聚酰亚胺

聚酰亚胺
聚酰亚胺

第四节聚酰亚胺

聚酰亚胺(PI)是大分子主链结构中含有酰亚胺基团的芳杂环聚合物。

目前应用的主要品种有热固性聚酰亚胺,热塑性聚酰亚胺,改性聚酰亚胺。

一聚酰亚胺的结构性能特征

不同(PI)具有不同的结构特征,就其共性而言,大分子主链均含有大量的含氮五元杂环和芳环以及一定数量的醚键,总体上显示出结构稳定,刚性大,耐热性好的特点。就不同品种差异而言,有的分子链对称性好,有的不对称,所以在PI中有些具有一定的结晶性,有些为无定形。

1力学性能

PI具有优良的耐磨性,可作为耐热,耐磨工程塑料使用。

2电性能

PI分子结构虽然有一定数量的极性基团,如羰基,氨基,醚键。但由于刚性大,结构对称形成共轭,使极性受到很大的限制,,因而电绝缘性优良。

3阻燃性

PI为难燃自熄性聚合物,发烟度低。

4卫生性

PI无毒,用来制造餐具和医用器具,经的起数千次消毒。

5化学性能

PI具有优良的耐油及溶剂性,耐烯酸,但耐碱性不佳。

6耐辐射性

PI分子中存在大量的芳环结构使其吸收射线能力很强,具有很高的耐辐射性。

3

聚酰亚胺的研究概况.doc

高分子材料学(论文)题目:聚酰亚胺的研究概况 化工学院高分子材料科学与工程专业 学号 班级材料1102 学生姓名 指导教师 二〇一四年五月

聚酰亚胺的研究概况 摘要:聚酰亚胺(PI)作为一种综合性能优异的材料,已被广泛的应用。本文首先对聚酰亚胺的发展历程,国内目前聚酰亚胺的发展状况做了简单介绍。其次介绍了聚酰亚胺目前比较重要的几种合成方法,着重介绍了聚酰亚胺的性能以及针对其优良的性能聚酰亚胺目前的应用领域。最后,针对聚酰亚胺存在的缺点,根据国内外一些研究状况,列举了目前比较重要几种改性方向。通过本文的介绍,可以对聚酰亚胺有一个系统的认识。 关键词:发展历程;合成;性能;应用;改性 Abstract: As a comprehensive performance excellent material, polyimide (PI) has been widely used. Firstly, the paper makes a brief introduction about the development process of polyimide, and the current domestic development condition. Secondly, it introduces several more important synthetic methods about the polyimide, and then introduces the properties of the polyimide and its e current applications. Finally, according to its shortcomings and some research at home and abroad, the paper cites several relatively important direction of the current modification. Through the introduction of this article, you can have a good systematic understanding of polyimide. Key Words:development process;synthetic; properties; applications; modification 引言 随着航空航天,电子信息工业,汽车工业与家用电器等工业的蓬勃发展,对材料的要求越来越高。因此材料的研究不断朝着高性能化,多功能化,轻量化和低成本化等方面发展。[1] 聚酰亚胺(PI)就是综合性非常优异的材料。聚酰亚胺是一类以酰亚胺环为特征结构的聚合物。其中以苯环直接与酰亚胺环相连的聚合物最为重要。其分子的通式如下: O O O 聚酰亚胺具有高强度、高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,被广泛应用于电机电器、电子微电子工业、航空航天工业、汽车工业、机械化工、分离膜、胶黏剂等领域。目前,聚酰亚胺是在已经工业化的工程塑料中耐热性能最好的品种之一。[2-6]

聚酰亚胺薄膜的性质及应用

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/fb15458280.html,)聚酰亚胺薄膜的性质及应用 变宝网11月14日讯 聚酰亚胺薄膜是一种耐高温电机电器绝缘材料,表现为黄色透明,它主要分成均苯型聚酰亚胺薄膜和联苯型聚酰亚胺薄膜两类,有突出的耐高温、耐辐射、耐化学腐蚀和电绝缘性能,可在250~280℃空气中长期使用。 一、聚酰亚胺薄膜的化学性质 聚酰亚胺化学性质稳定。聚酰亚胺不需要加入阻燃剂就可以阻止燃烧。一般的聚酰亚胺都抗化学溶剂如烃类、酯类、醚类、醇类和氟氯烷。它们也抗弱酸但不推荐在较强的碱和无机酸环境中使用。某些聚酰亚胺如CP1和CORIN XLS是可溶于溶剂,这一性质有助于发展他们在喷涂和低温交联上的应用。 二、聚酰亚胺薄膜的物理性质 热固性聚酰亚胺具有优异的热稳定性、耐化学腐蚀性和机械性能,通常为橘黄色。石墨或玻璃纤维增强的聚酰亚胺的抗弯强度可达到345 MPa,抗弯模量达到20GPa.热固性聚酰亚胺蠕变很小,有较高的拉伸强度。聚酰亚胺的使用温度范围覆盖较广,从零下一百余度到两三百度。

三、聚酰亚胺薄膜的应用 聚酰亚胺薄膜是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底版。IKAROS的帆就是使用聚酰亚胺的薄膜制和纤维作的在火力发电部门,聚酰亚胺纤维可以用于热气体的过滤,聚酰亚胺的纱可以从废气中分离出尘埃和特殊的化学物质。 涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用。 先进复合材料:用于航天、航空器及火箭部件。是最耐高温的结构材料之一。例如美国的超音速客机计划所设计的速度为2.4M,飞行时表面温度为177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。 纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防弹、防火织物。中国长春有生产各种聚酰亚胺产品。 泡沫塑料:用作耐高温隔热材料。 工程塑料:有热固性也有热塑型,热塑型可以模压成型也可以用注射成型或传递模塑。主要用于自润滑、密封、绝缘及结构材料。广成聚酰亚胺材料已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。

聚酰亚胺

聚酰亚胺( PI) 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H 级绝缘材料。 聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。 性能: 1.外观淡黄色粉末 2.弯曲强度(20℃) ≥170MPa 3.密度 1.38~1.43g/cm3 4.冲击强度(无缺口) ≥28kJ/m2 5.拉伸强度≥100 MPa 6.维卡软化点 >270℃ 7.吸水性(25℃,24h) 8.伸长率 >120% 钛酸钡 分子式:BaTiO3 分子量:233.1922性状白色粉末熔点1625℃相对密度 6.017溶解性:溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀硝酸、水和碱。熔点:1625℃

钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm 点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。 当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁 电性,其自发极化强度沿原立方晶胞的面 对角线[011]方向。为了方便起见,通常 采用单斜晶系的参数来描述正交晶系的单 胞。这样处理的好处是使我们很容易地从

聚酰亚胺薄膜的改性、分类与在电子行业中的应用

聚酰亚胺薄膜的改性、分类及其在电子行业中的应用 摘要 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007。而由于其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。由于上述聚酰亚胺在性能上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 首先是在薄膜上的应用:它是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底板。其次是在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差。再则还可应用在电-光材料中:其用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 聚酰亚胺作为很有发展前途的高分子材料已经得到充分的认识,在绝缘材料中和结构材料方面的应用正不断扩大。在功能材料方面正崭露头角,其潜力仍在发掘中。

关键词:聚酰亚胺;薄膜;低介电常数;电子工业 1.引言 聚酰亚胺(PI)是重复单元中含有酰亚胺基团的芳杂环高分子化合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,如良好的力学性能、耐高温性能、尺寸稳定性、耐溶剂性等,成功应用于航空、航天、电子电器、机械化工等行业。随着微电子工业的不断发展,对相关材料的耐热性能以及介电性能等提出了更高的要求,这为PI材料在微电子领域内的应用起到了极大的推动作用[1]。而随

聚酰亚胺的合成方法2

聚酰亚胺的合成方法 聚酰亚胺是一类环链化合物,根据其结构和制备方法,可分成主链含有脂肪链的聚酰亚胺和主链中含有芳环链的聚酰亚胺2大类。其通式为: 聚酰亚胺由四酸二酐与二胺聚合而成,合成方法有一步法、二步法、三步法和气相沉积法。 2.1一步法 一步法是二酐和二胺在高沸点溶剂中直接聚合生成聚酰亚胺,即单体不经由聚酰胺酸而直接合成聚酰亚胺。该法的反应条件比热处理要温和得多,关键要选择合适的溶剂。为提高聚合物的相对分子质量,应尽量脱去水份。通常采用带水剂进行共沸以脱去生成的水,或用异氰酸酯替代二胺和生成的聚酰胺酸盐在高温高压下聚合。此法的控制工艺尚需完善,并正向实用化迈进。反应方程式如图1。 2.2二步法 二步法是先由二酐和二胺获得前驱体聚酰胺酸,再通过加热或化学方法,分子内脱水闭环生成聚酰亚胺。化学亚胺化法,即用脱水剂处理聚酰胺酸;化学环化后生成的聚酰亚胺中含有大量异酰亚胺,该法制得的聚酰亚胺与用加热方法制得的聚酰亚胺,物理和化学性能有差异,特别是异酰亚胺环具有较低的热稳定性和高化学反应活性;应用不同的脱水剂,环化产物中亚胺/异酰亚胺的比例不同,可认为是互变异构的高度不稳定所引起的。 二步法工艺成熟,但聚酰胺酸溶液不稳定对水汽很敏感,储存过程中常发生分解,所以又出现聚酰胺酸烷基酯法、聚酰胺酸硅烷基酯法等改进方法 聚酰亚胺的另一种前驱体聚酰胺酯,是一种相对稳定的聚合物,能以固态或溶液形式长期存放高相对分子质量的聚酰胺酯通常是由芳香二酸二酯经酰氯化后,与芳香二胺进行溶液缩聚或界面缩聚制得;聚酰胺酯受热或在有机碱的催化下发生酰亚胺化反应生成聚酰亚胺,但脱掉的小分子化

合物是醇或α-烯烃而不是水。中间体聚酰胺酯的溶解性好于聚酰胺酸,可溶于常用低沸点有机溶剂,如二氯甲烷、四氢呋喃等,并可获得高浓度溶液而且可通过改变酯基结构使聚酰胺酯性能各异,可用于制备高强高模材料,是合成聚酰亚胺的典型方法。但其酰亚胺化反应活性低,工艺复杂,制造成本高,有待优化。反应方程式如图2。 2.3三步法 三步法是经由聚异酰亚胺得到聚酰亚胺的方法。聚异酰亚胺结构稳定,作为聚酰亚胺的先母体,由于热处理时不会放出水等低分子物质,容易异构化成酰亚胺,能制得性能优良的聚酰亚胺。聚异酰亚胺是由聚酰胺酸在脱水剂作用下,脱水环化为聚异酰亚胺,然后在酸或碱等催化剂作用下异构化成聚酰亚胺,此异构化反应在高温下很容易进行。聚异酰亚胺溶解性好,玻璃化转变温度较低,加工性能优良。聚酰亚胺为不溶、不熔性材料,难于加工,通常采用先在预聚物聚酰亚胺阶段加工,但由于在高温下进行,亚胺化时闭环脱水易使制品产生气孔,导致制品的机械性能和电性能下降,难以获得理想的产品,作为聚酰亚胺预聚的聚异酰亚胺,其玻璃化温度低于对应的聚酰亚胺,热处理时不会放出水分,易异构化成聚酰亚胺,因此用聚异酰亚胺代替聚酰胺酸作为聚酰亚胺的前身材料,可制得性能优良的制品。该法较新颖,正受到广泛关注。 2.4气相沉积法 气相沉积法主要用于制备聚酰亚胺薄膜,反应是在高温下使二酸酐与二胺直接以气流的形式输送到混炼机内进行混炼,制成薄膜,这是由单体直接合成聚酰亚胺涂层的方法。

聚酰亚胺

聚酰亚胺 附件1:外文资料翻译译文 含有非共面的2,2'-二甲基-4,4'-二苯基单元 和纽结性的二苯甲撑键的高度有机可溶解的 聚醚酰亚胺的合成和特征 两种新的双醚酐2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯基二酐(4A)和双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐(4B)可以由三步反应制得。首先,由4-硝基邻苯二甲腈分别与2,2'-二甲基二苯基-4,4'-二醇和双(4-羧基苯基)二苯甲烷发生硝基取代,然后双醚四腈在碱性条件下水解和随后的双醚四酸脱水。一系列的新的高度有机可溶解的聚醚酰亚胺采用常规的两步合成法由双醚二酐和各样的二胺制得。制得的聚醚酰亚胺固有粘度在0.55-0.81dL/g范围内。GPC测量显示这些聚合物的数均分子量和重均分子量分别高达45000和82000所有的聚合物表现出典型的无定型衍射图样。几乎所有的聚醚酰亚胺都表现出优良的溶解性以及容易在不同的溶剂中,例如N-甲基-2-吡咯烷酮,N,N-二甲基乙酰胺(DMAC),N,N-二甲基甲酰胺,吡啶,环己酮,四氢呋喃和氯仿。这些聚合物的玻璃化转变温度在224-256℃范围内。热重分析表明这些聚合物都是稳定的,在氮气下10%重量损失点在489℃以上。等温重量分析结果说明这些聚合物在350℃的静态空气中等温老化的重量损失都在7.0-10.5%。具有韧性和柔性的聚合物膜可以通过其DMAC溶液浇注制得。这些膜的抗张强度具有84-116MPa,抗张模量具有1.9- 2.7GPa。 引言 芳香族聚酰亚胺由于其突出的热稳定性,因具有低介电常数而有优良的电绝缘性,对常用基 材具有好的黏附性,以及卓越的化学稳定性,及其在半导体和电子封装工业领域被广泛的应用。但是由于最初的聚酰亚胺是不溶不熔的,它们在许多领域的应用受到限制。因此,目前已经进行了大量的研究来寻找新的方法来绕过这些局限性. 改变聚酰亚胺回避化学结构的通用方法是引入柔性基团和/或庞大的单元到聚合物主链中。聚醚酰亚胺作为芳香族的亲核取代反应产物得到迅速发展,又成为与市场需要接轨的高性能的而且能够用注射挤出工艺制造的聚合物。General Electric Co.开发并商业化的Ultem 1000就是一个重要的例子,它表现出比较好的热稳定性和良好的力学性能另外还有良好的可塑性。 目前的研究主要集中在一系列新的有好的溶解性的聚醚酰亚胺的合成和特性化,主要基于包含异面的2,2'-二甲基-4,4'-二苯撑单元的4A和包含二苯甲撑纽结环的双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐的4B。在对位键合的聚合物链中结合2,2'-二取代的二苯撑降低了聚合物分子链间的相互影响。通过2,2'-二取代将苯环加在异面构象中,减弱了分子链间的分子间力,结晶倾向明显降低,溶解性显著提高。另外获得有机可溶性的聚酰亚胺的另一个有效途径是结合取代的甲撑键,例如异丙叉[(CH3)2C=]、六氟异丙叉和二苯甲撑单元,它们提供主链上的刚性苯环间的纽结,来提高聚合物的溶解性。聚合物主链中的纽结单元的出现降低了分子链的刚性,以至提高了聚合物的溶解性。试验发现有二苯甲撑单元的聚合物比含有异丙叉和六氟异丙叉单元的聚合物有更好的热稳定性。因此,结合异面的2,2'-二甲基-4,4'-二苯撑和纽结单元的二苯甲撑可以制成具有良好热稳定性的可溶性聚醚酰亚胺。不同的结构单元对聚合物性能的影响如溶解性、热稳定性和力学性能,这里也将讨论。

聚酰亚胺基础内容相关情况介绍大全

聚酰亚胺相关基础内容介绍大全 一、概述 聚酰亚胺是分子结构含有酰亚胺基团的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型PI、可溶性PI、聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。PI是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200℃~300℃,无明显熔点,具有高绝缘性能。另外,PI作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手并认为"没有聚酰亚胺就不会有今天的微电子技术"。 二、聚酰亚胺结构式 正象主链含酰胺结构的聚合物被称为聚酰胺,主链含亚胺结构的聚合物统称为聚酰亚胺。其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。相反具有环状结构的聚酰亚胺,特别是五员环状聚酰亚胺已知的品种很多,实用性很强。因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。环状聚酰亚胺与聚苯并咪唑等同是含氮的杂环聚合物的一种。

聚酰亚胺进一步还可分为由芳香族四羧酸和二胺为原料通过缩聚反应得到的缩聚型聚酰亚胺和双马酰亚胺经加聚反应(或缩加聚)得到的加聚型聚酰亚胺。其中前面的缩聚型聚酰亚胺是大家最熟悉也是应用最广的,一般所称的聚酰亚胺都是指这种缩聚型聚酰亚胺。具有代表性的聚酰亚胺就是由美国杜邦公司1960年开发成功,1965年商品化的二苯醚型聚酰亚胺。

聚酰亚胺

展开 1 名 词 定 义 2 介 绍 3 概 述 4 分 类

. 1 缩聚型聚酰亚胺 4 . 2 加聚型聚酰亚胺 4 . 3 子类 5 性能 6 质量指标

合 成 途 径 8 应 用 9 展 望 1名词定义 中文名称: 聚酰亚胺 英文名称: polyimide,PI 定义: 重复单元以酰亚胺基为结构特征基团的一类聚合物。具有耐高温、耐腐蚀和优良的电性能。 应用学科: 材料科学技术(一级学科);高分子材料(二级学科);塑料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 2介绍 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃, 无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。

英文名:Polyimide 简称:PI 聚酰亚胺 聚酰亚胺是指主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 4分类 4.1缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过聚酰亚胺 程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 4.2加聚型聚酰亚胺 由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺 聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂 其中最重要的是由NASA Lewis研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。RMR型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5 -降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。 4.3子类 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型P I,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

聚酰亚胺基础知识

聚酰亚胺 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料 聚酰亚胺是指主链上含有酰亚胺环的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 加聚型聚酰亚胺 由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺 聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂 其中最重要的是由NASA Lewis研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。RMR型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5-降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。

聚酰亚胺材料介绍

聚酰亚胺 一、概述 聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 二、聚酰亚胺的性能 1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。 2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。 3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa 以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(Upilex S)达到400Mpa。作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯二酐和对苯二胺合成的纤维可达 500Gpa,仅次于碳纤维。 4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。 5、聚酰亚胺的热膨胀系数在2×10-5-3×10-5℃,广成热塑性聚酰亚胺3×10-5℃,联苯型可达10-6℃,个别品种可达10-7℃。 6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。 7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω/cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。 8、聚酰亚胺是自熄性聚合物,发烟率低。 9、聚酰亚胺在极高的真空下放气量很少。 10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。 三、合成上的多种途径: 聚酰亚胺品种繁多、形式多样,在合成上具有多种途径,因此可以根据各种应用目的进行选择,这种合成上的易变通性也是其他高分子所难以具备的。 1、聚酰亚胺主要由二元酐和二元胺合成,这两种单体与众多其他杂环聚合物,如聚苯并咪唑、聚苯并哑唑、聚苯并噻唑、聚喹哑啉和聚喹啉等单体比较,原料来源广,合成也较容易。二酐、二胺品种繁多,不同的组合就可以获得不同性能的聚酰亚胺。

可溶透明聚酰亚胺的改性研究进展

可溶透明聚酰亚胺的改性研究进展 颜善银1,陈文求1,杨小进1,陈川1,徐祖顺 1,2 ,易昌凤 1,2 (1.湖北大学材料科学与工程学院,武汉 430062; 2.功能材料绿色制备与应用省部共建教育部重点实验室,武汉430062) 摘要:综述了合成可溶透明聚酰亚胺的改性方法,包括在聚合物主链中引入柔性结构单元,引入不对称性结构,引入大体积的侧基或三氟甲基取代基,引入扭曲的非共平面结构及其它方法如通过共聚合反应等手段来改善聚酰亚胺的溶解性、透明性、热稳定性及其它性能。关键词:聚酰亚胺;可溶;透明;改性 中图分类号:T M 215.1;T Q 316.6;T Q 323.7 文献标志码:A 文章编号:1009-9239(2009)05-0028-06 Research Pro g ress in Modification of Soluble and Trans p arent Pol y imide YAN Shan _yin 1 ,CHEN Wen _qiu 1 ,YANG Xiao _jin 1 ,CHEN Chuan 1 ,XU Zu _shun 1,2 ,YI Chang_feng 1,2 (1.Facul ty o f M at erial s Science and Engi neeri ng,H ubei Univ ersity ,W uhan 430062,Chi na; 2.M i nistr y _o f _Education Ke y Labrotor y f or the Gr een Pre p arat ion and A p p licat ion o f Funt ional M ater ials ,W uhan 430062,China ) Abstract :Aromatic p o l y imides are g enerall y insoluble in or g anic solvents,and exhibit low o p tical tr ans p ar enc y .These facts ma y limit their p ractical a pp licatio ns in some field s.Ther efore,much effo r t has been concentr ated on synthesizing soluble and tr ansparent polyimides.Some co mmonly used modification methods for so lub le and transparent polyimide were reviewed in this paper,in cluding the intr o ductio n of flexib le structure units,introduction of asymmetry structur es,intro duction of bulk y p endent substituents or tr ifluorometh y l substituents,intr o ductio n of twisted non-co p lanar structures and other methods such as co p o l y merization to im p rove the solubilit y of p ol y imide as well as the tr ans p ar enc y ,thermal stabilit y and other p ro p erties.Ke y words :polyimid e;soluble;transparent;modification 收稿日期:2009-05-21 基金项目: 十一五 国家科技支撑计划重点项目(2008BAC32B03)子课题 作者简介:颜善银(1985-),男,湖北武汉人,硕士生,研究方向为无色透明聚酰亚胺膜的合成及应用,(电子信箱)0406170006@https://www.360docs.net/doc/fb15458280.html,;易昌凤(1964-),女,湖北武汉人,教授,主要从事乳液聚合、功能高分子和超支化聚合物等的研究,(电子信箱)chan g fen gy i@https://www.360docs.net/doc/fb15458280.html, 。 1前言 芳香聚酰亚胺是一类高性能聚合物,其固有的强度和柔韧性、低密度、显著的热稳定性、耐辐射和机械强度,使芳香聚酰亚胺在微电子和航空宇宙方面有很大的应用。然而,由于主链的刚度和链间的强相互作用,大部分芳香聚酰亚胺有很高的熔融温度和软化温度,并且在大部分有机溶剂中不溶,这些性质使其很难加工,从而限制了它们的应用 [1-3] 。 高光学透明度可以扩大聚酰亚胺在光电材料方面的应用,例如,柔性的太阳辐射防护工具、液晶显示器取向膜、用于通讯连接的光波导材料、用于平面光波电路的光半波片。然而,大多数传统芳香族聚酰亚胺薄膜颜色普遍表现出从浅黄色到深褐色,这主要是由于链间电荷转移络合物(CT C)的形成和电子极化作用结果[4-5]。要制备无色透明聚酰亚胺,就要从分子水平上减少CTC 的形成。目前广泛采用的手段主要有: 采用间位取代的二胺单体,间位取代结构可以阻碍沿着分子链方向的电荷流动,减少分子间共轭作用,从而减少对可见光的吸收;!采用含供电子基团的二酐;?采用带有侧基或具有不对称结构的单体,侧基的存在以及不对称结构同样也会阻碍电子的流动,减少共轭;#在聚酰亚胺分子结构中引入含氟取代基。氟原子具有很大的电负性,可以切断电子云的共轭,抑制CT C 的形成;?

聚酰亚胺

热固性聚酰亚胺研究进展 摘要:热固性聚酰亚胺作为一类先进的基体树脂,在航空航天、印制电路板、高温绝缘材料等领域的应用不断扩大。相对于热塑性聚酰亚胺来说,热固性聚酰亚胺具有更好的可加工性能。而且,其加工窗口温度可通过变换不同反应性端基来实现。若选用合适的反应性端基,其在固化时无小分子挥发物放出。对热固性聚酰亚胺的研究现状分类作了综述,对降冰片烯、烯丙基降冰片烯、乙炔基、苯乙炔基、马来酰亚胺、苯基马来酰亚胺、苯并环丁烯等封端型热固性聚酰亚胺的研究进展进行了重点阐述。【1】。 关键字:聚酰亚胺热固性封端剂发展 概述 当世界上对芳环和杂环结构的高温聚合物的研究仍然相当活跃,尤其在高技术材料领域离不开高温聚合物的开发,如聚苯硫醚、聚醚矾、聚苯并咪哇、聚苯并唾哇、聚苯并哇、聚唾握琳和聚酰亚胺等,其中最为成功的材料数聚酸亚胺。聚酰亚胺原料易得价廉,机械性能、电学性能和摩擦性能等优异,被广泛应用于各个领域,其形式可以是纤维、薄膜和塑料等,其中用作复合材料的树脂基体成为重要的一部分。聚酰亚胺的复合工艺通常是把聚酞胺酸溶于极性溶剂如N一甲基毗咯烷酮、二甲基甲酞胺,用其浸渍纤维,最后亚胺化并压制成品。由于溶剂存在(亲和性好,极难除尽)会引起增塑,环化产生的水易导致形成多孔材料,影响最终材料的高温性能,因此,热固性聚酰亚胺引起研究者极大兴趣。热固性聚酰亚胺是一种含有亚胺环和反应活性端基的低分子量物质或齐聚物,在热或光引发下发生交联而无小分子化合物放出。按其结构可分为:降冰片烯封端的聚酰亚胺、乙炔封端的聚酰亚胺、苯并环丁烷封端的聚酰亚胺和马来酸醉封端的聚酸亚胺。 众所周知,环氧树脂加工性能优良,但温/湿性能差,而热固性聚酰亚胺兼有优异的耐热性能和加工性能,近几年来发展迅速。人们预言热固性聚酰亚胺将替代环氧树脂,把材料的性能等级提高一步。以下就热固性聚酰亚胺发展、应用和前景作些讨论【23】。 聚酰亚胺的研究进展 含乙炔基封端的聚酰亚胺 乙炔基封端的聚酰亚胺 含乙炔基封端剂主要是含乙炔基的芳香单胺和单酐。根据乙炔在封端剂中的位置不同,又可以分为乙炔基在链端的乙炔封端型和乙炔基在链中的以苯乙炔苯酐为代表的苯乙炔封端型。 华东理工大学国防工程材料研究所的黄发荣等用均苯四甲酸二酐 (PMDA )和 4,4'- 二氨基二苯醚用 3- 乙炔基苯胺(EA)封端,得到固体聚酰亚胺[1]。同样,以 4,4'- 氨基二苯醚和 4,4'- 氧双邻苯二甲酸酐(ODPA)和 4,4'- 二氨基二苯醚和双酚 A 醚双邻苯二甲酸酐(BEA)为原料分别合成乙炔基封端的聚酰亚胺。还分别合成了异酰亚胺,比较了两类物质的相关性能。以 ODPA 和 BEA 为二酐合成了新颖结构的乙炔基封端的聚酰亚胺,所合成的乙炔基封端的聚酰亚胺树脂在 230℃以上发生固化交联反应,具有流动性好、加工窗宽的特点。异酰亚胺的溶解性和在熔融状态下的流动性比聚酰亚胺好。 苯乙炔基封端的聚酰亚胺 使用4-苯乙炔基苯胺(4-PEA)作为反应性封端剂,和3,3c,4,4c-二苯醚

聚酰亚胺纳滤膜简介及性能表征

聚酰亚胺纳滤膜简介及性能表征 魏亮亮 安康学院化学化工系725000 摘要 随着膜分离技术的不断发展,生产具有稳定性能的纳滤膜迫在眉睫,目前主要的膜分离技术有反渗透(RO),超滤(UF),微滤(MF),透析(Dialysis),电渗析(ED)以及渗透汽化(PV)。纳滤(NF)是介于反渗透和超滤之间的一种膜分离技术。由于其操作压力较低, 对一、二价离子有不同选择性, 对小分子有机物有较高的截留性等特点, 所以近年来发展较快, 国外膜与膜组器已商品化, 因此本文主要介绍聚酰亚胺纳滤膜的制备及其简单的性能评价! [关键词]:聚酰亚胺,纳滤膜,性能表征

Polyimide Nanfiltration membrane profile and the performance characterization Wei Liangliang AnKang university Department of Chemistry and Chemical Engineering 725000 With the continuous development of the membrane separation technology, the production of the stability of the nanofiltration membrane is around the corner, at present the main membrane separation technology have reverse osmosis (RO), ultrafiltration (UF), the micro filter (MF), Dialysis (Dialysis), electrodialysis (ED) and pervaporation (PV). Nanofiltration (NF) is between the reverse osmosis and ultrafiltration membrane separation technology. Because its operating pressure is low, the price of one, two have different ion selective, organic matter of small molecules have higher intercept characteristics, so have fast development in recent years, foreign film and film group is already commercialization, so this paper mainly introduces the polyimide nanofiltration membrane preparation and simple performance evaluation. [key words] : polyimide, nanofiltration membrane, performance characterization

聚酰亚胺薄膜的改性分类及其在电子行业中的应用

聚酰亚胺薄膜的改性分类及其在电子行业中的 应用 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

聚酰亚胺薄膜的改性、分类及其在电子行业中的应用 摘要 聚酰亚胺是综合性能最佳的之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数,介电损耗仅~。而由于其在性能和合成方面的突出特点,不论是作为或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。由于上述聚酰亚胺在性能上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 首先是在薄膜上的应用:它是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的可作为柔软的太阳能电池底板。其次是在器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起作用,减少或消除器件的软误差。再则还可应用在电-光材料中:其用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 聚酰亚胺作为很有发展前途的高分子材料已经得到充分的认识,在绝缘材料中和结构材料方面的应用正不断扩大。在功能材料方面正崭露头角,其潜力仍在发掘中。 关键词:聚酰亚胺;薄膜;低介电常数;电子工业 1.引言

聚酰亚胺(PI)是重复单元中含有酰亚胺基团的芳杂环高分子化合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,如良好的力学性能、耐高温性能、尺寸稳定性、耐溶剂性等,成功应用于航空、航天、电子电器、机械化工等行业。随着微电子工业的不断发展,对相关材料的耐热性能以及介电性能等提出了更高的要求,这为PI材料在微电子领域内的应用起到了极大的推动作用[1]。而随着科技的日新月异与工业技术的蓬勃发展,聚酰亚胺薄膜(Polyimide Film,简称PI)除能符合各类产品的基本物性要求,更具备高强度、高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,可符合轻、薄、短、小之设计要求,是一种具有竞争优势的耐高温的绝缘材料。经过四十多年的发展,已经成为电子、电机两大领域上游重要原料之一,广泛应用于软板、半导体封装、光伏(太阳能)能源、液晶显示器等电子领域,在电机领域应用于航天军工、机械、汽车等各产业绝缘材料[2]。本论文通过介绍聚酰亚胺膜的各种改性方法及研究进展,来进一步认识其在电子行业中的应用。 2.对聚酰亚胺的不同改性尝试 根据Clausius-Mosotti方程,材料的介电常数与其摩尔极化率和摩尔体积 密切相关[3]。如果分子的对称性好,在外加电场中不容易被极化,材料就具有较低的介电常数,如有机高分子;若分子变形能力强容易被极化,材料就具有较高的介电常数,如金属离子。因此,要得到低介电常数PI 绝缘材料,一种行之有效的方法就是引入原子序数小的元素,如氟元素,并减少离子键的数目。降低PI 介电常数的方法主要包括引入氟原子降低PI的极化率、引入硅氧烷增大PI 分子的自由体积、引入孔洞降低PI 材料的密度等。事实上,这些方法常常被结合起来使用以达到更好的效果[4]。

功能型聚酰亚胺薄膜研究进展

引言聚酰亚胺(PI )薄膜是以酰亚胺环为结构特征的杂环高分子材料,在200~400℃内具有优异的力学性能、电气性能、耐热性和耐辐射性能等,是一类综合性能优良的绝缘材料[1]。随着航空、轨道交通以及电子信息等诸多技术领域日新月异的发展,市场和产品的不断细分以及新兴研究领域的开拓,传统的PI 膜已经不能满足市场的多元化需求。为此,国内外研究人员一方面通过特殊单体来制备具有特殊功能的PI 膜,另一方面通过添加功能型纳米填料来改性传统PI 膜,以满足不同领域对PI 膜的性能要求,这两种手段都取得了一定的进展[2]。1 透明聚酰亚胺薄膜 传统的PI 膜,例如杜邦公司的Kapton H 系列或者钟渊化学公司的Apical 系列,均为均苯型聚酰亚胺薄膜,可见光透过率低,在400nm 波长附近即被100%吸收,因此薄膜呈棕黄色。目前随着光电通讯领域迅速的发展,光电封装材料、光伏材料、光波导材料以及液晶显示器领域的取向膜材料都迫切需要光学性能好、介电常数低、热稳定性好以及 力学性能优异的薄膜材料,越来越多的人开始关注 透明聚酰亚胺薄膜的研发。 张丽娟等[3]通过自行合成含氟单体3-双(4-氨基-2-三氟甲基苯氧基)苯(DARes-2TF ),与二酐反应并涂膜、热亚胺化,得到无色透明聚酰亚胺薄膜,其吸水率仅为0.66%,具有良好的疏水性;初始分解温度511.9℃,失重5%时的温度为522.5℃,948.8℃时仍有超过50%的残余,说明耐热性能较好;紫外截至波长365nm ,420nm 处的透光率均超过80%。表明材料在相当宽的光谱范围内具有较高的透明性。 刘金刚等[4]分别使用两种含硫芳香足二胺单体4,4′-双(4-氨基苯硫基)二苯硫醚(3SDA )、2,7-双(4-氨基苯硫基)噻蒽(APTT )与脂环族二酐单体2,3,5-三羧基环戊烷基乙酸二酐(TCAAH )反应并制膜,得到两种半脂环透明聚酰亚胺薄膜,在400~700nm 波长范围内具有优良的透明性,在400nm 处的透光率超过85%,但是原材料价格昂贵,难以规模化生产。 B K Chen 等[5]使用不同比例的1,4-双(4-氨基-2-三氟甲基苯氧基)苯(BATB )和2,7-双(4-氨基苯氧基)萘(BAPN )两种二胺与六氟双酚A 二酐反应,并热亚胺化得到一种透明的聚酰亚胺,其介电常数较低,而且随着含氟基团含量的提高,聚酰亚 —————————————收稿日期:2012-11-28 修回日期:2013-03-02 作者简介:廖波(1982-),男(汉族),湖南岳阳人,硕士,主要从事高分子材料的合成及应用研究。 功能型聚酰亚胺薄膜研究进展 廖 波,张步峰,王文进,田苗,周 升 (株洲时代电气绝缘有限责任公司,湖南株洲 412100) 摘要:概述了功能型聚酰亚胺(PI )薄膜的主要种类和特点,分别介绍了透明聚酰亚胺薄膜、耐电晕聚酰亚胺薄膜、黑色聚酰亚胺薄膜、导电聚酰亚胺薄膜和高导热聚酰亚胺薄膜的研究进展,并对功能型薄膜将来的发展趋势进行了展望。关键词:功能型;聚酰亚胺薄膜;纳米;研究进展中图分类号:TM215.3文献标志码:A 文章编号:1009-9239(2013)05-0021-04 Research Progress of Functional Polyimide Film Liao Bo,Zhang Bufeng,Wang Wenjin,Tian Miao,Zhou Sheng (Zhuzhou Times Electric Insulation Co.,Ltd.,Zhuzhou 412100,China ) Abstract :The main types and characteristics of functional polyimide films were summarized,and the re-search progress of transparent polyimide film,corona-resistance polyimide film,black polyimide film,elec-trically conductive polyimide film and high thermal conductive polyimide film was reviewed,and then the future development trend of functional polyimide films was prospected.Key words :functional;polyimide film;nano;research progress

相关文档
最新文档