD=AE

∠BAC=∠DAE=60°

∴∠BAC -∠CAD=∠DAE -∠CAD 【仅这步有差别】

即:∠BAD=∠BAD=∠CAE ∴ 在△ABD 与△ACE 中,

AB=AC (已知)

∠BAD=∠CAE (已求) AD=AE

∴ △ABD ≌△ACE (SAS )

∴ BD=CE (全等三角形的对应边相等)

B

图15

C

B

A

B

B

B

A

图17

图16,图18的类型,请同学们自己去完成

[变形4]:如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于

点N .求证:CG AE ;

[分析]:和上面相比,只不过等边三角形换成正方形,60

例六: 如图,△ABC 中,∠C=90°,

AB=2AC ,M 是AB 的中点,点N 在BC 上,MN ⊥AB.

求证:AN 平分∠BAC.

[分析

]:要说明AN 平分∠BAC ,必须说明两角相等,∴可以说明△AMN ≌△CAN 而题中已有了一组直角相等,一组公共边(斜边)

结合题目中条件,比较容易找到一边直角边相等,从而利用HL 定理得到全等。

[变形1]:在Rt △ABC 中,已知∠A=90°,DE ⊥BC 于E 点,如果AD=DE ,BD=CD ,求∠C 的度数

B

C

B

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

(完整word版)八年级数学全等三角形难题集锦

1. 如图①,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于点 M,BN⊥MN于点N. (1)试说明:MN=AM+BN. (2)如图②,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由. 【答案】(1)答案见解析;(2)不成立 【解析】试题分析:(1)利用互余关系证明∠MAC=∠NCB,又∠AMC=∠CNB=90°,AC=BC,故可证△AMC≌△CNB,从而有AM=CN,MC=BN,即可得出结论; (2)类似于(1)的方法,证明△AMC≌△CNB,从而有AM=CN,MC=BN,可推出AM、BN 与MN之间的数量关系. 试题解析:解:(1)∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°. ∵∠ACB=90°,∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,∴∠MAC=∠NCB. 在△AMC和△CNB中, ∵∠AMC=∠CNB,∠MAC=∠NCB,AC=CB,∴△AMC≌△CNB(AAS),∴AM=CN ,MC=NB. ∵MN=NC+CM,∴MN=AM+BN; (2)图(1)中的结论不成立,MN=BN-AM.理由如下: ∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°. ∵∠ACB=90°,∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,∴∠MAC=∠NCB. 在△AMC和△CNB中, ∵∠AMC=∠CNB,∠MAC=∠NCB,AC=CB,∴△AMC≌△CNB(AAS),∴AM=CN ,MC=NB. ∵MN=CM-CN,∴MN=BN-AM. 点睛:本题考查了全等三角形的判定与性质.关键是利用互余关系推出对应角相等,证明三角形全等.

初二数学练习题.经典题型

八 年 级 数 学 试 题 姓名: 一、选择题:本大题共12 个小题.每小题4分;共48分. 1.下列方程中是二元一次方程的是 ( ) A. 32=+ y x B. 2 23y x =+ C. 022=-y x D.31-=+y x 2.和数轴上的点一一对应的数是……………………… ( ) A.整数 B.有理数 C.无理数 D.实数 3. 下列各组数中不能作为直角三角形的三边长的是………………………… ( ) A. 6,8,10 B. 9,12,15 C. 1,2,3 D. 7,24,25 4.如图,所示是直线y kx b =+的图象,那么有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b <0 D .k <0,b >0 5.多边形的每个外角都是36°,则它的边数是( ). A .15 B .13 C .10 D .7 y 6.抽查初三年级8名学生一周做数学作业用的时间分别为(单位:小时)5,4,6,7,6,6,7,8.这组数据中,中位数为 ( ) A.6 B.6.5 C.7 D.7.5 7.如图所示,△ABC 沿射线AC 的方向平移5厘米后成为△A 'B 'C ' ,则BB ' 的长度是( ) A.10cm B.2.5cm C.5cm D.不能确定 8. 菱形的对角线的长分别为6和8,则它的周长为 ( ) A.5 B.10 C.20 D.40 9.一次函数y kx k =+,不论k 取何非零实数,函数图象一定会过点 ( ) A .(1,1-) B .(-1,0) C .(1,0) D .(1-,1) 10.如图,AOB △中, 30B =o ∠.将AOB △绕点O 顺时针旋转52o 得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( ) A .22o B .52o C .60o D .82o 11.甲、乙两名学生运动的一次函数图象如图所示,图中s 和t 分 别表示与出发地的距离和时间,根据图象可知,快者的速度比慢 者的速度每秒快( ) A .2.5米 B .1.5米 C .2米 D .1米 12.如图,四边形ABCD 是正方形,BF ∥AC ,四边形AEFC 是菱形, 则∠ACF 与∠F 的度 数比是 ( )A .3 B.4 C.5 D.不是整数 A A ' B C O B ' 64 t/秒 12 s/米 O 8

全等三角形的典型例题

全等三角形(1) 一.全等三角形的判定1:三边对应相等的两个三角形全等.简写成“边边边”或“SSS ” 几何符号语言:在ABC ?和DEF ?中 ∵?? ???===DF AC EF BC DE AB ∴ABC ?≌DEF ?(SSS ) 三.练习: 1.下列说法正确的是( ) A .全等三角形是指形状相同的两个三角形 B .全等三角形的周长和面积分别相等 C .全等三角形是指面积相等的两个三角形 D .所有等边三角形都全等. 2.如图,在ABC ?中,AC AB =,D 为BC 的中点,则下列结论中:①ABD ?≌ACD ?;②C B ∠=∠;③AD 平分BAC ∠;④BC AD ⊥,其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 3.如图,若AC AB =,DC DB =,根据 可得ABD ?≌ACD ?. 5.如图,点B 、E 、C 、F 在同一直线上,CF BE =,DE AB =,DF AC =. 求证:D EGC ∠=∠ 6.在ABC ?中,?=∠90C ,D 、E 分别为AC 、AB 上的点, 且BD AD =,BC AE =,DC DE =. 求证:AB DE ⊥ 7.如图,点A 、C 、F 、D 在同一直线上,DC AF =,DE AB =,EF BC = 求证:DE AB // 四.强化练习: 1.如图,AD AB =,CD CB =,?=∠30B ,?=∠46BAD ,则ACD ∠的度数是( ) A .120° B .125° C .127° D .104° 2.如图,线段AD 与BC 交于点O ,且BD AC =,BC AD =,则下面的结论中不正确的是( ) A .ABC ?≌BAD ? B .DBA CAB ∠=∠ C .OC OB = D .D C ∠=∠ 3.在ABC ?和111C B A ?中,已知11B A AB =,11C B BC =,则补充条件____________,可得到ABC ?≌111C B A ?. 4.如图,CD AB =,DE BF =,E 、F 是AC 上两点,且CF AE =.欲证D B ∠=∠,可先运用等式的性质证明AF =________,再用“SSS ”证明________≌_________?得到结论. 5.如图,在四边形ABCD 中,CD AB =,BC AD =. 求证:①CD AB //;②BC AD //. 6.如图,已知CD AB =,BD AC =,求证:D A ∠=∠. 7.如图,AC 与BD 交于点O ,CB AD =,E 、F 是BD 上两点, 且CF AE =, BF DE =. 求证:⑴B D ∠=∠;⑵CF AE // 8.如图,已知DC AB =,DB AC =.求证:12∠=∠.

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

八年级数学下册全等三角形知识点归纳

八年级数学下册全等三角形知识点归纳 八年级数学下册全等三角形知识点归纳 定义能够完全重合的两个三角形称为全等三角形.(注:全等三角形是相似三角形中的特殊情况) 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角. 由此,可以得出:全等三角形的对应边相等,对应角相等. (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角;三角形全等的判定公理及推论1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因. 2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”). 3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”). 由3可推到 4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理. 注意:在全等的`判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状. A是英文角的缩写(angle),S是英文边的缩写(side). 性质1、全等三角形的对应角相等、对应边相等. 2、全等三角形的对应边上的高对应相等. 3、全等三角形的对应角平分线相等. 4、全等三角形的对应中线相等. 5、全等三角形面积相等. 6、全等三角形周长相等. (以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等.(SSS) 8、两边和它们的夹角对应相等的两个三角形全等.(SAS) 9、两角和它们的夹边对应相等的两个三角形全等.(ASA) 10、两个角和其中一个角的对边对应相等的两个三角形全 等.(AAS) 11、斜边和一条直角边对应相等的两个直角三角形全等.(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等.而全等的判定却刚好相反. 2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键.在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

八年级数学全等三角形经典例题练习及解析

全等三角形单元 预习测试题 小题3分,共30分) 一、选择题(每 1.下列说法错误的是() A .全等三角形的对应边相等B.全等三角形的对应角相等 C.全等三角形的周长相等D.全等三角形的高相等 2.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是() A .∠1=∠2 B.AC= C A C.AB=AD D.∠B=∠D 第2 题第3 题第5 题第7 题 3.如图,AB∥DE,AC∥DF ,AC= D F ,下列条件中不能判断△ABC≌△DEF 的是() A .A B =DE B.∠B=∠E C.EF =B C D.EF∥BC 4.长为3cm,4 c m,6 c m,8cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为() A .一个人取6cm 的木条,一个人取8cm 的木条B.两人都取6cm 的木条 C.两人都取8cm 的木条D.B、C 两种取法都可以 5.△ABC 中,AB= A C,三条高AD,BE,CF 相交于O,那么图中全等的三角形有() A . 5 对B.6 对C.7 对D.8 对 6.下列说法中,正确的有() ①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角、一 边相等的两个三角形全等;④两边、一角对应相等的两个三角形全等. A . 1 个B.2 个C.3 个D.4 个 7.如图,已知△ABC 中,∠ABC=45°,AC =4,H 是高AD 和BE 的交点,则线段B H 的长度为() A .B.4 C.D.5 8.如图,ABC 中,AD 是它的角平分线,AB=4,AC=3,那么△ABD 与△ADC 的面积比是() A .1:1 B.3:4 C.4:3 D.不能确定

(完整)人教版八年级数学上册知识整理与经典例题

第十一章全等三角形 一、全等形 能够完全重合的两个图形叫做全等形。 二、全等三角形 注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (2)“能够完全重合”是指在一定的叠放下,能够完全重合。 △ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。 注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。 (2)对应角夹的边是对应边,对应边的夹角是对应角。 (3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。 全等三角形的对应边相等,对应角相等。 (1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS”。 (2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。 (3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。 (4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。 (5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。 注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。 找夹角——SAS (1)已知两边都是直角三角形——HL 找另一边——SSS 找边的对角——AAS (2)已知一边一角找夹角的另一边——SAS 找夹边的另一角——ASA (3)已知两角找夹边——ASA 找其他任意一边——AAS 一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。 三、角平分线的性质定理及逆定理 1、性质定理:角平分线上的点到角的两边距离相等。 注意:(1)定理作用:a.证明线段相等;b.为证明三角形全等准备条件。 (2)点到直线的距离,即点到直线的垂线段的长度。 2、逆定理:在角的内部,到角的两边距离相等的点在角平分线上。 3、三角形的内心 利用角的平分线的性质定理可以导出:三角形的三个内角的角平分线交于一点,此点叫做三角形的内心,它到三边的距离相等。

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

八年级数学全等三角形复习题及答案

初二数学第十一章全等三角形综合复习 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。 例1. 如图,,,,A F E B 四点共线,AC C E ⊥,BD DF ⊥,AE BF =,AC BD =。求证: AC F BD E ???。 例 2. 如图,在A B C ?中,BE 是∠ABC 的平分线,A D B E ⊥,垂足为D 。求证:21C ∠=∠+∠。 例3. 如图,在A B C ?中,A B B C =,90ABC ∠= 。F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,A E E F 和C F 。求证:A E C F =。 例4. 如图,AB //C D ,AD //BC ,求证:A B C D =。 例5. 如图,,AP C P 分别是A B C ?外角M A C ∠和N C A ∠的平分线,它们交于点P 。求证: BP 为M BN ∠的平分线。

例6. 如图,D 是A B C ?的边BC 上的点,且C D A B =,ADB BAD ∠=∠,AE 是ABD ?的中线。求证:2AC AE =。 例7. 如图,在A B C ?中,A B A C >,12∠=∠,P 为AD 上任意一点。求证:AB AC PB PC ->-。 同步练习 一、选择题: 1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等 D. 斜边相等 2. 根据下列条件,能画出唯一A B C ?的是( ) A. 3A B =,4B C =,8C A = B. 4A B =,3B C =,30A ∠= C. 60C ∠= ,45B ∠= ,4A B = D. 90C ∠= ,6A B = 3. 如图,已知12∠=∠,AC AD =,增加下列条件:①A B A E =;②B C E D =;③C D ∠=∠;④B E ∠=∠。其中能使A B C A E D ???的条件有( ) A. 4个 B. 3个 C. 2个 D. 1个 4. 如图,12∠=∠,C D ∠=∠,,AC BD 交于E 点,下列不正确的是( ) A. D AE C BE ∠=∠ B. C E D E = C. D EA ?不全等于C B E ? D. E A B ?是等腰三角形

(完整版)八年级数学几何经典题【含答案】

F 八年级数学几何经典题【含答案】 1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长 线交MN 于E 、F . 求证:∠DEN =∠F . 2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . . 4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . B

5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF . 6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE =CF .求证:∠DPA =∠DPC . 7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。 求证:EF=FD 。 8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。 9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EF D F E P C B A F P D E C B A

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

八年级数学全等三角形专题练习(word版

八年级数学全等三角形专题练习(word版 一、八年级数学轴对称三角形填空题(难) 1.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限 内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,1 2 ),且 △ABP和△ABC的面积相等,则a=_____. 【答案】-8 3 . 【解析】 【分析】 先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的 面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=13 2 ,故可得出a的值. 【详解】 ∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2, ∴22 3+213 AB==, ∵△ABC是等腰直角三角形,∠BAC=90°, ∴ 1113 ?1313 222 ABC S AB AC?? ===, 作PE⊥x轴于E,连接OP, 此时BE=2﹣a, ∵△ABP的面积与△ABC的面积相等, ∴ 111 ??? 222 ABP POA AOB BOP S S S S OA OE OB OA OB PE ++ =﹣=﹣, 111113 3322 22222 a ??+???? =(﹣)﹣=, 解得a=﹣8 3 . 故答案为﹣8 3 .

【点睛】 本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S △ABP =S △POA +S △AOB -S △BOP 列出关于a 的方程. 2.在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上, 36ABO ∠=?,在x 轴或y 轴上取点C ,使得ABC ?为等腰三角形,符合条件的C 点有__________个. 【答案】8 【解析】 【分析】 观察数轴,按照等腰三角形成立的条件分析可得答案. 【详解】 解:如下图所示,若以点A 为圆心,以AB 为半径画弧,与x 轴和y 轴各有两个交点, 但其中一个会与点B 重合,故此时符合条件的点有3个; 若以点B 为圆心,以AB 为半径画弧,同样与x 轴和y 轴各有两个交点, 但其中一个与点A 重合,故此时符合条件的点有3个; 线段AB 的垂直平分线与x 轴和y 轴各有一个交点,此时符合条件的点有2个. ∴符合条件的点总共有:3+3+2=8个. 故答案为:8. 【点睛】 本题考查了等腰三角形的判定,可以观察图形,得出答案. 3.在锐角三角形ABC 中.32∠ABC=45°,BD 平分∠ABC .若M ,N 分别是边BD ,

人教版八年级数学分式知识点和典型例题(最新整理)

a ● ÷ 第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1. 转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2. 建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题— ——分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3. 类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2. 与分式运算有关的运算法则 3. 分式的化简求值(通分与约分) 4. 幂的运算法则 【主要公式】1.同分母加减法则: b ± c = b ± c (a ≠ 0) a a a b d bc da bc ± da 2. 异分母加减法则: ± = ± = a c ac ac ac (a ≠ 0, c ≠ 0) ; 3. 分式的乘法与除法: b ? d = bd a c ac , b ÷ c = b ? d = bd a d a c ac 4. 同底数幂的加减运算法则:实际是合并同类项 5. 同底数幂的乘法与除法;a m a n =a m+n ; a m a n =a m -n 6. 积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = mn 7. 负指数幂: a -p = 1 a p a 0=1

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

相关文档
最新文档