研究电源的输出功率与电源外电路负载的关系实验报告

研究电源的输出功率与电源外电路负载的关系实验报告
研究电源的输出功率与电源外电路负载的关系实验报告

研究电源的输出功率与电源外电路负载的关系实验报告

姓名: 学号: 【实验目的】

1、在研究、分析的基础上熟悉实验并且总结出如何指导学生做好实验。

2、通过实验研究如何指导学生如何处理数据,处理实验数据要注意的问题。训练学生能够比较熟悉地绘制物理图像,并利用图像说明其物理意义,从中学习用实验来解决问题的方法。 【实验器材】

学生电源(10~12v )、电阻箱、直流电压表(0~0.6A;0~3A)、直流电流表(0~3v;0~15v )、滑动变阻器(20Ω)、导线、单刀开关 【实验原理】

(一)测电源电动势和内阻

测量电源内阻的依据是闭合电路欧姆定律。 1、方法一 电流表外接法 实验电路图如图1:

1)选择电表量程 电源电动势:12v 滑动变阻器最大值:20Ω 电路最大电压:10v 电路最大电流:0.6A 电表量程选择: 电压表 0~15v 电流表 0~0.6A 2)测2组U 、I 值求电动势和内阻

将滑动变阻器固定在恰当位置,改变电阻箱的值,得到几组U 、I 值。由U=E-Ir 可得

211221I I U I U I E --=

I

U

I I U U r ??=--==2112tan α

3)多测几组U 、I 值作U-I 图线

为减小误差,试验中至少测出6组U-I 值,且变化范围要大些,然后在U-I 图中描点作图,所得直线跟纵坐标轴的交点为电源电动势,图线斜率的绝对值即为内阻r 的值。 4)电流表外接引起的误差

流过电源的电流真实值:V I I I +=测真 电源电动势:r I I U E A V )(++=真 电压表U 是准确的电源两端电压,而试验中忽略了通过电压表的电流V I 而形成误差,而且电压表示数越大I 越大。

①当电压表示数为零时,I V =0,I A =I 短,短路电流测量值=真实值。 ②真测E E < ③短

I E

r =

,则真测r r < 因此U-I 图如下:

2、方法二 电流表内接法

该方法与电流表外接法相同,但其引起的误差不同。下面分析一下电流表内接误差。 电路图如图2所示:

电流表A I 为电源电流真实值,而理论上r I U U E A A ++=真,其中A U 不可知而造成误差,而且电流表示数越大A U 就越大,当电流为零(短路)时A U =0,电压为准确值=E. 得如下结论: ①E 为真实值; ②短真短测I I <; ③I E

r =

,则真测r r >

(二)电源输出功率及电源效率

根据电源电动势和内阻计算出电源最大输出功率:r E P 4/2max =

根据实验测量数据,依次计算出电源输出功率R

U P /2

=出,然后描绘出R P -出图像。在此图像中求出电源输出功率为最大值时,所对应的外电阻电阻R 的电阻值0R . 电源的效率%100?=

E

U

η,做R -η图像。 【实验内容】

1、按图1连接电路图,改变电阻箱测10组 U 、I 值,画U-I 图像,求电源电动势和内阻。

2、按图2连接电路图,改变电阻箱测10组 U 、I 值,画U-I 图像,求电源电动势和内阻。

3、求按图1连接的电路求出的电源电动势的最大输出功率,并据实验测量数据,依次

计算出电源输出功率R U P /2

=出,

然后描绘出R P -出图像。在此图像中求出电源输出功率为最大值时,所对应的外电阻电阻R 的电阻值0R .并比较内阻r 与0R 有和差异。 4、求按图1连接的电路的实验数据求电源的效率%100?=

E

U

η,做R -η图像。分析图像%50=η时所对应的外电阻的阻值0R 与内阻r 是否相等。 【实验数据及其处理】

(一)图1电路图实验数据

电阻箱电阻(Ω) 5

10 15 20 25 30 35 40 45 50 电压表(v ) 3.2 4.75

5.75

6.45

6.95

7.35

7.65

7.9

8.1

8.2

电流表(A) 0.58

0.454 0.374 0.318 0.298 0.244 0.22 0.198 0.182 0.166

电路图1的U-I图像:

可知:电源电动势E=10.344v 电源内阻:r=12.243Ω

(二)图2电路图实验数据

电阻箱电阻

5 10 15 20 25 30 35 40 45 50 (Ω)

电压表

2.65 4.75 5.7 6.45 6.95 7.3 7.55 7.85 8 8.2 (v)

电流表

0.582 0.476 0.374 0.318 0.278 0.242 0.22 0.2 0.182 0.166

(A)

电路图2的U-I图:

可知:电源电动势E=10.395V 电源内阻r=12.689Ω

将图1和图2U-I图整合到一个坐标中,其图像如下:

两图线的交点为外电阻与电源内阻相等的时候对应的U、I值。

图1(电流表外接)电压表示数为零测得的短路电流短I 为真实值;

图2(电流表内接)电流表示数为零(短路)测得的电源电动势E 为真实值。 在坐标图中将这两个真实值连接起来作出的图线为准确(无电表)的U-I 图像。 (三)图1电路图电源输出功率和输出效率 实验数据及其处理如下:

电阻箱电阻(Ω) 5

10 15 20 25 30 35 40 45 50 电压表(v ) 3.2 4.75

5.75

6.45

6.95

7.35

7.65

7.9

8.1

8.2

电流表(A) 0.58

0.454 0.374 0.318 0.298 0.244 0.22 0.198 0.182 0.166

)

(/2w R U P =出

2.048 2.256 2.204 2.080 1.932 1.800 1.672 1.560 1.458 1.345

η=U/E(%) 30.9

45.9

55.6

62.4

67.2

71.1

74.0

76.4

78.3

79.3

电源最大输出功率:r E P 4/2max ==2.185w P-R 图以及η-R 图像:

图像中可看出:

①电源最大输出功率对应的电阻=0R 9.97Ω

内阻r=10.344Ω大于外电阻=0R 9.97Ω,但她们几乎相等。说明外电阻与内阻相等时电源输出功率最大。电源功率随外电阻的增加而增加并在某一外电阻值达到最大值,然后随外电阻的减小而减小。

②电源的输出效率η=50%时电阻=0R 12.72Ω

=0R 12.72Ω不等于内阻r=10.344,内阻r 小于0R ,但她们几乎相等。说明R=r 时

电源有最大输出功率,但电源效率仅为50%,效率并不高。电源效率随外电阻的增大而增大。

【实验反思】

1、教师要很好的理解并掌握闭合电路欧姆定律,明确电源功率、电源效率与内阻、外阻的关系。

2、教师要掌握电流表内外接方法以及所引起的误差,并能够引导学生分析误差所在以及误差大小。

3、教师要引导学生处理实验数据,作相应的图像并合理分析引导学生得出实验结论。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

三相交流电路实验报告1

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟 +现场实践 提交形式:在线提交实验报告 学生姓名:赵军学号: 年级专业层次:14 春石油开采技术高起专 学习中心:江苏油田学习中心 提交时间:2014 年 6 月8 日

一、实验目的 1 . 练习三相交流电路中负载的星形接法。 2 . 了解三相四线制中线的作用。 二、实验原理 1 . 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 ( 1 )星形连接的负载如图1 所示: 图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N'为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I 表示线的变量,下标p 表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:

当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: ( 2 )三角形连接的负载如图2 所示: 其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2 . 不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再 对称。 如果三相电路其中一相或两相开路也属于不对称情况。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流

开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多

高频开关电源电路原理分析

高频开关电源电路原理分析 开关电源微介绍开关电源具有体积小、效率高的一系列优点。已广泛应用于各种电子产品中。然而,由于控制电路复杂,输出纹波电压高,开关电源的应用也受到限制。它 电源小型化的关键是电源的小型化,因此必须尽可能地减少电源电路的损耗。当开关电源工作在开关状态时,开关电源的开关损耗不可避免地存在,损耗随着开关频率的增加而增大。另一方面,开关电源中的变压器和电抗器等磁性元件和电容元件的损耗随着频率的增加而增加。它 在目前市场上,开关电源中的功率晶体管大多是双极型晶体管,开关频率可以达到几十kHz,MOSFET开关电源的开关频率可以达到几百kHz。必须使用高速开关器件来提高开关频率。对于开关频率高于MHz的电源,可以使用谐振电路,这被称为谐振开关模式。它可以大大提高开关速度。原则上,开关损耗为零,噪声非常小。这是一种提高开关电源工作频率的方法。采用谐振开关模式的兆赫变换器。开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的开关电源其实是高频开关电源的缩写形式,和电源本身的关闭和开启式没有任何关系的。 开关电源分类介绍开关电源具有多种电路结构:(1)根据驱动方式,存在自激和自激。它2)根据DC/DC变换器的工作方式:(1)单端正激和反激、推挽式、半桥式、全桥式等;2)降压式、升压式和升压式。它 (3)根据电路的组成,有谐振和非谐振。它 (4)根据控制方式分为:脉宽调制(PWM)、脉冲频率调制(PFM)、PWM和PFM混合。(5)根据电源隔离和反馈控制信号耦合方式,存在隔离、非隔离和变压器耦合、光电耦合等问题。这些组合可以形成各种开关模式电源。因此,设计者需要根据各种模式的特点,

常用直流开关电源的保护电路设计

常用直流开关电源的保护电路设计 概述 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3]。同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。 3.1过电流保护电路

常用电源芯片手册

常用电源芯片 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 ,tob_id_4926 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615

25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

常用DCDC电源电路方案设计

" 常用DC /DC电源电路设计方案分析 1、DC/DC电源电路简介 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、,模拟电路电源常用5V 15V,数字电路常用等。结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。 2、DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: (1)稳压管稳压电路。 (2)线性 (模拟)稳压电路。 (3)开关型稳压电路 3、* 4、稳压管稳压电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示, 选择稳压管时一般可按下述式子估算: (3)Vin=(2-3)Vout (1) Uz=Vout; (2)Izmax=I Lmax 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。 有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。这里主要介绍TL431、REF02的应用方案。 TL431常用电路设计方案 , TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出电压用两个电阻就可以任意地设置到从Vref()到36V范围内的任何值。该器件的典型动态阻抗为Ω,参考电压源误差1%,输出电流为。最常用的电路应用如下图3-1所示,TL431的内部含有一个的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图3-1所示的电路,当R1和R2的阻值确定时,两者对Vo的分压

高频开关电源电路组成及稳压原理

高频开关电源电路组成及稳压原理 高频开关电源由以下几个部分组成: 一、主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 二、控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 三、检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。

四、辅助电源 提供所有单一电路的不同要求电源。 第二节开关控制稳压原理 开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示 EAB=TON/T*E 式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。 由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,

三相交流电路实验报告-百度文库(精)

三相交流电路实验报告-百度文库(精)

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:毕义合学号:12952112061 年级专业层次:网络12春高起专 学习中心:建设工程分院函授站 提交时间: 2013 年 6 月 23 日

一、实验目的 1. 练习三相交流电路中负载的星形接法。 2. 了解三相四线制中线的作用。 二、实验原理 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 (1)星形连接的负载如图1所示: 图1 星形连接的三相电路

A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流 的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电 流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称

为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。 3.三相负载接线原则 连接后加在每相负载上的电压应等于其额定

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

相电路实验报告

实验一 一、实验名称 三相电路不同连接方法的测量 二、实验目的: 1. 理解三相电路中线电压与相电压、线电流与相电流之间的关系。 2. 掌握三相电路的正确连接方法与测量方法。 三、实验原理 1.三相电路 三相电路在生产上应用最为广泛,发电和输配电一般都采用三相制。在用电方面,许多负载是三相的或连接成三相形式的,如三相交流电动机。 三相电路是由三相电源供电的电路。三个频率相同且随时间按正弦函数变换的电动势,如果每相电动势的振幅相等,相位依次相差120o,则称为三相电动势。产生对称三相电动势且各阻抗相等的电源称为对称电源。当三相电动势的相序依次为U相、V相和W相时,称为正序或顺序,反之称为负序或逆序。本实验在三相电源的相序为正序的情况下进行测量。 三相电源由DDSZ-1型实验台台面左侧的DD01三相调压交流电源提供。如下图所示。

在三相电路中,负载一般也是三相的,即由三个部分组成,每一部分称为一个相。如三相负载各相阻抗值相同,则称为对称三相负载。三相负载有两种连接方式:星形联结和三角形联结。 在三相电路中,电源或负载各相的电压称为相电压,端线之间的电压称为线电压;流过电源或负载各相的电流称为相电流,流过各端线的电流称为线电流。星形联结时,各相电压源的负极连在一起称为三相电源的中性点或零点。各相负载的一端接在一起称为负载的中性点或零点。电源的中性点与负载中性点的连线称为中性线或零线。流过中性线的电流称为中性线电流。 2.三相负载的星形联结(三相四线制) 3.三相负载的三角形联结

ou 负载为三角形联结时,线电压等于相电压。当电源与负载对称时,线电流和相电流在数值上的关系为 L P I 。 四、实验设备 1.DDSZ-1型电机及电气技术实验装置 2.D42三相可调电阻器 3.D33交流电压表 4.D32交流电流表 五、实验内容与步骤 1. 组接实验电路; 2. 三相四线制,三相负载为星形联结时,分别测量线电压、相电压、线电流、相电流,记录实验数据。 3. 三相三线制,三相负载为星形联结时,分别测量线电压、相电压、线电流、相电流,记录实验数据。 表5-2

开关电源工作频率的原理分析

开关电源工作频率的原理分析 一、开关电源的原理和发展趋势 第一节高频开关电源电路原理 高频开关电源由以下几个部分组成: 图12-1 (一)主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 (二)控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 (三)检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据。 (四)辅助电源 提供所有单一电路的不同要求电源。

第二节开关控制稳压原理 图12-2 开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示: EAB=TON/T*E 式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。 由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。 按TRC控制原理,有三种方式: (一)、脉冲宽度调制(Pulse Width Modulation,缩写为PWM) 开关周期恒定,通过改变脉冲宽度来改变占空比的方式。 (二)、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM) 导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。 (三)混合调制 导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。 第三节开关电源的发展和趋势

教你如何看懂电路图-电源部分

如何看懂电路图2-- --电源电路单元 电源电路单元 电源电路单元 前 面介绍了电路图中的元器件的作用和符号。一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始, 怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十 来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电 路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。 按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。 一、电源电路的功能和组成 每 个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是 用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电 子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把 220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高, 所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 ( 1 )半波整流 半波整流电路只需一个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电

高频开关电源的基本原理

高频开关电源的基本原理

————————————————————————————————作者:————————————————————————————————日期:

第一节高频开关电源的基本原理 一、高频开关电源的组成 高频开关整流器通常由工频滤波电路、工频整流电路、功率因数校正电路、直流-直流变换器和输出滤波器等部分组成,其组成方框图如图1-3-1所示。 图1-3-1高频开关整流器组成方框图 图中输入回路的作用是将交流输入电压整流滤波变为平滑的高压直流电压;功率变换器的作用是将高压直流电压转换为频率大于20KHZ的高频脉冲电压;整流滤波电路的作用是将高频的脉冲电压转换为稳定的直流输出电压;开关电源控制器的作用是将输出直流电压取样,来控制功率开关器件的驱动脉冲的宽度,从而调整开通时间以使输出电压可调且稳定。从框图中可见,由于高频变压器取代了笨重的工频(50HZ)变压器,从而使稳压电源的体积和重量大小减小。 开关整流器的特点: ①重量轻,体积小 采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只上相控整流器的1/10,重量也接近1/10。 ②功率因数高 相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。经过校正的开磁电源功率因数一般在0.93以上,并且基本不受负载变化的影响(对20%以上负载)。 ③可闻噪音低 在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60dB。而开关电源在无风扇的情况下可闻噪声仅为45dB左右。 ④效率高 开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可做到91%以上。 ⑤冲击电流小 开机冲击电流可限制的额定输入电流的水平。 ⑥模块式结构 由于体积不,重量轻,可设计为模块式结构,目前的水平是一个2m高的19英寸(in)机架容量可达48V/1000A以上,输出功率约为60KW。 二、高频开关电源的分类 (二)开关整流器分类 1、按激励方式 可分为自激式和他激式。自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。 自激式电路出现最早。它的特点是电路简单、响应速度较快,但开关频率变化大、输出纹波值较大,不易作精确的分析、设计,通常只有在小功率的情况下使用,如家电、仪器电源。他激式开关电源需要外接的激励信号控制才能使变换电路工作,完成功率变换任务。 他源激式开关电源的特点是开关频率恒定、输出纹波小,但电路较复杂、造价较高、响应速度较慢。 2、按开关电源所用的开关器件 可分为双极型晶体管开关电源、功率MOS管开关电源、IGBT开关电源、晶闸管开关电源等。

三相交流电路-电工电子学实验报告

实验报告 课程名称:电工电子学指导老师:张伯尧成绩:___ _ 实验名称:三相交流电路 一、实验目的和要求二、实验设备 三、实验内容四、实验结果 五、心得 一、实验目的 一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3. 掌握三相电路功率的测量方法。 二、主要仪器设备 1. 实验电路板 2. 三相交流电源(220V) 3. 交流电压表或万用表 4. 交流电流表 5. 功率表 6. 单掷刀开关 7. 电流插头、插座 三、实验内容 1. 三相负载星形联结 按图1接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图1

1) 测量三相四线制电源各电压(注意线电压和相电压的关系)。 U UV/V U VN/V U WU/V U UN/V U VN/V U WN/V 217.0218.0217.0127.0127.0127.3 表1 2)按表2内容完成各项测量,并观察实验中各电灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为U相开亮1只灯,V相开亮2只灯,W相开亮3只灯。 测量值 负载情况相电压相电流中线电 流 中点电 压 U UN’/V U VN’/V U WN’/V I U/A I V/A I W/A I N/A U N’N/V 对称负载有中线1241241240.26 3 0.26 3 0.26 5 00 无中线126.1126.8126.50.26 3 0.26 3 0.26 6 0 1.1 不对称负载有中线1241251240.09 2 0.17 6 0.26 6 0.1560 无中线168144770.10 5 0.18 8 0.21 6 051.9 表2 2. 三相负载三角形联结 按图2接线。测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3所示。接好实验电路后,按表3内容完成各项测量,并观察实验中电灯的亮度。 表3中对称负载和不对称负载的开灯要求与表2中相同。 三相负载三角形联结记录数据

几种常见开关电源电路图

uc3842开关电源电路图 用UC3842做的开关电源的典型电路见图1。过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hi ccup)保护。在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms 到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。仔细调整这个电阻的数值,一般都可以达到满意的保护。使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。 图2、3、4是常见的电路。图2采取拉低第1脚的方法关闭电源。图3采用断开振荡回路的方法。图4采取抬高第2脚,进而使第1脚降低的方法。在这3个电路里R3电阻即使不要,仍能很好保护。注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。在过载或短路保护时,它也起延时保护的左右。在灯泡、马达等启动电流大的场合,C4的取值也要大一点。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题: 1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦; 2. 在输出电压较低时,如 3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值; 3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。 这时如果采用辅助电路来实现保护关断,会达到更好的效果。辅助关断电路的实现原理:在过载或短路时,输出电压降低,电压反馈的光耦不再导通,辅助关断电路当检测到光耦不再导通时,延迟一段时间就动作,关闭电源。

高频开关电源系统原理及维护

高频开关电源的结构和工作原理: 2.1高频开关电源的结构 2.1.1主电路 2.1.1.1输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2.1.1.2整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 2.1.1.3逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 2.1.1.4输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2.1.2控制电路 控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 2.1.3检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。 2.1.4辅助电源 提供所有单一电路的不同要求电源。 2.2开关控制稳压原理 开关控制电路如图2,开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开 关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示: EAB=TON/T*E

相关文档
最新文档