三角函数综合应用解题方法总结(超级经典)

三角函数综合应用解题方法总结(超级经典)
三角函数综合应用解题方法总结(超级经典)

精锐教育学科教师辅导教案

课堂引入: 我们在三角函数整个知识方面不仅需要掌握所有的知识体系,

在做题方面我们通常不知道如何下手,

那么题目我们就没有办法了吗?接下来老师和你分享一些解题的技巧方法。

知识讲解:

基本思路是 :一角二名三结构。 首先观察角与角之间的关系,注意角的一些常用变式, 角的变换是三角函数变换的核心! 第二看函数名称之间的关系,通常“切化弦” ; 第三观察代数式的结构特点。 基本的技巧有 :

一.巧变角 :已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换 . 如 ( ) (

)

,2 ( ) ( ), 2

(

)(

),

2,

2

, 2

2

2

典例精讲:

例题 1. 已知 tan( )

2

, tan(

1 ,那么 tan( )

的值是 _

____ 。

5

4

44

例题 2. 已知 0

,且 cos(

) 1, sin( ) 23 , 求 cos(

)值。

2

2 9 2

3

例题 3. 已知 , 为锐角,

sin x,cos y , cos( )

3

,则 y 与 x 的函数关系为

学员编号: XA0002390 学员:

辅导科目:数课 时 数: 3 学科教师:

年 级:高三

3 239

(答:1) ;2) ;3)

22 729

二.三角函数名互化( 切化弦) ,例题3. 求值sin 50o(1 3tan10o)x2 4 x(3 x

55

1))

答:1);

例题4. 已知

sin cos 1 cos21,tan(2,求

tan( 2

3

) 的值

1

答:1)

8

三.公式变形使用。

例题5. 已知A、B为锐角,且满足tan A tan B tanA tanB1,则cos(A B)=

答:22);

例题6.设ABC中,tanA tanB 3 3 tan Atan B ,sin AcosA 43

,则ABC 是三角形

答:等边)

四.三角函数次数的降

3

例题7.若( ,32),化简为答:sin 2);

例题8. 函数f( x)5sin xcos x 5 3cos2 x 5

2 3(x R) 的单调递增区间为

答:[ k12,k12](k Z))

五.式子结构的转化( 对角、函数名、式子结构化

)。

例题9. 求证:1sin

1 2sin221 tan

2;

1 tan

2

2cos4x 2cos2x

例题10. 化简:

2tan( x)sin 2( x)

44

答:

1cos2x )

2

2

六.常值变换主要指“ 1”的变换 ( 1 s ienc2 x ctaons

2 x

tanx cotx tan

4 sin 2 L

等),

例题11. 已知tan 2,求sin2 sin cos3cos2答:3 5).

七.正余

三兄妹—sinx cosx、sin x cosx ”的存联系例题12. 若sinx cosx t ,则sin xcosx 知一求二” ,

答:t 221) ,特别提醒:

这里[ 2, 2] ;

例题13. 若1

(0, ),sin cos 2,求tan 的值。答: 4 7);

3

八.辅助角公式(收缩代换)的应用 :asinx bcosx a 2

b 2

sin x 号确定, 角的值由

tan

b

确定 ) 在求最值、化简时起着重要作用。

a

例题 14.若方程 sinx 3cosx c 有实数解,则 c 的取值围是 ________________________

课后总结:

T 同步:三角函数周期及最值 ★★

教学目标: 知识讲解:

一.三角函数周期的求法

1.定义法 :

定义:一般地y= f (x ) ,对于函数,如果存在一个不为零的常数,使得当取定义域的每一个值时, f(x+ T )=f(x)都成立,那么就把函数y=f

(x) 叫做周期函数;不为零的常数叫做这个函数的周期。对

于一个周期函数来说, 如果在所有的周期中存在着一个最小的正数, 就把这个最小的正数叫做最小的正周期。 下面 我们谈到三角函数的周期时,一般指的是三角函数折最小正周期。

例题 14. 已知 sin2 2sin 2

1 tan

2

),试用 k 表示sin cos 的值

答: 1 k )。

例题 17. 求值:

3 sin 2 20

12

2

64sin 2

20 _____________

cos 2

20

( 答: 32)

( 其中 角所在的象限由 a , b 的符 例题 15. 当函数 y 2cosx 3sin x 取得最大值时, tan x 的值是 ____ (

3 答: ) ;

2

例题 16. 如果 f x sin x

2cos(x ) 是奇 函数,则 tan =

(

答:- 2) ;

答: [ -

2,2] );

例1 .

求函数y=3sin

x

3

)

3

的周期

解:∵y=f ( x)=3sin(2x)2

=3sin ( x

+2 )

3333

22

=3sin (x2) =3sin[(x 3 ) ]

3333 x+3 )

这就是说,当自变量由x增加到x+3 ,且必增加到x+3 时,函数值重复出现。2

∴函数y=3sin (x )的周期是T=3 。

33

2.公式法:

(1)如果所求周期函数可化为y=Asin (x )、y=Acos(x

为常数,且 A 0、>0、R),则可知道它们的周期分别是:

y=tan (x )形成(其中A、2例 2 :求函数y=1-sinx+ 3cosx 的周期

解:∵ y=1-2 1sinx- 3cosx ) 22

=1-2 cos sinx-sin cosx )

33

=1-2sin 这里=1

( x- ) 3 ∴周期

T=2

2)如果f x)是二次或高次的形式的周期函数,可以把它化成sin x、cos x、tan x 的形式,再确定它的周期。

例3:求 f (x)=sinx ·cosx 的周期

1 解:∵ f (x)=sinx ·cosx= sin2x

2 这里=3,∴ f (x)=sinx ·cosx 的周

期为T= 3、把三角函数表达式化为一角一函数的形式,再利用公式求

周期(转化法)

例 4 求函数y 2 3sin xcosx 2sin2 x 的周期

解:y 2 3 sin x cos x 2sin2 x 3sin2x cos2x 1

2( sin2x

2 1cos2x) 1 2sin(2x ) 1 26

例 5 已知函数 f (x) sin x(sin x cos x), 求周期

3 3 3

1 3

3. 配方法—转化为二次函数求最值

2

x

x x 1 2x 1 2x

解:

f (x) sin sin cos (1 cos ) sin

3 3 3 2 3 2 3

1 1 2x

2x 12 2x

(sin

cos )

sin(

2 2 3

3 22 3 4

4、遇到绝对值时,可利用公式

|a| a 2 , 化去绝对值符号再求周期

例6 求函数 y | cos x |的周期

解:∵ y |cosx|

cos 2 x

1 cos2x

2

T

2

、三角函数最值问题的几种常见类型

1. 利用三角函数的有界性求最值 利用正弦

函数、 余弦正数的有界性: ∣ sinx ≠0, φ≠ 0) 的函数最值 .

1 2 3

y=2 cos x+ 2 sinxcosx+1,x 2

1 3

2x-1)+ 4 + 4

3

4

≤ 1, ∣ cosx ∣ ≤1, 可求形如 y=Asin( ω x+φ),y=Acos(Asin( ω x+φ )(A

例 1: 已知函数 ∈R,当函数 y 取得最大值时,求自变量 x 的集合 .

1 解: y=4 (2cos (2sinxcosx)+1 1

4 cos2x+

sin2x+ 15

1

2 sin(2x+ 6 )+54 y 得最大值必须且只需

2x+ = +2k π, k ∈ Z. 即 x= +k π , k ∈ Z. 6 2 6

所以当函数 y 取得最大值时, 自变量 x 的集合为 {x|x= + k π , k ∈ Z.}

6

2. 反函数法

例 2: 求函数

[ 分析 ] 此为 y

ccosx

角函数的有界性去解。 2cosx 1 的值域

2cosx 1

acosx b 型的三角函数求最值问题,分子、分母的三角函数同名、 d

同角,先用反解法,再用三

解法一:原函数变形为

cosx

解法一:原函数变形为 cosx

2cosx 1

y1 2 y 1

cosx 1,

1 ,可直接得到: y 3或

y1 2 y 1

1, y 3 或

例 3 :求函数 y=f(x)=cos 22x-3cos2x+1 的最值 .

325

解 ∵ f(x)=(cos2x- ) - ,

24

∴当 cos2x=1, 即 x= k π,(k ∈ Z) 时, y=min=-1, 当 cos2x=-1, 即 x= k π + ,( k ∈ Z) 时, y=max=5.

2

这里将函数 f(x) 看成关于 cos2x 的二次函数,就把问题转化成二次函数在闭区间

[-1 ,1] 上的最值值问题了 .

4. 引入辅助角法

y=asinx+bcosx 型处理方法:引入辅助角 ,化为 y= a 2

b 2

sin ( x+ ), 利用函数 sin x 1 即可求解。

22

Y=asin x+bsinxcosx+mcos x+n 型亦可以化为此类。

1

cos 2 x

3

sin x cosx 1 x R 当函数 y 取得最大值时,求自变量

22

y asin x bcosx 型求解。

1 1 cos2x 3 s in2x

1 3

5 1 1

3 5 y

1 cos2x

sin2x

cos2x sin2x

22 解:

2

2

4

4 4 2 2

2

4

1

sin 2x 5

, 2x

2k , x

kk z ,y max

26

4

6 2

6

5. 利用数形结合

sin x

例 5: 求函数 y 的最值。

2 cosx

6、换元法

例 4 :已知函数 y

x 的集合。

[ 分析 ] 此类问题为 y

asin 2 x bsin x cosx ccos 2 x 的三角函数求最值问题,它可通过降次化简整理为

解:原函数可变形为

sinx 0 cosx ( 2)

这可看作点 A(xcos , sin xB) 和 ( 2

, 0) 的直线的斜率,而 A 是单位圆 1上的动点。由下图可知,

过 B( 2,0) 作圆的切线时,斜率有最值。由几何性质,

y

max

3

3 , y min

例 6 :若 0

1 y=(1+ sinx )(1+ co 1sx ) 的最小值 .

cosx

间的单调性来求解。

8. 利用基本不等式法 利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷

入误区。

9. 利用图像性质 例 求函数 f (x) 2 4asinx cos2x 的最大值和最小值。

分析:函数 f (x) 的解析式可以变换成关于 sinx 的二次函数, 定义域为 1,1 ,应该讨论二次函数对应的抛 物线的对称轴相对于区间

1, 1 的位置,才能确定其最值。

2 2 2

解: y f (x) 2sin 2

x 4asinx 1 2(sin x a)2

1 2a 2

. 设 sinx t ,则 1 t 1, 并且y g(t) 2(ta ) 2

1 2a 2

.

当a 1时, 如下图所示,

有 y max g(1) 3 4a , y min g( 1) 3 4a.

1

解 y=(1+ sinx )(1+ 1 cosx ) sinx+cosx+1 =1+

sinxcosx

令 sinx+cosx=t(1

≤ 2 ),

t 2-1

则 sinx ·cosx= 2 , 2

t 1 t 2

+2t+1 t+1 ∴

y=1+ = 2 = 2

t2 1

t 2-1 t-1

2 =1+

t-1 ,

由 1

7. 利用函数在区间的单调性

∴函数的最小值为 3+2 2 .

例 7 : 已知 x 0,

,求函数 y

sin x 2 的最小值。 sin x

[ 分析 ] 此题为 sin x

a

型三角函数求最值问题,当 sinx>0,a>1 ,不能用均值不等式求最值,适合用函数在区

sin x

sin x t, 0 t 1,y

1

,在( 0,1)上为减函数,当 t=1 时, y min

3。

例 8 : 求函数 y 解: y

1 2 sin x

14

2 2 的最值。 sin 2 x cos 2 x

4 2 2 2 2

2

=1 cot 2 x 41 tan 2

x 5 cot 2 x 4tan 2 x 5 2 2 9

cos 2 x

当且仅当 2

cot 2

x 4 tan 2 x,即cot x 2时,等号成立,故 y min

9。

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

三角函数基础题型归类(一)

2 - α , 例 1. (1)求值: cos600 ; (2)化简: cos 2( π 精品资料 欢迎下载 三角函数基础题型归类(一) 1、运用诱导公式化简与求值: 要求:掌握 2k π + α , π + α , -α , π - α , π π 2 + α 等诱导公式. 记忆口诀:奇变偶不变,符号看象限. π -α )+cos 2( +α ) 4 4 1 3π 练 1 (1)若 cos(π +α )= - , 2 2 <α <2π , 则 sin(2π -α )等于 . (2)若 f (cos x) = cos3 x ,那么 f (sin30 ?) 的值为 . 17 (3)sin( - π )的值为 . 6 (4) 2、运用同角关系化简与求值: sin α 要求:掌握同角二式( s in 2 α + cos 2 α = 1 , tan α = ),并能灵活运用. 方法:平方法、切弦互化. cos α 例 2 (1)化简 sin x 1 + sin x 1 - ; (2)已知 sinx+cosx = , 且 0

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

高考三角函数重要题型总结

1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域。 2.已知函数2()sin sin()(0)2f x x x x πωωωω=+f 的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数f (x )在区间[0,23 π]上的取值范围. 3.(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =g (Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. 4..(本小题满分13分)已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最 大值是1,其图像经过点π1 32M ?? ???,. (1)求()f x 的解析式; (2)已知π02αβ??∈ ??? ,,,且3()5f α=,12()13f β= ,求()f αβ-的值. 5. 已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[, ]12 f x ππ在上的最大值和最小值 6..已知函数x x x x f sin 2 sin 2cos )(22+-=. (I )求函数)(x f 的最小正周期; (II )当)4,0(0π ∈x 且524)(0=x f 时,求)6 (0π+x f 的值。 7.已知1tan 3 α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值. 8.已知函数())cos()f x x x ω?ω?=+-+(0π?<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2 . (Ⅰ)求π8f ?? ???的值; (Ⅱ)将函数()y f x =的图象向右平移π 6 个单位后,得到函数()y g x =的图象,

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

(推荐)高一三角函数题型总结

题型总结 1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:画直角三角形 利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的分式 齐次式 可以实现αtan 之间的转化 例题:1.已知 sin 2cos 5,tan 3sin 5cos ααααα -=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2.α αα α22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)

3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求αsin .αcos αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 13 3 π= ; 练习题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α= 8 1,且4π<α< 2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3

相关文档
最新文档