铸铁焊接方法

铸铁焊接方法
铸铁焊接方法

由于铸铁的一些优点,在制造材料中占有很大的比重;铸铁零件大多是加工精度高、价格昂贵的基础零件;铸铁零件在制造及使用过程中,经常会出现裂纹、气孔、损坏等情况,此时将零件报废,无疑是非常浪费的。因此,研究和利用先进的修理经验,合理地修复铸铁零件是十分必要地。焊接就是一种非常有效地修复铸铁零件的方法。铸铁含炭量高、杂质多,并具有塑性低、焊接性差、对冷却速度敏感等特性,焊补后容易出现白口组织和产生裂纹。为改善铸铁零件的焊补质量,可采取以下方法。

1.热焊法

焊前将工件整体或局部预热到600~700℃,补焊过程中不低于400℃,焊后缓慢冷却至室温。采用热焊法可有效减小焊接接头的温差,从而减小应力,同时还可以改善铸件的塑性,防止出现白口组织和裂纹。

常用的焊接方法是气焊和焊条电弧焊。气焊常用铸铁气焊丝,如HS401或HS402,配用焊剂CJ201,以去除氧化物。气焊预热方法适于补焊中小型薄壁零件。焊条电弧焊选用铸铁芯铸铁焊条Z248或钢芯铸铁焊条Z208,此法主要用于补焊厚度较大(大于10mm ) 的铸铁零件。

热焊法的焊接设备主要有加热炉、焊炬、电炉等,焊接工艺如下:1)焊前准备和预热:清除缺陷周围的油污和氧化皮,露出基体的金属光泽;开坡口,一般坡口深度为焊件壁厚的2/3,角度为70°~

120°;将焊件放入炉中缓慢加热至600~700℃(不可超过700℃)。

2)施焊:采用中性焰或弱碳化焰(施焊过程中不要使铁水流向一侧),待基体金属熔透后,再熔入焊条金属;发现熔池中出现白亮点时,停止填入焊条金属,加入适量焊剂,用焊条将杂物剔除后再继续施焊;为得到平整的焊缝,焊接后的焊缝应稍高出铸铁件表面,并将溢在焊缝外的熔渣重新熔化,待降温到半熔化状态时,用焊丝沿铸件表面将高出部分刮平。

3)焊后冷却:一般应随炉缓慢冷却至室温(一般需48h以上),也可用石棉布(板)或炭灰覆盖,使焊缝形成均匀的组织,同时防止产生裂纹。

2.冷焊法

此方法是焊前不对工件进行预热,或预热温度不超过300℃。常用焊条电弧焊进行铸铁冷焊。根据铸铁工件的要求,可选用不同的铸铁焊条,如补焊一般灰铸铁零件非加工面选用Z100焊条,补焊高强度灰铸铁及球墨铸铁零件选用Z116或Z117焊条。

冷焊法的焊接设备为普通的电弧焊设备,焊接工艺如下:

1)焊前准备:清除焊修表面的油污及杂质,使其露出基体的金属光泽;如果存在裂纹,应在裂纹两端各钻一个止裂孔,以免施焊时裂纹延伸;沿裂纹开出坡口,其型式和大小由焊修部位的厚度和工艺要求而定。如果是大型铸件,还可以在焊缝处拧上一定数量的螺钉,使接头得到加强。螺钉直径一般不超过16mm(如果壁厚小于15mm,则螺钉直径应小于或等于6mm ),螺钉的数量可按断面面积计算,即螺钉的

总断面面积不大于铸件裂纹断面面积的25%,且这些螺钉应均匀分布在裂纹两边。

2)焊修规范的选择:焊条直径由焊修部位的厚度确定,一般应尽量选用小直径的焊条,以减少输入焊件的热量:在保证焊条金属与基体熔合的情况下,焊修电流也应尽量选用小的,以免焊件温度过高产生应力;电弧长度一般是焊条直径的0.5~1.1倍,以保证燃烧稳定:如果采用直流电源,则一般选焊件为负极,以免焊件受热,温度过高。

3)操作工艺要求:一般应遵循“先内后外(先孔内,后机体外侧,再后机体上平面)、短段、断续、分散焊、多层多道(第一层焊完后,用砂轮在整个焊缝上磨去一些焊肉,检查确实不存在气孔、裂纹后再焊第二层;每层先从坡口两侧焊起,后焊中间)、小电流、锤击焊缝”的原则。

①将整条焊缝分成若干小段,不可连续施焊,每段长度视焊件厚度而定,一般在10~50mm,每段焊完后,应冷却至室温再焊下一段:每个小焊波不要横跨到坡口两侧,这样有利于未焊部分自由收缩,并避免电弧在坡口两侧停留太久。

②焊后金属温度在800℃左右时,应锤击焊缝,使其表面呈麻点状,以松弛焊接应力,清除裂纹和气孔:温度低于300℃时不能再锤击,以免产生冷脆裂纹。

③施焊中以直线划小圈式运条手法为佳,焊缝应与母材呈圆滑过渡,以利于焊缝应力走向。

3.加热减应焊法

此方法是不事先加热焊件,而在施焊前和施焊中加热焊件的“加热减应区”,使其不阻碍焊缝的收缩,从而减少内应力,避免产生裂纹。加热减应区可选取一处或多处,其选取原则为:

1)应是阻碍焊缝膨胀的部位。当该部位加热冷却时,使焊缝有获得自由热膨胀和冷收缩的可能。

2)应是与其它部位联系不多且强度较大的部位。

3)自身的变形对其它部位应无很大影响,不至于因它的变形而损坏其它部位。

在选择焊接方法时应注意以下原则:

①针对不同的切削加工性、颜色、强度等选择不同的焊接方法。焊条电弧焊热焊法对于要求质量高、切削加工性好的铸件最适合,焊条电弧焊冷焊法则适宜于机加工的表面及不便于预热的大型铸件。

②针对不同的焊件体积、形状、厚度及使用条件等选择不同的焊接方法。对于中小型薄壁零件(如气缸)采用气焊、冷焊、热焊均可,对于较大的零件应采用气焊热焊法。

铸铁零件的常用焊接方法

铸铁零件的常用焊接方法 由于铸铁的一些优点,在汽车制造材料中占有很大的比重。铸铁零件大多是加工精度高、价格昂贵的基础零件,如气缸体、气缸盖、变速器壳体等。铸铁零件在制造及使用过程中,经常会出现裂纹、气孔、损坏等情况。据统计,汽车在正常使用情况下,这类零件达到磨损极限时,其尺寸变化只有0.08 %?0.40 %,质 量损失只有0.1 %?1.8 %,此时将零件报废,无疑是非常浪费的。因此,研究和利用先进的修理经验,合理地修复铸铁零件是十分必要地。焊接就是一种非常有效地修复铸铁零件的方法。 铸铁含炭量高、杂质多,并具有塑性低、焊接性差、对冷却速度敏感等特性,焊补后容易出现白口组织和产生裂纹。为改善铸铁零件的焊补质量,可采取以下方法。 1 .热焊法焊前将工件整体或局部预热到600?700C,补焊过程中不低于400C,焊后缓慢冷却至室温。采用热焊法可有效减小焊接接头的温差,从而减小应力,同时还可以改善铸件的塑性,防止出现白口组织和裂纹。 常用的焊接方法是气焊和焊条电弧焊。气焊常用铸铁气焊丝,如HS401 或 HS402配用焊剂CJ201,以去除氧化物。气焊预热方法适于补焊中小型薄壁零件。焊条电弧焊选用铸铁芯铸铁焊条Z248或钢芯铸铁焊条Z208,此法主要用于补焊厚度较大(大于10mm )的铸铁零件。 热焊法的焊接设备主要有加热炉、焊炬、电炉(油炉或地炉)等,焊接工艺如下: 1)焊前准备和预热:清除缺陷周围的油污和氧化皮,露出基体的金属光泽:开坡口,一般坡口深度为焊件壁厚的2/3,角度为70°?120°;将焊件放入炉中缓慢加热至600?700C (不可超过700C)。 2)施焊:采用中性焰或弱碳化焰(施焊过程中不要使铁水流向一侧),待基体金属熔透后,再熔入焊条金属;发现熔池中出现白亮点时,停止填入焊条金属,加入适量焊剂,用焊条将杂物剔除后再继续施焊;为得到平整的焊缝,焊接后的焊缝应稍高出铸铁件表面,并将溢在焊缝外的熔渣重新熔化,待降温到半熔化状态时,用焊丝沿铸件表面将高出部分刮平。 3)焊后冷却:一般应随炉缓慢冷却至室温(一般需48h以上),也可用石 棉布(板)或炭灰覆盖,使焊缝形成均匀的组织,同时防止产生裂纹。 2.冷焊法 此方法是焊前不对工件进行预热,或预热温度不超过300C。常用焊条 电弧焊进行铸铁冷焊。根据铸铁工件的要求,可选用不同的铸铁焊条,如补焊一般灰铸铁零件非加工面选用Z100焊条,补焊高强度灰铸铁及球墨铸铁零件选用Zll6 或 Z117 焊条。

灰铸铁的焊接性及焊接工艺研究

安徽机电职业技术学院 毕业设计 灰铸铁的焊接性及焊接工艺研究 系别机械工程系 专业焊接技术及自动化 班级焊接3112班 姓名王委托 学号1203113048 2013~2014学年第一学期

第一章摘要 工业中应用最早的铸铁就是以片状石墨存在于金属基体中的灰铸铁。由于其成本低廉,并具有铸造性、可加工性、耐磨性及减振性均优良的特点。迄今是工业中应用最广泛的一种铸铁。20世纪80年代初,铸铁材料发展进入了顶峰期,随后,世界的铸铁产量便出现急剧递减,然而铸铁仍是当今金属材料中应用最为广泛的基础材料。 灰铸铁在结晶过程中,约有w(C)为80%的碳以石墨的形式析出,这就给灰铸铁带来两方面的特点:一方面,由于石墨强度较低,且以片状的形态存在,因此灰铸铁的强度不高,脆性较大。另一方面,由于石墨的存在,灰铸铁具有良好的减震性、耐磨性、切削加工性和缺口敏感性。由于共晶结晶过程中石墨化膨胀,还有减少缩松、缩孔的倾向。同时,灰铸铁还有较高的抗压强度。灰铸铁传统的化学成分中Si/C比较低。提高Si/C比的作用是:可使连续的初析奥氏体枝晶增加,这就像混凝土中的钢筋一样,对灰铸铁起到加固的作用,可扩大稳定系和介稳定系的温度差,增加过冷度△T,从而细化石墨,有效地扩大集体组织的利用率;还可降低灰铸铁的白口倾向,减小断面敏感性,提高弹性模量和形变抗力。当然,Si/C比较高,会使铁素体增加,强度和硬度有所降低。我国各种铸铁的年产量现约为800万吨,有各种铸造缺陷的铸件约占铸铁年产量的10%~15%,若这些铸件工报废,将是极大的浪费。采用焊接方法修复这些有缺陷的铸铁件,由于焊接成本低,不仅可获得巨大的经济效益,而且有利于及时完成生产任务。常用的焊既接方法中手工电弧焊应用最多。但是铸铁件的焊补极易产生白口和裂缝,其中产生白口的主要原因是冷却速度过快和石墨元素不足;而产生裂缝的原因主要是焊接应力。 近年来,焊接已由一个单一的加工工艺发展成为有科学基础有广泛应用范围和前景的焊接工程和焊接产业。焊接结构已有日新月异的发展,符合目前绿色制造和资源循环利用建设节约型社会的大潮流。目前我国微电子及IT行业中的发展,高强有色金属、光钎、超导和复合材料及高分子材料的应用,都对焊接工艺、设备和材料提出了很多新的要求,因而得到了相应发展。

铸铁件焊接工艺总结

铸铁焊接工艺 铸铁件的焊接工艺一般分为热焊、半热焊、冷焊三种工艺,不同的焊接工艺选用的焊接材料各不相同。 铸铁热焊工艺是将铸铁件整体或局部预热至600~700℃,并在焊接过程中保持温度,焊后趁红热状态覆盖石棉粉或其他保温材料,缓慢冷却,有利于石墨析出。热焊方法的优点是降低焊缝与母材的温差,从而降低焊接接头应力水平,有利于防止裂纹产生,避免产生白口及淬硬组织。 铸铁半热焊工艺是将铸铁件整体或局部预热到300~400℃,并在焊接过程中保持温度。半热焊方法改善了施工条件,降低了焊接成本,但焊缝抗裂性能下降。 铸铁冷焊工艺一般焊前不进行预热,当环境温度较低或焊接拘束较大时,焊前可以预热100~150℃,铸铁件冷焊时往往要采用特殊的焊接材料和必要的工艺措施。 铸铁焊条焊补球墨铸铁件 铸铁焊条,Z117低氢型,直流,高钒钢,用于铸铁缺陷的焊补,如汽车缸体、机架齿轮箱等,也可焊补高强度铸件及球墨铸铁件,焊件不进行预热,焊后可以进行切削加工,但加工性能不如Z508、Z308和Z408。 Z208是低碳钢芯、强石墨化型药皮的铸铁电焊条,焊缝在缓冷时可变成灰口铸铁,抗裂性能较差。可交直流两用,价格低廉。用途:用于焊补灰口铸铁的缺陷。 Z238是低碳钢芯、强石墨化型药皮的球墨铸铁焊条,由于加入一定量的球墨化剂,使熔敷金属中的石墨在受冷过程中呈球状析出,可交直流两用。用途:用于焊补球墨铸铁件。 Z308是纯镍焊芯、强还原性石墨型药皮的铸铁焊条,施焊时,焊件可不预热,具有良好的抗裂性能和加工性能。镍价格昂贵,应该在其它焊条不能满足时才可选用。交直流两用。用途:用于铸铁薄件及加工面的补焊,如发动机座、机床导轨、齿轮座等

什么焊条焊铸铁牢靠【解析】

什么焊条焊铸铁最牢靠 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 焊条 焊条(covered electrode)气焊或电焊时熔化填充在焊接工件的接合处的金属条。由药皮和焊芯两部分组成。依靠药皮熔化并作为填充金属加到焊缝中去,成为焊缝金属的主要成分,这样的物质称之为焊条。 铸铁 铸铁主要由铁、碳和硅组成的合金的总称。在这些合金中,含碳量超过在共晶温度时能保留在奥氏体固溶体中的量。 铸铁焊条由于含碳量高,组织不均匀,强度低,塑性极差,属于可焊性差的材料,焊接过程极易产生裂纹;焊后冷速极快,容易产生白口组织,造成切削加工困难。铸铁的焊接和补焊,要达到较满意的结果,必须注意“三分材料、七分工艺”,不仅要选择焊条,而且采用适宜的补焊方法尤为重要。 铸铁焊条其实就是一种专门使用在解决各类断裂问题当中的焊条,这种焊条它能够非常有效的解决机械基座及铸造齿当中出现的断裂的连接问题。在现在市场上的铸铁焊条它的型号是非常的丰富多样且齐全。每一种型号的铸铁焊条它的性能都是十分的优秀。那么,你知道铸铁焊条怎么焊吗?不过不管是热焊还是冷焊都是一个很危险的过程,所以铸铁焊条怎么焊是相关人士都十分关心的话题。现在就给大家具体的介绍一下铸铁焊条的焊接方法和注意事项。 铸铁焊条常用型号 CMC-E46N 直接在铸铁上施焊,对于冲压模的金属磨耗非常有效。焊接金属第一层为奥氏体组织;从2层开始为马氏

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG).虽然这些焊接方法对不锈钢工业的大多数人而言是熟悉的,但是我们认为这个领域值得深入探讨. 1、手工焊(MMA):手工焊是一种非常普遍的、易于使用的焊接方法.电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料. 这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好的适应性,即使在水下使用也没问题.大多数电焊机可以TIG焊接.在电极焊中,电弧长度决定于人的手:当你改变电极与工件的缝隙时,你也改变了电弧的长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和焊条药皮组成.这层药皮保护焊缝不受空气的侵害,同时稳定电弧.它还引起渣层的形成,保护焊缝使它成型.电焊条即可是钛型焊条,也可是缄性的,这决定于药皮的厚度和成分.钛型焊条易于焊接,焊缝扁平美观.此外,焊渣易于去除.如果焊条贮存时间长,必须重新烘烤.因为来自空气的潮气会很快在焊条中积聚. 2、MIG/MAG焊接:这是一种自动气体保护电弧焊接方法.在这种方法中,电弧在保护气体屏蔽下在电流载体金属丝和工件之间烧接.机器送入的金属丝作为焊条,在自身电弧下融化.由于MIG/MAG焊接法的通用性和特殊性的优点,至今她仍然是世界上最为广泛的焊接方法.它使用于钢、非合金钢、低合金钢和高合金为基的材料.这使得它成为理想的生产和修复的焊接方法.当焊接钢时,MAG可以满足只有0.6mm厚的薄规格钢板的要求.这里使用的保护气体是活性气体,如二氧化碳或混合气体.唯一的限制是当进行室外焊接时,必须保护工件不受潮,以保持气体的效果. 3、TIG焊接:电弧在难熔的钨电焊丝和工件之间产生.这里使用的保护气体是纯氩气,送入的焊丝不带电.焊丝既可以手送,也可以机械送.也有一些特定用途不需要送入焊丝.被焊接的材料决定了是采用直流电还是交流电.采用直流电时,钨电焊丝设定为负极.因为它有很深的焊透能力,对于不同种类的钢是很合适的,但对焊缝熔池没有任何“清洁作用”. TIG焊接法的主要优点是可以焊接大材料范围广.包括厚度在0.6mm及其以上的工件,材质包括合金钢、铝、镁、铜及其合金、灰口铸铁、普通干、各种青铜、镍、银、钛和铅.主要的应用领域是焊接薄的和中等厚度的工件,在较厚的

铸件焊补工艺规程

铸件焊补工艺规程文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

铸件焊补工艺规程 本标准适用于铸钢件缺陷(疏松、缩孔、包砂、冷隔、裂纹、缺肉)的焊接修补及质量工作检查的依据。 1焊补前的准备 1.1焊接修补前必须用角磨机或电弧气刨将铸钢件缺陷内部、外部清理干净,不允许有油污、污垢、铁锈(氧化皮)粘砂等影响焊接修补质量的脏物。 1.2开出坡口,使铸件内部未氧化的金属露出,否则将会使电弧熄灭而无法焊补或重出现裂缝、气孔和未焊透的缺陷。 铸件缺陷坡口的确定 1.3对有可能延伸的裂纹应在裂纹两端钻截断孔,一般距离裂纹20mm,孔深超过裂纹深2-3mm,然后再铲坡口,截断孔作为坡口的两端包括在焊补之内。 2焊补工艺 2.1补焊要求 (1)由于焊补铸件表面不进行机械加工,所有焊前铸件不需预热 (2)贯穿裂纹间隙很大或刚性很大的铸件,焊补时可采用单面逐步堆焊法。

(3)在焊补过程中为减少焊接应力可进行敲击焊缝(除第一层和最后一层)。 (4)对于不预热的铸件或采用多层焊时,为减少焊补过热尽量用小直径焊条和小电流,间断焊补,使焊缝稍冷后,敲掉溶渣再继续焊补。 (5)焊接修补后焊肉及熔合区不得有夹渣、气孔、裂纹、未焊透、咬边、缺肉等缺陷。(6)对于焊接修补的非加工面都必须进行整形,消除焊补痕迹。整形可用砂轮打磨方法完成。 2.2焊补工艺参数 2.2.1焊材选用 焊条和焊丝类型的选择必须考虑工件的物理、机械性能和化学成份,一般先用成份与焊件金属相同或相近的焊条,参见表1 2.2.2焊条使用要求 (1)焊条在使用前应根据焊条药皮特性进行烘干处理,切忌急冷、急热、具体要求参见表2。烘干后焊条应及时装入保温筒随取随用。 (2)焊条严重受潮,黏在一起或药皮脱落,必须检验合格后方可使用。 (3)使用的焊条冷至室温4小时以后,必须按工艺重新烘干。 表2

灰铸铁的常用焊接方法

新型焊接技术在铸造中的应用 铸铁具有成本低,铸造性能、减震性能、耐磨性能与切削加工性能优良等很多优点,而且熔炼设备简单,所以在机械制造业中获得了非常广泛的应用。 灰铸铁中的石墨以片状存在,应用广泛,其焊接主要应用于以下方面: (1)铸造缺陷的补焊很多工厂都有铸造车间,一般铸件废品率都很高,采用焊接方法修复这些有铸造缺陷的铸件,不仅有利于及时完成生产任务,而且还可大大降低铸件成本。 (2)损坏铸铁件的补焊由于各种原因,使铸铁在使用过程中会受到损坏,出现裂纹等缺陷,使产品报废。要更换新的,有的一时无法解决,将严重影响生产任务的完成,而且成品铸件都是经过机械加工的,价格往往也很贵。若能及时用焊接方法修补,不仅有利于生产任务的完成,而且可以节约大批资金。 (3)零件的生产即把铸铁件与刚件或其他金属件焊接起来成零部件。 灰铸铁焊接时,焊接接头中裂纹倾向是比较大的,这主要与铸铁本身的性能、焊接应力、接头组织及化学成分有关。为防止焊接时产生裂纹,在生产中主要时采取减小焊接应力,改变焊缝合金系统以及限制母材中杂质熔入焊缝等措施。 灰铸铁的常用焊接方法 1、焊缝为铸铁型的电弧冷焊 电弧冷焊的特点是焊前对被补焊的焊件不预热。所以电弧冷焊有很多优点,焊工劳动条件好,补焊成本低,补焊过程短,补焊效率高。对于预热很困难的大型铸件或不能预热的以加工面等情况更适于采用冷焊。所以冷焊是一个发展方向。 在冷焊条件下,为了防止焊接接头上出现白口及淬硬组织,还应从减慢焊接接头的冷却速度着手。为此应采用大直径焊条,大电流连续焊工艺。同质焊缝时若采用小电流断续焊工艺,由于冷却速度快,焊缝易出现白口,焊缝易裂,切无法加工。但当补焊缺陷面积小时,因熔池体积过小,冷却快,焊接接头仍易出现白口。如果情况允许,可把缺陷面积适当扩大,则可消除白口。 焊接时,使用直流反接电源,进行大电流、长弧、由中心向边缘连续焊接。当坡口焊满后不要停弧,用电弧沿熔池边缘靠近砂型移动,使焊缝堆高,一般焊缝的高度要超出工件表面5-8mm。由于电弧热通过上层焊缝传入半熔化区,使其在红热状态延续一段时间,不仅减慢冷却速度,有利于石墨充分析出;并延长了焊缝上部半熔化区的存在时间,有利于焊缝中碳的扩散,使白口组织减小或消除。此外,同质焊缝冷焊时,焊后电弧应立即覆盖熔池,以保温缓慢冷却。 铸铁型焊条电弧冷焊较电弧热焊工艺简便,焊接成本交低,在补焊较大缺陷时,只要运用工艺适当,焊后焊缝的最高硬度不超过250HBS,加工性能好。当补焊区的刚性较小时,由于焊缝能自由收缩,焊后一般不会产生裂纹,而且性能、颜色与母材一致。

材料焊接性

《材料焊接性》(专科)学案 第一章绪论 二、本章习题 1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。 2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同? 第2章材料焊接性及其试验方法 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。 影响因素:材料因素、工艺因素、结构因素、使用条件。 2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题? 冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化

3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。 有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。 金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章低合金结构钢的焊接 1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。 热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接 2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

灰铸铁焊接性分析

灰铸铁焊接性分析 一、灰铸铁焊接性分析 灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。在力学性能上的特点是强度低,基本无塑性。焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。这些因素导致焊接性不良。 主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。 另一方面焊接接头易出现裂纹。 (一)焊接接头易出现白口及淬硬组织 见P103,以含碳为3%,含硅2.5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。 1.焊缝区 当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。 防止措施: 焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。如:增大线能量。②调整焊缝化学成分来增强焊缝的石墨化能力。 异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0.7%~1.0%,属于高碳钢(C>0.6%)。这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。 采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。思路是:改变C的存在状态,使焊缝不出现淬硬组织并具有一定的塑性,例如使焊缝分别成为奥氏体,铁素体及有色金属是一些有效的途径。 2.半熔化区 特点:该区被加热到液相线与共晶转变下限温度之间,温度范围1150~1250℃。该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。 1)冷却速度对半熔化区白口铸铁的影响 V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。继续冷却则为C所饱和的奥氏体析出二次渗碳体。在共析转变温度区间,奥氏体转变为珠光体。由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体。 该区金相组织见P104 图4-5 其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。还可看到一些未熔化的片状石墨。 当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。最后其室温组织由石墨+铁素体组织组成。 当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。 影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。 例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再进行焊接的过程称热焊。这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。

灰铸铁的焊接性及焊接工艺研究

目录 目录 (1) 前言 (3) 1. 灰铸铁的性能特点及应用 (5) 1.1 灰铸铁的性能特点 (5) 1.2 灰铸铁的应用 (6) 2. 灰铸铁的焊接性 (7) 2.2焊接接头易出现白口及淬硬组织 (7) 2.2.1焊缝区 (8) 2.2.2半熔化区 (9) 2.2.3奥氏体区 (10) 2.2.4重结晶区 (11) 3. 灰铸铁的焊接工艺性 (11) 3.1 电弧热焊 (12) 3.2 半热焊 (12) 3.3 电弧冷焊 (13) 3.4 镍基焊条 (14) 4.灰铸铁同质(铸铁型)焊缝的熔焊 (16) 4.1电弧热焊 (16) 4.2气焊 (19) 5灰铸铁的焊接裂纹及预防 (21)

5.1冷裂纹 (21) 5.1.1、冷裂纹产生的主要因素 (21) 5.1.2、焊缝上的冷裂纹 (21) 5.1.3热影响比上的冷裂纹 (22) 5.1.4防止冷裂纹的措施 (23) 5.2热裂纹 (23) 5.2.1产生热裂纹的主要因素 (24) 5.2.2热裂纹的防止 (24) 6. 灰铸铁的焊接检验 (24) 致谢 (29) 参考文献 (30)

前言 工业中应用最早的铸铁就是以片状石墨存在于金属基体中的灰铸铁。由于其成本低廉,并具有铸造性、可加工性、耐磨性及减振性均优良的特点。迄今是工业中应用最广泛的一种铸铁。20世纪80年代初,铸铁材料发展进入了顶峰期,随后,世界的铸铁产量便出现急剧递减,然而铸铁仍是当今金属材料中应用最为广泛的基础材料。 灰铸铁在结晶过程中,约有W(C)为80%的碳以石墨的形式析出,这就给灰铸铁带来两方面的特点:一方面,由于石墨强度较低(Rm ﹤20N/mm2),且以片状的形态存在,割裂了基体的连续性,因此灰铸铁的强度不高,脆性较大。另一方面,由于石墨的存在,灰铸铁具有良好的减震性、耐磨性、切削加工性和缺口敏感性。由于共晶结晶过程中石墨化膨胀,还有减少缩松、缩孔的倾向。同时,灰铸铁还有较高的抗压强度。灰铸铁传统的化学成分中Si/C比较低(0.40~0.55)。适当提高Si/C比(0.65~0.85),是提高铸铁内在质量的重要途径之一。提高Si/C比的作用是:可使连续的初析奥氏体枝晶增加,这就像混凝土中的钢筋一样,对灰铸铁起到加固的作用,可扩大稳定系和介稳定系的温度差,增加过冷度△T,从而细化石墨,有效地扩大集体组织的利用率;还可降低灰铸铁的白口倾向,减小断面敏感性,提高弹性模量和形变抗力。当然,Si/C比较高,会使铁素体增加,强度和硬度有所降低。我国各种铸铁的年产量现约为800万吨,有各种铸

【精品】灰铸铁焊接性分析

灰铸铁焊接性分析 焊接,铸铁 灰铸铁焊接性分析 灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。在力学性能上的特点是强度低,基本无塑性。焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。这些因素导致焊接性不良。主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。另一方面焊接接头易出现裂纹。(一)焊接接头易出现白口及淬硬组织见P103,以含碳为3%,含硅2。5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。1.焊缝区当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。防止措施:焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。如:增大线能量。②调整焊缝化学成分来增强焊缝的石墨化能力。异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0。7%~1.0%,属于高碳钢(C>0。6%).这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。思路是:改变C的存在状态,使焊缝不出现淬硬组织并具有一定的塑性,例如使焊缝分别成为奥氏体,铁素体及有色金属是一些有效的途径。2.半熔化区

特点:该区被加热到液相线与共晶转变下限温度之间,温度范围1150~1250℃。该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。1)冷却速度对半熔化区白口铸铁的影响V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。继续冷却则为C所饱和的奥氏体析出二次渗碳体。在共析转变温度区间,奥氏体转变为珠光体.由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体.该区金相组织见P104图4—5其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。还可看到一些未熔化的片状石墨。当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。最后其室温组织由石墨+铁素体组织组成。当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再进行焊接的过程称热焊。这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。研究灰铸铁试板焊件、热输入相同时,随板厚的增加,半熔化区冷却速度加快。白口淬硬倾向增大。2)化学成分对半熔化区白口铸铁的影响

铸铁焊接方法及技巧【干货】

铸铁焊接方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 铸铁焊接(weld of cast iron) 焊接方法视铸件的材质、大小、厚薄、复杂程度、缺陷类型和尺寸,以及切削加工和技术要 求等来选择不同焊接方法。并按不同的焊接要求作焊前准备,如清除油污及夹砂、开坡口或 预热等。焊接方法有气焊、钎焊、手工电弧焊、手工电渣焊。其中气焊分为热焊法、加热减 应区法、不预热气焊;手工电弧焊分为冷焊、半热焊、不预热焊和热焊。 焊条选择一般根据焊后技术要求来选择焊条。灰口铸铁非加工冷焊法可用氧化型钢芯铸铁焊 条(中国牌号Z100)、铁粉型钢芯铸铁焊条(中国牌号Zll2Fe)和低碳钢焊条(中国牌号J422、 J506等);加热400℃以上的热焊,可用钢芯石墨化铸铁焊条(中国牌号Z208);加工面不预热 的,可用铸铁芯铸铁焊条(中国牌号Z248);要求可加工、抗裂但强度不高又可冷焊的,可采 用铜镍焊条(中国牌号Z508);要求抗裂性好、加工性差、强度较低的,可用铜铁铸铁焊条(中 国牌号Z607、Z612);重要铸件要求可加工的,可用纯镍铸铁焊条(中国牌号Z116、z117); 高强度灰口铸铁、球墨铸铁可冷焊的,可用铁镍铸铁焊条(中国牌号Z408)和钢927芯石墨 球化通用铸铁焊条(中国牌号Z268);球墨铸铁加热焊时,可用钢芯球墨铸铁焊条(中国牌号 Z238);薄壁铸件可用钢芯石墨球化通用铸铁焊条(中国牌号Z268和Z607、Z612)Z268可 加工。还有焊接新材料CaO-BaO一caF2渣系钢芯石墨化焊条,利用贝氏体和马氏体两次 相变应力松弛效应来提高抗裂性能。中国Z238SnCu焊条,力学性能高,白口倾向小,抗 裂性好,可用于球墨铸铁件。焊接缺陷及其防止白口焊接时,在焊缝及熔合区产生白口,其

铸铁焊条

铸铁焊条

型号GB/T: EZFe-2 说明:低碳钢芯、氧化性药皮的铸铁焊条,焊接时将熔池中的碳、硅部分烧掉,焊缝为钢组织,焊缝与母材能较好地熔合,但药皮氧化性较强,熔深大,熔合区硬度高,抗裂性和工艺性差,交、直流两用,价格低廉。 用途:用于一般铸铁件缺陷的修复,并能焊补长期使用后的旧钢锭模,焊后不能加工。 Z116/Z117高钒铸铁焊条 型号GB/T: EZV 说明:低碳钢芯、低氢型高钒铸铁焊条,焊缝形成以铁素体为基体以及碳化钒弥散分布的钢组织,具有较好的抗裂性,采用直流反接。 用途:用于铸铁件缺陷的焊补,如汽车缸体、机架齿轮箱等,也焊补高强度铸铁件及球墨铸铁件,焊件可不进行预热,焊后可进行切削加工,但加工性不如Z508、Z308和Z408。 熔敷金属化学成份/% C≤0.25Si≤0.7Mn≤1.5 Fe余 V 8-13 Z122Fe铸铁焊条 型号GB/T:EZFe-2 说明:低碳钢芯铁粉钛钙型冷焊铸铁焊条,由于加入大量铁粉并通过药皮向焊缝过渡,从而稀释铸铁中的碳,焊缝与铸铁熔合牢固,但熔合区硬度高,具有良好抗裂,工艺性好,操作方便,电弧稳定飞溅小,脱渣容易,焊缝成形美观,交、直流两用。 用途:用于各种灰口铸铁件非加工面的焊补。 Z208铸铁焊条 型号GB/T:EZC 相当于AWS:ECI 说明:低碳钢芯强石墨化的铸铁焊条,焊缝缓冷时可变成灰口铸铁,但抗裂性较差,交、直流两用,价格低廉。 用途:用于焊补灰口铸铁的缺陷。 熔敷金属化学成份/% C 2-4 Si 2.5-6.5 Mn≤0.75 Fe余 Z208DF铸铁焊条 型号GB/T:EZC 说明:钢芯铸铁冷焊焊条,具有强石墨化和铁素体化能力,冷焊接头有优良的抗裂和切削加工性,交、直流两用。 用途:用于冷焊、半热焊或热焊灰口铸件的各类缺陷,适用于焊补灰口铸铁的加工面和非加工面。 熔敷金属化学成份/% C 3.5-4 Si 3.5-4 Mn 0.4-0.75 Fe余Ni≤1

灰铸铁焊接工艺介绍

灰铸铁焊接工艺介绍 1灰铸铁的分类及其性能 1.1铸铁分类 根据碳的存在形式及石墨形态不同,可将铸铁分为:灰铸铁、白口铸铁、球墨铸铁、可锻铸铁和蠕墨铸铁; 灰铸铁中的碳全部或大部分以片状石墨形态存在,其断口呈灰色;由于片状石墨对基体有严重的割裂作用,故灰铸铁的强度低、塑性差;但灰铸铁抗压强度高、耐磨性好、减振性好、收缩率低、流动性好,且成本低廉,可以铸造形状复杂的机械零件,至今仍是工业中应用最广泛的一种铸铁; 白口铸铁中碳绝大部分以渗碳体(Fe3C)的形态存在,其断口呈白亮色,故称之为“白口铸铁”;渗碳体性能硬而脆,其硬度为800HBW左右,因而白口铸铁切削加工困难,主要用于炼钢原料,很少用于制造机械零件; 球墨铸中石墨以球状形式存在,是在高温铁液中加入球化剂(稀土金属等)经球化处理后获得的,其强度接近于碳钢,具有良好的耐磨性和一定的塑性,并能通过热处理改变性能,可以用来制造力学性能要求较高的铸件,并可在一定范围内代替碳钢或合金钢来制造某些强度要求较高或形状较为复杂的铸件; 可锻铸铁中石墨以团絮状形式存在,是有一定成分的白口铸铁经长时间石墨化退火获得的;它与灰铸铁相比,具有较好的强度和塑性,耐磨性和减振性优于碳钢,适于制造形状复杂、受冲击载荷的薄壁铸件; 蠕墨铸铁中石墨以蠕虫状形式存在,生产方式与球墨铸铁相似,具有比灰铸铁强度高、比球墨铸铁铸造性能好、耐热疲劳性能好的优点,主要用来制造大功率柴油机气缸盖等; 在铸铁焊接中,应用得最多的是灰铸铁的焊接,球墨铸铁次之,可锻铸铁最少; 1.2灰铸铁的化学成分 灰铸铁以片状石墨的形态存在于珠光体、铁素体或二者按不同比例混合的基体组织中;其断口呈灰色,且因此得名;石墨的力学性能比较低,使金属基体承受负荷的有效截面积减少,而且片状石墨使应力集中严重,因而使灰铸铁的力学性能不高,灰铸铁的石墨形式是以不同的数量、长短及粗细分布于基体中,因而对灰铸铁的力学性能产生很大的影响;灰铸铁分≥HT250与≤HT220,其密度分别为7.35g/cm;与7.2g/m 灰铸铁按其组织可看成是碳钢的基体加片状石墨;按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁、铁素体—珠光体基体灰铸铁、珠光体基体灰铸铁(F基体灰铸铁、F+P基灰铸铁、P基体灰铸铁);常用灰铸铁的化学成分为C2.6%~3.8%,Si1.2%~3.0%,Mn0.4%~1.2%,P ≤0.4%,S≤0.15%;同一牌号的灰铸铁,薄壁件(壁厚<10mm)的C,Si量高于厚壁件; 1.3灰铸铁的物理性能、力学性能 灰铸铁的牌号是由“HT”(“灰铁”两字汉语拼音字首)和最小抗拉强度σb 值(用φ30mm 试棒的搞拉强度)表示;例如牌号HT250表示φ30mm试棒的最小抗拉强度值为250MPa的灰铸铁;设计铸件时,应根据铸件受力处的主要壁厚或平均壁厚选择铸铁牌号; 灰铸铁的力学性能与基体的组织和石墨的形态有关;灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁;同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁;故工业上较多使用的是珠光体基体的灰铸铁;灰铸铁几乎无塑性及韧性;

浅谈灰口铸铁的焊接方法及工艺要点

万方数据

万方数据

浅谈灰口铸铁的焊接方法及工艺要点 作者:马宏程, 王振毅 作者单位:中国石化集团中原石油勘探局钻井一公司,河南,濮阳,457331 刊名: 硅谷 英文刊名:SILICON VALLEY 年,卷(期):2010(6) 参考文献(2条) 1.陈祝年焊接工程师手册 2002 2.周振丰;张文钺焊接冶金与金属焊接性 1988 本文读者也读过(10条) 1.梁涛.Liang Tao铸铁焊条不预热焊法的应用[期刊论文]-焊接2005(5) 2.张道旺灰口铸铁冷补焊工艺[会议论文]-2010 3.张瑞杰.史光远灰口铸铁焊接接头中氢对冷裂纹的影响[期刊论文]-焊接2004(11) 4.郑继水.Zheng Jishui谈几种金属材料的焊接[期刊论文]-价值工程2010,29(33) 5.邱云明.余震.张争艳.QIU Yun-ming.YU Zhen.ZHANG Zheng-yan船用灰铸铁的焊接工艺方法探究[期刊论文]-机械设计与制造2009(12) 6.包镇回.王崇顺铸铁汽缸与不锈钢焊接技术[会议论文]-2001 7.孟新东.胡育华.孙斌.Meng Xindong.Hu Yuhua.Sun Bin新型铸铁冷焊法焊条及其焊接工艺[期刊论文]-化肥工业2006,33(4) 8.孙秀芳.郭力力.于捷.刘伟东低碳钢与灰铸铁钎焊接头金相组织[期刊论文]-焊接2001(7) 9.夏青.杨涤心.姚俊邦铁素体球墨铸铁与20钢的闪光对焊[期刊论文]-焊接学报2004,25(2) 10.鄢君辉.赵康.王泓.王忠平.YAN Jun-hui.ZHAO Kang.WANG Hong.WANG Zhong-ping球墨铸铁与45钢的摩擦焊接研究[期刊论文]-热加工工艺2000(5) 本文链接:https://www.360docs.net/doc/fa3861069.html,/Periodical_guig201006110.aspx

铸铁焊接焊接方法

铸铁焊接焊接方法 视铸件的材质、大小、厚薄、复杂程度、缺陷类型和尺寸,以及切削加工和技术要求等来选择不同焊接方法。并按不同的焊接要求作焊前准备,如清除油污及夹砂、开坡口或预热等。焊接方法有气焊、钎焊、手工电弧焊、手工电渣焊。其中气焊分为热焊法、加热减应区法、不预热气焊;手工电弧焊分为冷焊、半热焊、不预热焊和热焊。焊条选择一般根据焊后技术要求来选择焊条。灰口铸铁非加工冷焊法可用氧化型钢芯铸铁焊条(中国牌号Z100)、铁粉型钢芯铸铁焊条(中国牌号Zll2Fe)和低碳钢焊条(中国牌号J422、J506等);加热400℃以上的热焊,可用钢芯石墨化铸铁焊条(中国牌号Z208);加工面不预热的,可用铸铁芯铸铁焊条(中国牌号Z248);要求可加工、抗裂但强度不高又可冷焊的,可采用铜镍焊条(中国牌号Z508);要求抗裂性好、加工性差、强度较低的,可用铜铁铸铁焊条(中国牌号Z607、Z612);重要铸件要求可加工的,可用纯镍铸铁焊条(中国牌号Z116、z117);高强度灰口铸铁、球墨铸铁可冷焊的,可用铁镍铸铁焊条(中国牌号Z408)和钢927芯石墨球化通用铸铁焊条(中国牌号Z268);球墨铸铁加热焊时,可用钢芯球墨铸铁焊条(中国牌号Z238);薄壁铸件可用钢芯石墨球化通用铸铁焊条(中国牌号Z268和Z607、Z612)Z268可加工。还有焊接新材料CaO-BaO一caF2渣系钢芯石墨化焊条,利用贝氏体和马氏体两次相变应力松弛效应来提高抗裂性能。中国Z238SnCu焊条,力学性能高,白口倾向小,抗裂性好,可用于球墨铸铁件。焊接缺陷及其防止白口焊接时,在焊缝及熔合区产生白口,其原因是焊缝冷却速度快,同质焊条的焊缝石墨化元素不足或存在阻碍石墨化元素。防止白口的办法是:增强同质焊条的石墨化能力,同时减慢800 ℃以上时的冷却速度;根据不同铸件壁厚可预热400~700 ℃,以防止白口;采用镍基、铜基、高钒钢等异质焊条和其他措施或钎焊也都可以防止产生白口。热应力裂纹当焊接应℃力超过铸铁强度时,沿焊补区的薄弱处、熔合区或热影响区开裂,使焊缝剥离。防止这种裂纹,主要从减小应力着手:(1)采用热焊法,焊前把铸件预热到600~700℃,焊接过程保持在4()0℃以上。(2)采用加热减应区法,正确选择加热位置和方法将铸件加热,使原裂纹间隙张大,然后焊补。(3)正确运用电弧冷焊,改变焊缝的化学成分和合金系统,使焊缝具有较好的塑性和较低的硬度,同时采用短焊道锤击焊缝以及控制焊补区的温升等工艺措施。热裂纹热裂纹总是与焊缝鱼鳞纹垂直,有纵向、斜向和横向。产生的主要原因是焊缝金属中碳、硫、磷及硅等元素含量增高。高钒铸铁焊条因钒与碳充分结合,不易产生热裂纹,焊缝金属在高温时的低塑性区间停留过长,窄而深的熔池都易引起热裂纹。防止办法有:首先是提高焊条的抗热裂性能,如增强药皮碱度,降低硫、磷含量,适当加入稀土、锰铁等脱硫能力强的物质,选择碱性低氢焊条。其次是采用较小电流以减少熔深,把焊缝位置倾斜,采用半立焊和立焊,加快焊接速度,焊条不横向移动,使坡口底部为圆弧形、避免尖角,收弧时填满弧坑等。铸铁焊接步骤1、根据铸铁焊接产品图及技术条件、产品的批量及需用日期,结合工厂实际条件选择铸造方法。2、绘出铸铁焊接各视图上的加工余量及不铸孔、沟槽等工艺符号。3、铸铁焊接绘出浇注系统、冒口的位置、形状、尺寸和数量,同铸试样的形状、位置和尺寸。4、铸铁焊接标出与分型面垂直壁的起模斜度。5、标出铸铁焊接浇注位置和分型面。6、绘出砂芯形状、砂芯分块线(包括分芯负数)、芯头间隙、压紧环和防压环、积砂槽,标出有关尺寸和砂芯负,必要时设计芯骨形状、尺寸和吃砂量。 7、分析铸件的结构工艺性,判断缺陷倾向,提出结构改进意见和确定铸铁焊接凝固原则。8、模样的分型负数,分模面及活块形状,反变形量的大小和位置、形状、非加工壁厚的负余量,工艺补正量的加设位置和尺寸等。9、冷铁和铸筋的位置、形状、尺寸和数量,固定组合方法及冷铁留缝大小等。注意事项折叠电弧的长度电弧的长度与焊条涂料种类和药皮厚度有关系。但都应尽可能采取短弧,特别是低氢焊条。电弧长可能造成气孔。短弧可避免大气中的O2、N2等有害气体侵入焊缝金属,形成氧化物等不良杂质而影响焊缝质量。折

(冶金行业)铸铁零件的常用焊接方法

(冶金行业)铸铁零件的常 用焊接方法

铸铁零件的常用焊接方法(2008-02-2515:24:11) 标签:杂谈分类:资料 由于铸铁的壹些优点,在汽车制造材料中占有很大的比重。铸铁零件大多是加工精度高、价格昂贵的基础零件,如气缸体、气缸盖、变速器壳体等。铸铁零件在制造及使用过程中,经常会出现裂纹、气孔、损坏等情况。据统计,汽车在正常使用情况下,这类零件达到磨损极限时,其尺寸变化只有0.08%~0.40%,质量损失只有0.1%~1.8%,此时将零件报废,无疑是非常浪费的。因此,研究和利用先进的修理经验,合理地修复铸铁零件是十分必要地。焊接就是壹种非常有效地修复铸铁零件的方法。 铸铁含炭量高、杂质多,且具有塑性低、焊接性差、对冷却速度敏感等特性,焊补后容易出现白口组织和产生裂纹。为改善铸铁零件的焊补质量,可采取以下方法。 1.热焊法 焊前将工件整体或局部预热到600~700℃,补焊过程中不低于400℃,焊后缓慢冷却至室温。采用热焊法可有效减小焊接接头的温差,从而减小应力,同时仍能够改善铸件的塑性,防止出现白口组织和裂纹。 常用的焊接方法是气焊和焊条电弧焊。气焊常用铸铁气焊丝,如HS401或HS402,配用焊剂CJ201,以去除氧化物。气焊预热方法适于补焊中小型薄壁零件。焊条电弧焊选用铸铁芯铸铁焊条Z248或钢芯铸铁焊条Z208,此法主要用于补焊厚度较大(大于10mm)的铸铁零件。 热焊法的焊接设备主要有加热炉、焊炬、电炉(油炉或地炉)等,焊接工艺如下: 1)焊前准备和预热:清除缺陷周围的油污和氧化皮,露出基体的金属光泽:开坡口,壹般坡口深度为焊件壁厚的2/3,角度为70°~120°;将焊件放入炉中缓慢加热至600~700℃(不可超过700℃)。

铸铁焊接结构应用及焊接性分析

第一章概述 铸铁是常用的金属材料,它具有良好的铸造性、耐磨性、切削加工性、吸振性等,所以在机械制造业及其他工业部门中被广泛的应用。但由于铸铁本身性能和显微组织的特点,很少被用作焊接结构件,然而,在铸铁件使用过程中或铸造过程中,由于种种原因,铸件经常会出现各种缺陷,例如断裂、裂纹、缩孔、未浇满以及在切削加工过程中产生的其他缺陷等。因此经常会遇到用焊接方法修复铸件的问题。但铸铁补焊或焊接会形成焊接过程中的激热骤冷,冶金过程的急变,会引起很多焊接问题,对于铸铁的补焊或焊接是一项急待解决的问题。 铸铁的种类很多,用的最广泛的是灰铸铁和球墨铸铁。为了能顺利地进行各类铸铁件的焊补,必须对各类铸铁的性能、特点有充分的了解。(详见表1.1 铸铁的分类) 表 1.1 铸铁的分类 铸铁属于焊接性不良的金属材料,这主要是由于铸铁本身的特殊性决定的。

此外,铸件原来的工作条件、结构的复杂程度及对焊缝及近缝区性能的不同要求,更使铸铁补焊问题复杂化。例如有的要求焊后能进行切削加工,有的没有此要求;有的要求补焊处颜色和母材相同;有的要求有足够的强度,有的对强度要求不高。由此可见,铸铁的焊接,不可能以一种方法或一种措施来解决问题。应对具体情况作具体分析,综合考虑采用焊接方法和相应的措施。 铸铁的特殊性能决定铸铁的焊接方法是多种多样的,在实际的工业生产中应用的铸铁焊接方法有焊条电弧焊、CO2气体保护焊、药芯焊丝电弧焊、气焊、手工电渣焊、火焰钎焊及火焰粉末喷熔(焊)等。应用最广泛的焊接方法是焊条电弧焊,CO2气体保护焊和药芯焊丝电弧焊应用范围正在逐步扩大。本书着重介绍焊条电弧焊和CO2气体保护焊。 铸铁焊接在工程中的应用越来越广,本书选取了铸铁焊接在工程应用中的实例来做详细的说明。 第二章常用铸铁的种类、性能和用途从化学成分角度看,铸铁实际上是含碳(质量分数)为1.7%~4.0%的铁-碳-硅三元合金。此外,还含有少量锰、硫、磷等杂质元素。某些有特殊性能要求的铸铁,还加入镍、铬、铝、铜等合金元素。 铸铁的力学性能虽然与其化学成分有关,更大程度上与其显微组织有关。然而,铸铁的显微组织又受其化学成分及熔铸条件、高温时冷却速度等因素的影响而变化。 碳是铸铁中的主要元素,除少量溶解于金属基体中而形成铁素体或珠光体

相关文档
最新文档