北京四中数学必修四平面向量应用举例提高版

北京四中数学必修四平面向量应用举例提高版
北京四中数学必修四平面向量应用举例提高版

平面向量应用举例

编稿:丁会敏 审稿:王静伟

【学习目标】

1.会用向量方法解决某些简单的平面几何问题。

2.会用向量方法解决简单的力学问题与其他一些实际问题.

3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力。

【要点梳理】

要点一:向量在平面几何中的应用

向量在平面几何中的应用主要有以下几个方面:

(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义。

(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0)。

(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0)。

(4)求与夹角相关的问题,往往利用向量的夹角公式cos ||||

θ?=a b a b 。 (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题。

要点诠释:

用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了。

要点二:向量在解析几何中的应用

在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决。

常见解析几何问题及应对方法:

(1)斜率相等问题:常用向量平行的性质。

(2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程。

(3)定比分点问题:转化为三点共线及向量共线的等式条件。

(4)夹角问题:利用公式cos ||||θ?=

a b a b 。 要点三:向量在物理中的应用

(1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象。

(2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积。

(3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论。

【典型例题】

类型一:向量在平面几何中的应用

例1.如下图,正三角形ABC 中,D 、E 分别是AB 、BC 上的一个三等分点,且AE 、CD 交于点P 。求证:BP ⊥CD 。

【思路点拨】将向量BP 和CD 用基底表示,然后把证明线段垂直问题,转化成0BP CD ?=的问题。

【解析】设PD CD λ=,正三角形ABC 的边长为a ,

则1211(21)333

3PA PD DA CD BA BA BC BA BA BC λλλλ??=+=+=-+=+- ???。 又13

EA BA BC =-

,//PA EA ,∴PA k EA =。 ∴11(21)33BA BC k BA k BC λλ+-=-。 于是有1(21)313k k λλ?+=????=??,解得173

7k λ?=????=??

。 ∴17PD CD =,37

PA EA =, ∴33()77

BP BA AP BA AE BA AB BE =+=+

=++434314777737

BA BE BA BC BC =+=+?=, 23CD BA BC =-, 从而2221428110cos 60077321

721BP CD BC BA BA BC a a a ?????=+?-=--?= ? ?????,即BP CD ⊥,

故BP ⊥CD 。

【总结升华】解决垂直问题,一般的思路是将目标线段的垂直转化为向量的内积为零,而在此过程中,则需运用向量运算,将目标向量用基底表示,通过基底的内积运算式使问题获解,如本题便是将向量BP ,CD 由基底BA ,BC 线性表示。当然基底的选取应以方便运算为准,即它们的夹角是明确的,且长度易知。

举一反三:

【高清课堂:平面向量的应用举例395486 例3】

【变式1】平面内△ABC 及一点O 满足AO AB BO BA →→→→?=?,BO BC CO CB →→→→

?=?,则点O 是△ABC 的( )

A .重心

B .垂心

C .内心

D .外心

【答案】D

【高清课堂:平面向量的应用举例395486 例4】

【变式2】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ?的值为________;DE DC ?的最大值为________.

【答案】1 1

【解析】||||cos ,DE CB DE DA DE DA DE DA ?=?=???=2

||||||DA DA DA ?==1 ||||cos ,DE DC DE DC DE DC ?=???

=||||cos DE DC EDC ?∠42EDC ππ??≤∠≤

??? =||cos DE EDC ∠

=||DF (F 是E 点在DC 上的投影)

1≤

当F 与C 点重合时,上式取到等号。

例2.四边形ABCD 是正方形,BE ∥AC ,AC=CE ,EC 的延长线交BA 的延长线于点F 。

求证:AF=AE 。

【思路点拨】建立直角坐标系,写出向量AE 和AF ,证明||AE =||AF 。

【证明】如下图,以点C 为坐标原点,以DC 边所在直线为x 轴,建立直角坐标系,设正方形的边长为1,则A (-1,1),B (0,1),若设E (x ,y )(x >0),则(,1)BE x y =-,(1,1)AC =-。

因为BE ∥AC ,即//BE AC ,所以x+y ―1=0。

又因为AC=CE ,所以x 2+y 2―2=0。

由222010x y x y ?+-=?+-=?,得1313x y ?+=???-?=??,即1313,E ??+- ? ???。 又设F (x ',1),由(',1)CF x =和1313,2

2CE ??+-= ? ???共线,

得11'022

x --=,解得'2x =-

所以(2F --。

所以(1AF =-,31,22AE ?+=- ??

。 所以223313||13||22AE AF ????+--=+=+= ? ? ? ?。 所以AF=AE 。

【总结升华】通过建立坐标系,将几何问题代数化,根据向量的相关运算,使问题得以解决。

举一反三:

类型二:向量在解析几何中的应用

例3.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且11022PC PQ PC PQ ?

???+?-= ? ?????

,求动点P 的轨迹方程。 【思路点拨】设动点P 的坐标,先把向量之间的关系化简,然后代入向量坐标,化简整理即得轨迹方程。

【答案】22

11612

x y += 【解析】设P (),x y ,则(8,)Q y

由11022PC PQ PC PQ ????+

?-= ? ????? 得:221||||04

PC PQ -

= 即()22212(8)04x y x -+--= 化简得22

11612

x y +=。 【总结升华】该题的难点是向量条件的转化与应用,解决此题应从向量的坐标运算入手,这也是解决解析几何的基本方法——坐标法,在解题过程中应该注意结合向量的有关运算技巧,先化简后运算。

举一反三:

【变式1】已知△ABC 的三个顶点A (0,―4),B (4,0),C (―6,2),点D 、E 、F 分别为边BC 、CA 、AB 的中点。

(1)求直线DE 、EF 、FD 的方程;

(2)求AB 边上的高CH 所在直线的方程。

【答案】(1)x ―y+2=0 x+5y+8=0, x+y=0(2)x+y+4=0

【解析】 (1)由已知得点D (―1,1),E (―3,―1),F (2,―2),

设M (x ,y )是直线DE 上任意一点,

则//DM DE 。(1,1)DM x y =+-,(2,2)DE =--。

∴(-2)×(x+1)―(―2)(y ―1)=0,

即x ―y+2=0为直线DE 的方程。

同理可求,直线EF ,FD 的方程分别为

x+5y+8=0,x+y=0。

(2)设点N (x ,y )是CH 所在直线上任意一点,则CN AB ⊥。

∴0CN AB ?=。又(6,2)CN x y =+-,(4,4)AB =。

∴4(x+6)+4(y ―2)=0,

即x+y+4=0为所求直线CH 的方程。

【总结升华】(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算。

(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等则对应坐标相等。

类型三:向量在物理学中“功”的应用

例4.如图所示,已知力F 与水平方向的夹角为30°(斜向上),大小为50 N ,一个质量为8 kg 的木块受力F 的作用在动摩擦因数μ=0.02的水平平面上运动了20 m 。问力F 和摩擦力f 所做的功分别为多少?(g=10 m / s 2)

【答案】3 ―22

【解析】 设木块的位移为s ,

则W=F ·s=|F|·|s|cos30°=50×2035003=(J )。 F 在竖直方向上的分力的大小为11||||sin 305025(N)2

F F =??=?

=。 则1(||)0.02(81025) 1.1f mg F μ=-=??-=(N )。

则f ·s=|f|·|s|cos180°=1.1×20×(―1)=―22(J )。

即F 与f 所做的功分别是3与―22 J 。 【总结升华】向量在物理学中的应用一般涉及力或速度的合成与分解,充分借助向量平行四边形法则把物理问题抽象转化为数学问题。

举一反三:

【变式1】三个力F 1=i+j ,F 2=4i ―5j ,F 3作用于同一质点,使该质点从点A (20,15)平移到点B (7,0),其是i 、j 分别是x 轴、y 轴正方向上的单位向量,求该过程中,

(1)F 1,F 2分别对质点做的功;

(2)F 1,F 2的合力对质点做的功。

【答案】(1)―28,23;(2)―5

【解析】(7,0)(20,15)(13,15)AB =-=--。

(1)F 1做的功111(1

,1)(13,15)131528W F s F AB =?=?=?--=--=-, F 2做的功222(4,5)(13,15)4(13)(5)(15)755223W F s F AB =?=?=-?--=?-+-?-=-=。

(2)F=F 1+F 2=5i ―4j ,故合力F 做的功W=F ·s=(5,―4)·(―13,―15)=5×(―

13)+(―4)×(―15)=―5。

类型四:向量在力学中的应用

例5.如图,用两条同样长的绳子拉一物体,物体受到重力为G 。两绳受到的拉力分别

为F 1、F 2,夹角为θ。 (1)求其中一根绳子受的拉力|F 1|与G 的关系式,用数学观点分析F 1的大小与夹角θ的关系;

(2)求F 1的最小值;

(3)如果每根绳子的最大承受拉力为|G|,求θ的取值范围。

【答案】(1)θ增大时,|F 1|也增大(2)||2

G (3)[0°,120°] 【解析】(1)由力的平衡得F 1+F 2+G=0,设F 1,F 2的合力为F ,

则F=―G ,由F 1+F 2=F 且|F 1|=|F 2|,|F|=|G|,解直角三角形得111

||||2cos 2||2||

F G F F θ==, ∴1||

||2cos 2G F θ

=,θ∈[0°,180°],由于函数y=cos θ在θ∈[0°,180°]上为减函

数,∴θ逐渐增大时,cos 2θ

逐渐减小,即||

2cos 2G θ

逐渐增大,∴θ增大时,|F 1|也增大。

(2)由上述可知,当θ=0°时,|F 1|有最小值为||2

G 。 (3)由题意,

1||||||2

G F G ≤≤, ∴11122cos 2θ

≤≤,即1cos 122θ≤≤。 由于y=cos θ在[0°,180°]上为减函数,∴0602θ?≤

≤?,

∴θ∈[0°,120°]为所求。

【总结升华】生活中“两人共提一桶水,夹角越大越费力”,“在单杠上做引体向上,两臂的夹角越小就越省力”等物理现象,通过数学推理与分析得到了诠释。

举一反三:

【变式1】两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N ,则当它们的夹角为0120时,合力的大小为( )

A 、40N

B 、102N

C 、202N

D 、10N

【思路点拨】力的合成关键是依平行四边形法则,求出力的大小,然后再结合平行四边形法则求出新的合力.

【解析】对于两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N

时,这二个力的大小都是102N ,对于它们的夹角为0120时,由三角形法则,可知力的合

成构成一个等边三角形,因此合力的大小为102N. 正确答案为B.

【总结升华】力的合成可用平行四边形法则,也可用三角形法则,各有优点,但实质是相通的,关键是要灵活掌握;对于第一个平行四边形法则的应用易造成的错解是110F N =,这样就会错选答案D.

类型五:向量在速度中的应用

例6.某人骑摩托车以20 km / h 的速度向东行驶,感到风从正南方向吹来,而当速度为40 km / h 时,感到风从东南方向吹来,求实际风向及风速的大小。

【答案】东北方向 202

【解析】设a 表示车的速度20 km / h ,在无风时,此人感受到风速度为―a ,实际

风速为b 时,此人所感受到的风速为b ―a ,如图,令DA a =-,2DB a =-,实际风速为b 。因为CD DA CA +=,所以CA b a =-,这就是当车的速度为20 km / h 时,

人感受到的由正南方向吹来的风速。因为CD DB CB +=,所以2CB b a =-,这就是当车的速度为40 km / h 时,人感到的风速,由题意得∠CBD=45°,CA ⊥BD ,BA=AD ,所以△BCD 为等腰三角形,CB=CD ,∠CDA=45°,∠ACD=45°,所以CD=CB=2DA=202。所以||202b =km / h ,b 的方向是东北方向。

答:实际风向是东北方向,风速的大小为202km / h 。

【总结升华】本题主要考查向量在物理学中的应用。此类问题一般采用向量加法、减法的平行四边形法则和三角形法则来解决,注意画图辅助思考。在本题中,人感到的风速在无风时与车速a 互为相反向量,当实际风速为b 时,此人感受到的风速是b ―a ,这一点要搞清,速度的合成与分解相当于向量的加法与减法。

举一反三:

【变式1】在风速为75(62)-km / h 的西风中,飞机以150 km / h 的航速向西北方向飞行,求没有风时飞机的航速和航向。

【答案】1502 北偏西60°

【解析】设风速为ω,飞机向西北方向飞行的速度为v a ,无风时飞机的速度为v b ,则如

图,v b =v a -ω,设||||a AB v =,||||BC ω=,||||b AC v =,过A 点作AD ∥BC ,过C 作CD

⊥AD 于D ,过B 作BE ⊥AD 于E ,则∠BAD=45°,||150AB =,||BC =。 所以||||||75CD BE EA ===||75DA =

从而||AC =CAD=30°。

所以没有风时飞机的航速为,航向为北偏西60°。

人教版高中数学必修四 2.5平面向量应用举例

一、选择题 1.已知作用在A 点的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1)且A (1,1),则合力F =F 1+F 2+F 3的终点坐标为( ) A .(9,1) B .(1,9) C .(9,0) D .(0,9) 解析:F =F 1+F 2+F 3=(8,0). 又因为起点坐标为(1,1),所以终点坐标为(9,1). 答案:A 2.初速度为v 0,发射角为θ,若要使炮弹在水平方向的速度为1 2v 0,则发射角θ应为( ) A .15° B .30° C .45° D .60° 解析:炮弹的水平速度为v =v 0·cos θ=12v 0?cos θ=12?θ=60°. 答案:D 3.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,则AD +BE +CF =( ) A .0 B .0 C .AB D .AC 解析:设AB =a ,AC =b , 则AD =12a +1 2 b , BE =BA +12AC =-a +1 2b , CF =CA +1 2AB =-b +1 2a . ∴AD +BE +CF =0. 答案:B 4.在△ABC 中,D 为BC 边的中点,已知AB =a ,AC =b ,则下列向量中与AD 同向的是( ) A.a +b |a +b | B.a |a |+b |b | C.a -b |a -b | D.a |a |-a |b | 解析:AD =12AB +12AC =1 2(a +b ),而a +b |a +b | 是与a +b 同方向的单位向量.

答案:A 二、填空题 5.平面上有三个点A (-2,y ),B (0,y 2),C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方 程为________. 解析:AB =(2,-y 2),BC =(x ,y 2 ). ∵AB ⊥BC ,∴A AB ·BC =2x -1 4y 2=0,即y 2=8x . 答案:y 2=8x 6.已知A ,B 是圆心为C ,半径为5的圆上的两点,且|AB |=5,则AC · CB =________. 解析:由弦长|AB |=5,可知∠ACB =60°, AC ·CB =-CA ·CB =-|CA ||CB |cos ∠ACB =-5 2. 答案:-5 2 7.质量m =2.0 kg 的物体,在4 N 的水平力作用下,由静止开始在光滑水平面上运动了3 s ,则水平力在3 s 内对物体所做的功为________. 解析:水平力在3 s 内对物体所做的功:F·s =F ·12at 2=12F ·F m t 2=12m F 2t 2=12×1 2×42×32 =36(J). 答案:36 J 8.设坐标原点为O ,已知过点(0,12)的直线交函数y =1 2x 2的图像于A 、B 两点,则OA · OB 的值为________. 解析:由题意知直线的斜率存在,可设为k ,则直线方程为y =kx +12,与y =1 2x 2联立 得12x 2=kx +1 2 , ∴x 2-2kx -1=0,∴x 1x 2=-1,x 1+x 2=2k , y 1y 2=(kx 1+12)(kx 2+12) =k 2x 1x 2+14+k (x 1+x 2) 2 =-k 2+k 2+1 4 =14 , ∴OA · OB =x 1x 2+y 1y 2=-1+14=-3 4.

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

高一数学必修4平面向量练习题及答案(完整版)

平面向量练习题 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21-a +23b B 、21a 23-b C 、23a 2 1-b D 、2 3-a + 21b 2、已知,A (2,3),B (-4,5),则与共线的单位向量是 ( ) A 、)10 10 ,10103(- = B 、)10 10 ,10103()1010,10103(-- =或 C 、)2,6(-= D 、)2,6()2,6(或-= 3、已知k 3),2,3(),2,1(-+-==垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量=(2,1), =(1,7), =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA ?的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1(-==分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos α,sin β),b =(cos α ,sin β ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于α-β B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i θθsin 3cos 3+=,i -=∈),2 ,0(π θ。若用 来表示与的夹角,则 等于 ( ) A 、θ B 、 θπ +2 C 、 θπ -2 D 、θπ- 8、设πθ20<≤,已知两个向量()θθsin ,cos 1=,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是 ( ) A 、2 B 、3 C 、23 D 、 二、填空题 9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP ?取得最小值的点P 的坐标

北京四中数学必修四平面向量应用举例基础版

平面向量应用举例 编稿:丁会敏 审稿:王静伟 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?=a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法:

最新高一必修4平面向量的概念及线性运算

平面向量的概念及线性运算 一、目标认知 学习目标: 1.了解向量的实际背景. 2.理解平面向量和向量相等的含义. 3.理解向量的几何表示. 4.掌握向量加、减、数乘运算,并理解其几何意义. 5.理解两个向量共线的含义. 6.了解向量的线性运算性质及其几何意义. 重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 难点:平行向量、相等向量和共线向量的区别和联系. 二、知识要点梳理 知识点一:向量的概念 1.向量:既有大小又有方向的量叫做向量. 2.向量的表示方法:(1)字母表示法:如等.(2)几何表示法:用一条有向线段表示向量.如等. (3)向量的有关概念 向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度). 零向量:长度为零的向量叫零向量. 单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量. 相反向量: 长度相等且方向相反的向量. 共线向量:方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量). 规定:与任一向量共线. 要点诠释: 1.数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小. 2.零向量的方向是任意的,注意0与0的含义与书写区别. 3.平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 知识点二:向量的加(减)法运算 1.运算法则:三角形法则、平行四边形法则 2.运算律:①交换律:;②结合律: 要点诠释: 1.两个向量的和与差仍是一个向量,可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点. 2..探讨该式中等号成立的条件,可以解决许多相关的问题. 知识点三:数乘向量 1.实数与向量的积:实数与向量的积是一个向量,记作: (1); (2)①当时,的方向与的方向相同;②当时.的方向与的方向相反;③当时,. 2.运算律:设为实数 结合律:;分配律:, 3.共线向量基本定理:非零向量与向量共线的充要条件是当且仅当有唯一一个非零实数,使. 要点诠释:是判定两个向量共线的重要依据,其本质是位置关系与数量关系的相互转化,

必修4平面向量知识要点

必修4平面向量知识要点 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ① a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当 0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 5、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =, 其中0b ≠,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作 b a C B A a b C C -=A -AB =B

人教版高中数学高一-教案必修4第2章(第1课时)平面向量的实际背景及基本概念

课题:2.1.1向量的物理背景与概念 2.1.2向量的几何表示 2.1.3相等向量与共线向量 教学目的: 1.理解向量的概念,掌握向量的几何表示; 2.了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或出与某一已知向量相等的向量; 3.了解平行向量的概念. 教学重点:向量概念、相等向量概念、向量几何表示 教学难点:向量概念的理解 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 向量这一概念是由物理 学和工程技术抽象出来的, 反过来,向量的理论和方法, 又成为解决物理学和工程技 术的重要工具,向量之所以有用,关键是它具有一套良好的运算 性质,通过向量可把空间图形的性质转化为向量的运算,这样通 过向量就能较容易地研究空间的直线和平面的各种有关问题 向量不同于数量,它是一种新的量,关于数量的代数运算在 向量范围内不都适用因此,本章在介绍向量概念时,重点说明了 向量与数量的区别,然后又重新给出了向量代数的部分运算法则, 包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后, 又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标) 的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种 方法——向量法和坐标法 教学过程: 一、复习引入: 在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量. 向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用.这一节课,我们将学习向量的有关概念. 二、讲解新课: 1.向量的概念:我们把既有大小又有方向的量叫向量 注意:1?数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

高中数学人教A版必修4讲义:第二章 2.1 平面向量的实际背景及基本概念含答案

平面向量的实际背景及基本概念 预习课本P74~76,思考并完成以下问题 (1)向量是如何定义的?向量与数量有什么区别? (2)怎样表示向量?向量的相关概念有哪些? (3)两个向量(向量的模)能否比较大小? (4)如何判断相等向量或共线向量?向量AB与向量BA是相等向量吗? (5)零向量与单位向量有什么特殊性?0与0的含义有什么区别? [新知初探] 1.向量的概念和表示方法 (1)概念:既有大小,又有方向的量称为向量. (2)向量的表示: 表示法 几何表示:用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向,即用有向线段的起点、终点字母表示,如AB,… 字母表示:用小写字母a,b,c,…表示,手写时必须加箭头 量,有向线段是规定了起点和终点的线段. 2.向量的长度(或称模)与特殊向量 (1)向量的长度定义:向量的大小叫做向量的长度. (2)向量的长度表示:向量AB,a的长度分别记作:|AB|,|a|.

(3)特殊向量: ①长度为0的向量为零向量,记作0; ②长度等于1个单位的向量,叫做单位向量. [点睛]定义中的零向量和单位向量都是只限制大小,没有确定方向.我们规定零向量的方向是任意的;单位向量有无数个,它们大小相等,但方向不一定相同.3.向量间的关系 (1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a=b. (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行. [点睛]共线向量仅仅指向量的方向相同或相反;相等向量指大小和方向均相同. [小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)两个向量能比较大小.() (2)向量的模是一个正实数.() (3)单位向量的模都相等.() (4)向量AB与向量BA是相等向量.() 答案:(1)×(2)×(3)√(4)× 2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速. 其中可以看成是向量的个数() A.1B.2C.3D.4 答案:B 3.已知向量a如图所示,下列说法不正确的是() A.也可以用MN表示B.方向是由M指向N C.始点是M D.终点是M 答案:D 4.如图,四边形ABCD和ABDE都是平行四边形,则与ED相等的向 量有______. 答案:AB,DC 向量的有关概念 [典例]有下列说法:①向量AB和向量BA长度相等;②方向不同的两个向量一定不平行;③向量BC是有向线段;④向量0=0,其中正确的序号为________.

人教A版高中数学必修4第二章平面向量2.1平面向量的实际背景及基本概念习题(最新整理)

平面向量的实际背景及基本概念课时练 1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功,其中不是向量的有( ) A.1 个B.2 个 C.3 个D.4 个 解析:由物理知识知,质量、路程、密度、功是标量,而速度、位移、力、加速度是向量. 答案:D 2.在下列命题中,正确的是( ) A.若|a|>|b|,则a>b B.若|a|=|b|,则a=b C.若a=b,则a 与b 共线 D.若a≠b,则a 一定不与b 共线 解析:分析四个选项知,C 正 确.答案:C 3.设a,b 为两个单位向量,下列四个命题中正确的是( ) A.a=b B.若a∥b,则a=b C.a=b 或a=-b D.若a=c,b=c,则a=b 答案:D →→→ 4.设M 是等边△ABC 的中心,则AM、MB、MC是( ) A.有相同起点的向量 B.相等的向量 C.模相等的向量 D.平行向量 解析:由正三角形的性质知,|MA|=|MB|=|MC|. →→→ ∴|MA|=|MB|=|MC|.故选C. 答案:C

→→ 5.如右图,在四边形ABCD 中,其中AB=DC,则相等的向量是( ) →→→→ A.AD与CB B.OA与OC →→→→ C.AC与DB D.DO与OB →→→→解析:由AB=DC知,四边形ABCD 是平行四边形,由平行四边形的性质知,|DO|=|OB|,故选D. 答案:D 6.如下图,ABCD 为边长为3 的正方形,把各边三等分后,共有16 个交点,从中选取 → 两个交点作为向量,则与AC平行且长度为2 2的向量个数是. → → → → →→→→ 解析:如图所示,满足条件的向量有EF、FE、HG、GH、AQ、QA、PC、CP共8 个. 答案:8 个 7.把平行于某一直线的一切向量平移到同一起点,则这些向量的终点构成的图形是 . 解析:这些向量在同一直线,其终点构成一条直 线.答案:一条直线 8.给出以下5 个条件:①a=b;②|a|=|b|;③a 与b 方向相反;④|a|=0 或|b|=0;⑤a 与b 都是单位向量, 其中能使a∥b 成立的是. 答案:①③④ 9.如下图,E、F、G、H 分别是四边形ABCD 的各边中点,分别指出图中:

高中数学必修4第二章平面向量教案完整版

§ 平面向量的实际背景及基本概念 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作||. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段..... 的起点无关..... . 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)..... . 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

高中数学必修4平面向量知识点总结

高中数学必修4 平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的 起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法 ),(y x yj xi a 向量的大小即向量的模(长度) ,记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向 量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在 有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以 移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可 以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 b a 大小相等,方向相同 ),(),(2211y x y x 21 2 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一

第4讲 平面向量应用举例

第4讲 平面向量应用举例 一、选择题 1.△ABC 的三个内角成等差数列,且(AB → +AC →)·BC →=0,则△ABC 一定是( ). A .等腰直角三角形 B .非等腰直角三角形 C .等边三角形 D .钝角三角形 解析 △ABC 中BC 边的中线又是BC 边的高,故△ABC 为等腰三角形,又A ,B ,C 成等差数列,故B =π3 . 答案 C 2. 半圆的直径AB =4,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 的中点,则(PA →+PB →)·PC →的值是( ) A .-2 B .-1 C .2 D .无法确定,与C 点位置有关 解析 (PA →+PB →)·PC →=2PO →·PC →=-2. 答案 A 3. 函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →= ( ). A .4 B .6 C .1 D .2 解析 由条件可得B (3,1),A (2,0), ∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 B 4.在△ABC 中,∠BAC =60°,AB =2,AC =1,E ,F 为边BC 的三等分点,则

AE →·AF →=( ). A.53 B.54 C.109 D.158 解析 法一 依题意,不妨设BE →=12 E C →,B F →=2FC →, 则有AE →-AB →=12(AC →-AE →),即AE →=23AB →+13 AC →; AF →-AB →=2(AC →-AF →),即AF →=13AB →+23 AC →. 所以AE →·AF →=? ????23AB →+13AC →·? ?? ??13AB →+23AC → =19(2AB →+AC →)·(AB →+2AC →) =19(2AB →2+2AC →2+5AB →·AC →) =19(2×22+2×12+5×2×1×cos 60°)=53,选A. 法二 由∠BAC =60°,AB =2,AC =1可得∠ACB =90°, 如图建立直角坐标系,则A (0,1),E ? ????-233,0,F ? ?? ??-33,0, ∴AE →·AF →=? ????-233,-1·? ????-33,-1=? ????-233·? ????-33+(-1)·(-1)=23+1=53,选A. 答案 A 5.如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M , N 两点,且AM →=xAB →,AN →=yAC → ,则x ·y x +y 的值为( ).

高中数学必修四:第二章 平面向量的概念及其表示活动单

活动单49:向量的概念及其表示 【学习目标】 1.了解向量的实际背景;理解向量的基本概念和几何表示;理解向量相等的含义. 2.理解零向量、单位向量、平行向量、共线向量、相反向量等概念. 3. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别 【重难点】 重点: 理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 难点: 准确理解向量的有关概念;平行向量、相等向量和共线向量的区别和联系. 【预习案】?看书P59—60,弄懂下列概念 1、书P58实例, 位移和距离有什么不同? ; 2、你能举出一些不仅有大小, 而且有方向的量么?比如? ; 3、这些量有何共同特征? ; 4、向量的概念: ; 5、根据以前所学知识,你认为可用哪些方法表示向量呢? ; 6、向量有数的属性,类比特殊的数,你想到了哪几种特殊向量? 零向量:;单位向量:; 7.类比数与数之间的特殊关系,你想到了向量与向量之间有哪几种特殊关系? 相等向量:;相反向量:; 8.向量也有形的属性,类比线段与线段的特殊位置关系,你想到了向量与向量之间有什么样的特殊关系? 平行向量:;共线向量:; 9、实数可以比较大小,向量能吗?为什么? ; 10、直线平行与向量平行有区别吗?如果有,你认为区别在那里?

【探究案】 探究一:判断下列命题的真假, 并说明理由.(以讨论为主) (1)平行向量一定方向相同 ( ); (2)共线向量一定相等( ); (3)起点不同, 但方向相同且模相等的几个向量是相等的向量( ); (4)不相等的向量一定不平行( ); (5)向量的模是一个正实数( ); (6)两个相反向量必是共线向量( ) (7)单位向量都相等( ) (8)若两个单位向量互相平行, 则这两个单位向量相等( ) (9)向量与是共线向量,则A 、B 、C 、D 四点必在一直线上( ) (10)任一向量与它的相反向量不相等. ( ) (11)共线的向量,若起点不同,则终点一定不同.( ) (12)a 与b 共线,b 与c 共线,则a 与c 也共线( ) (13)向量a 与b 不共线,则a 与b 都是非零向量( ) (14)有相同起点的两个非零向量不平行. ( ) (15)若a ∥b ,b ∥c ,则 a ∥c ( ) 探究二: 已知O 为正六边形ABCDEF 的中心, 在图中所标出的向量中: (1)试找出与FE 共线的向量; ; (2)确定与相等的向量; ; (3)与相等吗? ; 探究三: 在如图的4×5方格纸中有一个向量, 分别以图中的格点为起点和终点作向量, 其中与相等的向量有多少个? 与长度相等的共线向量有多少个? (除外) C A

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

高中数学必修4第二章平面向量教案完整版93323

高中数学必修4第二章平面向量教案(12课时) 本章内容介绍 向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系. 向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题. 本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念. (让学生对整章有个初步的、全面的了解.) 第1课时 §2.1 平面向量的实际背景及基本概念 教学目标: 1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、 单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别. 3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系. 学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、情景设置: 如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否 追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了. 分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、 A B C D

高中数学必修4第二章 平面向量公式及定义

平面向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a?b=x?x'+y?y'. 向量的数量积的运算律 a?b=b?a(交换律);

高中数学-2.5《平面向量应用举例》教学设计

2.5《平面向量应用举例》教学设计 【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神. 【导入新课】 回顾提问: (1)若O 为ABC ?重心,则OA +OB +OC =0. (2)水渠横断面是四边形ABCD ,DC =12 AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来. 新授课阶段 探究一:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例. 教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及 数量积表示出来: 例如,向量数量积对应着几何中的长度.如图: 平行四边行 ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+(平移) ,DB AB AD a b =-=-,2 22||AD b AD ==(长度).向量AD ,AB 的夹角为DAB ∠.因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果 “翻译”成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用 例1 证明:平行四边形两条对角线的平方和等于四条边的平方和. 已知:平行四边形ABCD .

相关文档
最新文档