详解5项国家电动车充电接口及通信协议标准

详解5项国家电动车充电接口及通信协议标准

质检总局、国家标准委联合国家能源局、工信部、科技部等部门,在京发布新修订的电动汽车充电接口及通信协议5项国家标准。

中国于2011年12月22日颁布了自己的电动汽车充电接口和通信协议4项国家标准。但是,对充电时的电流、电压、功率等细节并未进一步地做出详尽要求。此次5项标准修订电动车充电接口在硬件和软件层面最终实现了统一,全面提升了充电的安全性和兼容性。本文将对新国标做详细解读。

充电接口标准几经修订

中国在2006年就发布了《电动汽车传导充电用插头、插座、车辆耦合器和车辆插孔通用要求》(GB/T20234-2006),这个国家标准详细规定了充电电流为16A、32A、250A交流和400A直流的连接分类方式,主要借鉴了国际电工委员会(IEC)2003年提出的标准,但是这个标准并未规定充电接口的连接针数、物理尺寸和接口定义。2011年,中国又推出了GB/T20234-2011推荐性标准,替换了部分GB/T20234-2006中的内容,其中规定:交流额定电压不超过690V,频率50Hz,额定电流不超过250A;直流额定电压不超过1000V,额定电流不超过400A。

此次新国标的充电接口标准提高了电压和电流等级,并且调整了信号针和机械锁的部分尺寸,明确了电子锁的有关要求等。

另一方面,新标准对充电设备是有很大好处的,对充电设备的推广应用有很大帮助。在此前充电设备面临谁建谁用的问题,国标重点统一了充电桩通信协议,这意味着电动车充电接口在硬件和软件的标准层面最终实现了统一,这将提高充电设备的利用率。

新国标都有哪些改变

相对于旧标准,新标准改动很多,有一些是细节上优化,譬如充电接口标准本次修订提高了电压和电流等级,从而提高了充电功率,缩短了充电的时间,并且调整了信号针和机械锁的部分尺寸,优化了连接时序等。

1.通用要求

一张图秒懂电动汽车充电接口及通信协议新国标概要

一张图秒懂电动汽车充电接口及通信协议新国标 截至2015年底,全国已建成充换电站3600座,公共充电桩4.9万个,较上年增加1.8万个,同比增速58%。 作为实现电动汽车传导充电的基本要素,电动汽车充电用接口及通信协议技术内容的统一和规范,是保证电动汽车与充电基础设施互联互通的技术基础。 2015年12月底,质检总局、国家标准委、国家能源局、工信部、科技部等部门联合在京发布了新修订的《电动汽车传导充电系统第1部分:一般要求》、《电动汽车传导充电用连接装置第1部分:通用要求》、《电动汽车传导充电用连接装置第2部分:交流充电接口》、《电动汽车传导充电用连接装置第3部分:直流充电接口》、《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》等5项电动汽车充电接口及通信协议国家标准。新标准于2016年1月1日起正式实施。 新标准有何亮点? 此次5项标准修订全面提升了充电的安全性和兼容性。在安全性方面,新标准增加了充电接口温度监控、电子锁、绝缘监测和泄放电路等功能,细化了直流充电车端接口安全防护措施,明确禁止不安全的充电模式应用,能够有效避免 发生人员触电、设备燃烧等事故,保证充电时对电动汽车以及使用者的安全。 在兼容性方面,交直流充电接口型式及结构与原有标准兼容,新标准修改了部分触头和机械锁尺寸,但新旧插头插座能够相互配合,直流充电接口增加的电子锁止装置,不影响新旧产品间的电气连接,用户仅需更新通信协议版本,即可实现新供电设备和电动汽车能够保障基本的充电功能。交流充电占空比和电流限值的映射关系与国际标准兼容,并为今后交流充电的数字通信预留拓展空间。 新标准有何意义? 目前,我国电动汽车直流接口、控制导引电路、通信协议等国家标准与美国、欧洲、日本并列为世界4大直流充电接口标准。

纯电动汽车通信协议(V1.1)

纯电动汽车通信协议版本号:V1.0(2016/08/18) 武汉合康动力技术有限公司

更改记录:

目录 一:整车网络拓扑结构: - 4 - 二:通讯协议制定的原则- 4 - 三:Can网络节点地址分配- 6 - 四:电池管理系统协议- 7 - 4.1电池基本信息 ID:0x18F201F3 ........................................................................................ - 7 - 4.2电池基本信息2 ID:0x18F202F3 ..................................................................................... - 7 - 4.3电池故障报警信息 ID:0x18F205F3 ................................................................................ - 9 - 4.4电池单体最高电压信息1 ID:0x18F206F3 ................................................................... - 12 - 4.5电池单体最高电压信息2 ID:0x18F207F3 ................................................................... - 12 - 4.6电池单体最低电压信息1 ID:0x18F208F3 ................................................................... - 13 - 4.7电池单体最低电压信息2 ID:0x18F209F3 ................................................................... - 14 - 4.8电池最高温度信息 ID:0x18F20AF3 ............................................................................. - 14 - 4.9电池最低温度信息 ID:0x18F20BF3.............................................................................. - 15 - 4.10电池极柱温度信息1 ID:0x18F210F3 ......................................................................... - 16 - 4.11电池极柱温度信息2 ID:0x18F211F3 ......................................................................... - 16 - 4.12电池极柱温度信息3 ID:0x18F212F3 ......................................................................... - 17 - 4.14电池箱体在线状态 ID:0x185017F3 ............................................................................ - 18 - 4.15电池组基本信息1(厂家容量) ID: 0x18F20CF3 ..................................................... - 19 - 4.16电池组基本信息2(序列号) ID:0x18F221F3 ........................................................ - 20 - 4.17电池组基本信息3(总能量) ID:0x18F222F3 ........................................................ - 21 - 4.18电池组充电状态(此帧只在充电过程中发出)ID 0x18F20DF3 .............................. - 21 - 4.19绝缘检测仪 ID: 0x1819A1A4....................................................................................... - 22 -五:整车控制器(VCU) 协议- 24 - 5.1整车控制器状态信息1 ID:0x18F101D0......................................................................... - 24 - 5.2整车控制器状态信息2 ID:0x18F103D0......................................................................... - 26 - 5.3VCU使能控制 ID:0x18F105D0 ....................................................................................... - 26 - 5.4高压柜状态信息 ID:0x18F106D0.................................................................................... - 27 -六:电机控制器(MCU) - 28 - 6.1AMT控制器报文1 ......................................................................................................... - 29 - 6.2驱动电机控制器报文1 (驱动电机反馈报文) ................................................................ - 30 - 6.3驱动电机控制器报文2 (驱动电机反馈报文) ................................................................ - 31 -七:高压附件控制器(发送) - 33 - 7.1助力油泵发送报文状态ID 0x0CF601 A0 ...................................................................... - 33 - 7.3气泵发送报文状态ID 0x0CF603 A2 .............................................................................. - 34 -八:仪表- 36 - 8.1车辆状态信息 ID:18F40117 ........................................................................................... - 36 - 8.2车辆里程信息 ID:18F40217 ........................................................................................... - 37 -

新国标电动汽车充电CAN报文协议解析.

新国标电动汽车充电CAN报文协议解析 说明: 多字节时,低字节在前,高字节在后。 电流方向:放电为正,充电为负。 一、握手阶段: 1、ID:1801F456(PGN=256 (充电机发送给BMS请求握手,数据长度8个字节,周期250ms BYTE0辨识结果(0x00:BMS不能辨识,0xAA:BMS能辨识 BYTE1充电机编号(比例因子:1,偏移量:0,数据范围:0~100 BYTE2充电机/充电站所在区域编码,标准ASCII码 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 2、ID:180256F4(PGN=512 (BMS发送给充电机回答握手,数据长度41个字节,周期250ms,需要通过多包发送,多包发送过程见后文

BYTE0BMS通信协议版本号,本标准规定当前版本为V1.0,表示为: byte2,byte1---0x0001,byte0---0x00 BYTE1 BYTE2 BYTE3电池类型,01H:铅酸电池;02H:镍氢电池;03H:磷酸铁锂电池;04H:锰酸锂电池;05H:钴酸电池;06H:三元材料电池;07H:聚合物锂离子 电池;08H:钛酸锂电池;FFH:其它电池 BYTE4整车动力蓄电池系统额定容量/A·h,0.1A·h/位,0A·h偏移量,数据范 围:0~1000A·h BYTE5 BYTE6整车动力学电池系统额定总电压/V,0.1V/位,0V偏移量,数据范 围:0~750V BYTE7 BYTE8电池生产厂商名称,标准ASCII码 BYTE9 BYTE10 BYTE11 BYTE12电池组序号,预留,由厂商自行定义 BYTE13 BYTE14 BYTE15

最新电动汽车传导式充电接口(QCT841—2010)

本标准规定了电动汽车传导式充电接口的术语与定义、技术参数、充电模式、分类及功能定义、结构尺寸、性能要求、试验方法和检验规则。2010-11-22发布,2011-03-01 本标准的附录A和附录B为资料性附录,附录C为规范性附录。 本标准由全国汽车标准化技术委员会提出并归口。 本标准起草单位:天津清源电动车辆有限责任公司、中国电力科学研究院、中国汽车技术研究中心、深圳市比亚迪汽车有限公司、奇瑞汽车股份有限公司、安费诺精密连接器(深圳)有限公司、苏州工业园区多思达科技有限公司、北京交通大学、北京理工大学、河南天海电器有限公司。 本标准主要起草人:赵春明、吴志新、贾俊国、孟祥峰、张建华、李庆、李磊、周光荣、王震坡、姜久春、尹家彤、辛明华、方运舟、刘桂彬、武斌、吴尚洁、左海清。 电动汽车传导式充电接口 Electric vehicle conductive Charge coupler 1 范围 本标准规定了电动汽车传导式充电接口的术语与定义、技术参数、充电模式、分类及功能定义、结构尺寸、性能要求、试验方法和检验规则。 本标准规定了两种充电接口,一种是为车载充电机提供交流电能的接口,另一种是为电动汽车提供直流电能的接口。 本标准适用于电动汽车用的交流额定电压为220V和直流额定电压不超过750V 的充电电缆和电动汽车连接侧的传导式充电接口,充电电缆与非车载充电设备或交流供电设备之间的传导式充电接口可参照执行。 2 规范性引用文件 下列文件中的条款,通过在本标准中引用而成为本标准的部分条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然

电动汽车动力电池系统国标.

电动汽车动力电池系统国标 国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求——操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。一、构建标准体系 电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。 随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。 新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将 加速动力电池行业的洗牌,提高行业集中度水平。序号 1新标准旧标准31484-2015电动汽车用动力蓄电池循环QC/T743-2006电动车用锂离子蓄电池 231485-2015电动汽车用动力蓄电池安全QC/T743-2006电动车用锂离子蓄电池331486-2015电动汽车用动力蓄电池电性QC/T743-2006电动车用锂离子蓄电池431467.1-2015电动汽车用锂离子动力蓄 1部分:高功率应用测试规程 531467.2-2015电动汽车用锂离子动力蓄

新版电动汽车充电接口及通信协议国家标准发布

新版电动汽车充电接口及通信协议国家标准发布 2015年12月28日,质检总局、国家标准委联合国家能源局、工信部、科技部等部门在京召开新闻发布会,发布新修订的《电动汽车传导充电系统第1部分:一般要求》、《电动汽车传导充电用连接装置第1部分:通用要求》、《电动汽车传导充电用连接装置第2部分:交流充电接口》、《电动汽车传导充电用连接装置第3部分:直流充电接口》、《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》等5项电动汽车充电接口及通信协议国家标准,新标准将于明年1月1日起实施。质检总局党组成员、国家标准委主任田世宏,国家能源局副局长郑栅洁出席会议并讲话。 电动汽车充电用接口及通信协议作为实现电动汽车传导充电的基本要素,其技术内容的统一和规范,是保证电动汽车与充电基础设施互联互通的技术基础。此次5项标准修订全面提升了充电的安全性和兼容性。在安全性方面,新标准增加了充电接口温度监控、电子锁、绝缘监测和泄放电路等功能,细化了直流充电车端接口安全防护措施,明确禁止不安全的充电模式应用,能够有效避免发生人员触电、设备燃烧等事故,保证充电时对电动汽车以及使用者的安全。在兼容性方面,交直流充电接口型式及结构与原有标准兼容,新标准修改了部分触头和机械锁尺寸,但新旧插头插座能够相互配合,直流充电接口增加的电子锁止装置,不影响新旧产品间的电气连接,用户仅需更新通信协议版本,即可实现新供电设备和电动汽车能够保障基本的充电功能。交流充电占空比和电流限值的映射关系与国际标准兼容,并为今后交流充电的数字通信预留拓展空间。 目前,我国电动汽车直流接口、控制导引电路、通信协议等国家标准与美国、欧洲、日本并列为世界4大直流充电接口标准,显著提升了中国在国际充换电领域的影响力。 田世宏指出,新标准对充电接口和通信协议进行了全面系统的规范,为充电设施质量保证体系提供了技术保障,确保了电动汽车与充电设施的互联互通,避免了市场的无序发展和充电“孤岛”,有利于降低因不兼容而造成的社会资源浪费,对促进电动汽车产业政策落地,增强购买使用电动汽车消费信心将起到积极的促进作用。下一步,质检总局和国家标准委将会同国家能源局、工信部等有关行业部门加强对新标准的宣传培训和贯彻实施,加快推动产业政策引用新标准,推动充电设施产品认证与准入管理制度使用新标准,促进充电设施和电动汽车生产企业按新标准组织生产,已建、在建充电设施要按新标准进行更新升级换代。同时,国家标准委将加快完善电动汽车充电设施标准体系,加强充电设施互操作性测试、充电站安全防范、运营服务等配套标准的制定工作,为充电设施管理、运营、维护等各环节提供有力的技术支撑。 郑栅洁指出,当前我国正处电动汽车大规模推广和充电基础设施广泛布局的初期,新标准的发布实施,将有效避免因充电设施与车辆不兼容问题可能造成的社会资源浪费,方便电动汽车用户使用,促进我国电动汽车和充电基础设施快速发展。下一步,国家能源局将加快充电基础设施的建设,强化新标准的实施,进一步规范充电基础设施行业准入,把符合新国标作为充电设施市场准入的条件之一,加强新标准的执行约束性和强制性。同时,国家能源局还将开展充电设施互操作性测试活动,开展充电服务平台的信息互通标准研制,实现充电结算的互联互通,进一步提高设施通用性和开放性,促进电动汽车及充电基础设施产业规范、健康、可持续发展。 据统计,目前全国已建成充换电站3600座,公共充电桩4.9万个,较去年底增加1.8 万个,同比增速58%。 (来源:国家标准委)

电动自行车新国标的新要求

电动自行车新国标的新要求 作者:刘坤 来源:《电动自行车》 2018年第2期 近年来,轻便、快捷的电动自行车越来越受到人们的青睐。然而,随着电动自行车数量的增加,由其引发的交通 事故、火灾等安全问题也逐渐凸显。本文着重介绍了《电动自行车安全技术规范》国家标准报批稿(以下简称“新国标”)中提到的对电动自行车在最高车速、整车重量和外形方面的新要求。 1.提高了最高车速和整车重量指标 与此前的标准相比,新国标适当提高了两项指标,其中一项是把最高车速由20 km/h调整为25 km/h,把含电池 在内的整车重量由40 kg调整为55 kg。 为什么电动自行车最高车速增加了5 km,上限是25km/h?《电动自行车安全技术规范》国家标准工作组组长、 中国电子技术标准化研究院副院长陈大纪解释:“这也是考虑了一些群众出行的要求,出行的范围可能越来越远,要求 办事的效率越来越高了,在考虑安全性的基础上适当地进行了一些放宽,也借鉴了欧盟现在是25 km/h,日本现在是 24 km/h。” 同时,新标准也在确保广大消费者基本出行需求的前提下,促进了道路交通所有参与者的共同利益最大化。从使 用方便角度上讲,很多消费者希望电动车性能越来越好,但是电动自行车只是交通参与者的一部分,要综合考虑各方 利益,追求出行效率和交通安全的最大化。和旧标准比,新标在整车重量方面进行适当放宽,也是兼顾到消费者出行 范围扩大的需求。 2.强化了电动自行车的脚踏骑行功能 新国标中强化了电动自行车的脚踏骑行功能,符合新国标的电动自行车有一个最明显的特征,即必须有脚踏板。 对此,陈大纪解释说:“电动自行车必须具有脚踏骑行功能,从根本上是为了与电动轻便摩托车等其他机动车产品相区别,这也是电动自行车能够纳入非机动车管理的必要前提。脚踏骑行功能不是新增的,电动自行车说到底还是自行车,自行车要求具备有人力骑行的功能,必须要有脚踏功能。” 事实上,这一标准的根本意义,在于明确了符合标准的电动自行车是非机动车,而不是电动轻便摩托车。因为电 动轻便摩托车属于机动车,要在机动车道内行驶,驾驶人要取得驾驶资格,车辆要经公安机关交通管理部门核发行驶 证和号牌,并投保第三者责任强制保险后方可上路行驶。但当前超标的电动自行车享受了电动轻便摩托车的速度、载 重等便利,却没有提供上述相应的安全保障。 新国标设置了最高车速、整车重量、电动机功率、电池电压、外形尺寸、防火阻燃等关键指标,将全面提升电动 自行车的安全性能。 (稿件来源:光明日报) (编辑:季晨宸)

中国的电动汽车标准体系

中国的电动汽车标准体系 ——2011《汽车与配件》-平安证券新能源汽车研讨会系列报告(二) 何云堂:教授级高工,全国标委会电动车分委会委员、灯光分委会主任委员、全国燃料电池标分委委员、联合国《燃料电池汽车全球技术法规》(HFCV-GTR)专家组中方负责人、联合国灯光专家组(UN/ECE/WP29/GRE)中方负责人、ISO标准《电动摩托车术语》负责人、起草人。 电动汽车标准体系 电动汽车标准体系由三部分组成。一是整车标准,有纯电动车、混合动力车、燃料电池车和电动摩托车;二是电动汽车部件标准主要是储能装置——蓄电池、超级电容器、燃料电池,还有电机及控制器;第三部分是基础设施标准,有能源动力、站车通信及接口、能源补给(见图1)。 在制定我国电动汽车标准时应做一下分析: ·电动汽车标准是汽车标准体系新的组成部分,传统燃油汽车及部件标准也在不同程度上适用于各类电动汽车。 ·以现有的国际标准法规(ECE、ISO、IEC)和应用较广泛国外先进标准(如SAE、EN、JEVS)为参照,结合我国电动汽车产品研发情况制定。 ·针对燃油汽车标准不适用电动汽车的结构、部件特点,除提出基础标准、结构安全要求及部分部件性能要求,大部分为测试方法标准,避免对产品设计和技术发展的限制。 ·标准仍有待完善和提高,依赖于我国企业的技术创新。 ·积极跟踪,参与国际标准法规的制定,如燃料电池汽车标准在国际上非常少,很多是国家自行制定的。 因此,制定电动汽车标准是环境保护及能源安全需要,是节约能源和发展新能源汽车的需要。国家在“九·五”和“十·五”期间重点进行燃气汽车、电动汽车(纯电动汽车、混合动力汽车)标准的研究和制定工作,初步建立了我国技术标准体系,并进行了燃料电池汽车标准体系的研究,“十一五”期间重点进行燃料电池汽车、替代燃料标准的研究与制定工作及基础标准的完善。 我国在制定新能源汽车相关技术标准体系时得到国家科技部、发改委、国家标委会的高度重视和支持、国家多项政策制定,促进和推动新能源汽车的标准制定工作。 电动汽车标准制定机构和制定 1.电动汽车标准制定的组织机构(见图2) ·全国汽车标准化技术委员会(SAC/TC114)下设29个分技术委员会,电动车辆分技术委员会使其中的一个。 ·1998年经过国标委批准,在全国汽车标准化技术委员会下组建电动车辆分技术委员会(SAC/TC114/SC27)。 ·负责全国电动车辆等专业领域标准化工作。 *电动汽车标准体系研究。 *纯电动汽车、混合动力汽车、燃料电池汽车、电动摩托车整车及零部件标准的研究制定。 *对口ISO/TC22/SC21(国际标准化组织/道路车辆技术委员会/电驱动道路车辆分委会),TEC/TC69(国际电工委员会,电驱动道路车辆和电动工业用载货车技术委员会)开展工作。

全国各地低速电动车政策大汇总(上)

全国各地低速电动车政策大汇总(上) 又到年中,纵观四轮低速电动车行业,标准未定,政策未出,前景似乎不是十分的明朗。但是不可否认的是,一直以来,整个低速电动车顶住来自各方的压力,层层突围,表现了强劲的市场生命力。那么在旺盛的市场生命力下,低速电动车在全国各地的的政策“待遇”究竟怎样呢?接下来中国电动汽车网将连续二期为大家盘点全国各省市低速电动车政策详情,为大家呈现出低速电动车行业政策全景。请各位看官按照各省首字母查找,行业政策大事,应有尽有。首字母A 安徽省关键语句总结:满篇红中一点绿NO.1 安徽省合肥市:合肥市人民政府2014年3月21日发布《关于规范四轮电动车销售和使用管理的通告》。通告严禁任何单位或个人生产、销售无生产许可证、产品合格证和质检报告的非法四轮电动车,严禁四轮电动车违规上路行驶,违反者由质量技术监督部门、工商行政管理部门依照相关法律法规予以查处。法规要求广大市民购买合法生产、销售的电动车,并依法办理登记手续。做到不购买不符合车辆登记条件的各类电动车;已购买的消费者,可以通过消费者协会和司法途径等,开展相关维权活动。NO.2 安徽省马鞍山市:马鞍山市人民政府2014年1月26日发布《关于取缔上道路行驶封闭式三、四轮载人电动车的通

告》。通告规定凡未纳入国家机动车登记范围,未经公安交管部门核发牌证的封闭式三、四轮载人电动车,一律不得在全市范围内上道路行驶。对违法销售封闭式三、四轮载人电动车的经营者,工商行政管理部门依据相关法律法规给予相应处罚。并要求广大市民不要购买不符合机动车登记条件的各类电动车。NO.3 安徽省阜阳市:2009年3月24日,安徽阜阳发布《阜阳市电动汽车管理暂行办法》。规定需要上道路行驶的电动汽车,按照国家有关标准和规定,由市公安交通管理部门参照国家标准式样制作相关临时牌照,可加入电或电动字样,以区别其他车辆,便于管理。电动汽车的驾驶人员应当按照国家有关规定取得机动车驾驶相关证件。在国家没有明确规定前,为支持电动汽车产业的发展,鼓励企业技术创新,对电动汽车按照国家、省、市、有关规定减免相关规定。NO.4 安徽省淮南市:2014年5月12日上午,淮南市政府第35次常务会议审议并原则通过了《全市开展封闭式三、四轮载人电动车整治联合执法工作实施方案》。要求相关部门要细致开展工作,摸清底数,分清人员,区别对待;要完善方案,联合执法,综合施策;要坚持属地管理,县区统一行动,依法联合整治,确保社会稳定;要进一步建章立制,实现常态化管理。首字母B 北京及周边地区关键语句总结:国字号发声,春天还会远么?NO.1 北京地区:2013年9月17

纯电动物流车技术方案及产品技术协议

纯电动物流车技术方案及产品技术协议 协议编号: 签订日期: 签订地点:

技术协议 甲方(购货方): 乙方(供货方):武汉XXXX技术有限公司 甲、乙双方本着诚实守信、互惠互利的原则,经友好协商,达成如下技术协议:一、概要 本协议为甲乙双方针对甲方H6纯电动物流车方案及乙供产品采购事宜达成的技术协议,主要就甲乙双方在此项目中的技术要求和验收规范等进行技术约定。该技术协议将作为采购乙供产品的的商务合同附件,具有相应的法律效应。 二、合作内容 乙方为甲方提供6M海狮纯电动商务客车用整车控制器、电机驱动器、辅助动力控制器,其作用为: 1.整车控制器:HK-VCUON1-03 1)接受处理驾驶员的操作指令,并向各部件发送控制指令。 2)与电机、辅助动力控制器、BMS等通过CAN进行通讯,对数据进行采集和控制。 3)接受各部件的信息,并将整车的运行状态通过仪表显示出来。 4)系统故障的判断、记录。 2.电机驱动器:HIE100-384T260-90-1S-HK 接收整车控制器指令,控制电机转速及输出转矩。 3.驱动电机:HIE170-T220-50-3S-WT

接受电机驱动器控制为整车提供可控稳定的驱动力。 4.三合一辅助动力控制器:HIEG380-3DCP-1S-HK02,包含: 1)DCDC直流电源,给车载蓄电池充电并为低压部件提供直流电源。 2)车载充电机,外接交流电源,实现动力电池的充电。 3)箱内集成高压配电柜,为车载高压电器分配电力并提供相应保护。 5.DCAC动力控制器:HIE160-D380T220-3.7-1F-12V-HK 给助力转向油泵提供交流电源。 三、引用标准及法规

电动汽车传导式充电接口全球标准介绍

电动汽车传导式充电接口全球标准介绍 电动汽车的发展正在推动汽车,电力及能源产业的变革。在这一新兴产业中,标准化的进程至关重要,比如关于电动汽车和充电基础设施之间的充电接口标准,就影响了不同车型在不同国家和地区的电网之间如何快速,简便的进行电能的补充。 目前全球主要采用的传导式充电接口系统有: IEC 62196-1,2:2012年1月发布,主要被欧洲国家所采用的交流充电标准。 IEC 62196-3:目前还在制定过程中,预计2014年制定完成。主要内容是对直流充电接口的定义。 SAE J1772:2010年1月发布,是最早实施的充电接口标准,被美国及日本广泛使用。其5芯的交流充电接口,在IEC 62196-2中被定义为type 1接口。 CHAdeMO:该协会于2010年3月15日成立,成员单位大多数来自日本,主旨为推进快速充电规格在日本的统一,因此主要被日本车厂所采用。 GB/T 20234.1,2,3-2011:2011年12月颁布,2012年3月实施,共三部分组成,形式接近于 IEC 62196-1,2,3。虽然目前是国标推荐标准,但解决了中国国内不同地区,不同电网公司,充电接口不统一的问题。 为了更好的对标准进行介绍,下面先列举标准中常用的充电接口术语定义(图1)。

图1 标准中对充电接口各部分的术语定义 供电插座 socket-outlet:供电接口中和电源供电线缆或供电设备连接在一起且固定安装的部分。 供电插头 plug:供电接口中和充电线缆连接且可以移动的部分。 车辆插座 vehicle inlet:车辆接口中固定安装在电动汽车上,并通过电缆和车载充电机或车载动力蓄电池相互连接的部分。 车辆插头 vehicle connector:车辆接口中和充电线缆连接且可以移动的部分。 不同标准的车辆插座界面比较(图2) 图2 各国主要充电接口标准的比较 传导式充电采用的方式 在目前的电动汽车传导式电能补给过程中主要采用两种方式:直流充电(DC)和交流充电(AC)。一般来说由于直流非车载充电机可以产生较高的功率(100kW以上),所以充电时间较短,多用于需要快速充电的场合。而交流充电一般直接采用民用的220V或110V电压通过车载充电机对电池进行电能补充,由于受到车载充电机体积和散热条件的限制,其功率通常在7kW以下,所以充电时间较长,因此常利用夜间峰谷电对电动汽车进行交流慢速充电。 交流充电 交流充电由于受不同国家和地区电网系统的影响,在充电标准中对充电连接器电压和电流的要求也

新国标电动汽车充电CAN报文协议解析

CAN新国标电动汽车充电报文协议解析说明:多字节时,低字节在前,高字节在后。电流方向:放电为正,充电为负。一、握手阶段:1、ID:1801F456(PGN=256)(充电机发送给BMS请求握手,数据长度8个字节,周期250ms)BYTE0辨识结果(0x00:BMS不能辨识,0xAA:BMS能辨识)BYTE1充电机编号(比例因子:,偏移量:,数据范围:)100~100BYTE2充电机充电站所在区域编码,标准码/ASCIIBYTE3BYTE4BYTE5BYTE6BYTE7、2ID:180256F4(PGN=512)(发送给充电机回答握手,数据长度个字节,周期,需要通过多包发送,多BMS41250ms包发送过程见后文)BYTE0通信协议版本号,本标准规定当前版本为,表示为:BMSV1.0byte2,byte1---0x0001,byte0---0x00BYTE1BYTE2BYTE3电池类型,01H:铅酸电池;02H:镍氢电池;03H:磷酸铁锂电池;04H:锰酸锂电池;05H:钴酸电池;06H:三元材料电池;07H:聚合物锂离子电池;08H:钛酸锂电池;FFH:其它电池BYTE4整车动力蓄电池系统额定容量·,·位,·偏移量,数据范/Ah0.1Ah/0Ah围:·0~1000AhBYTE5BYTE6整车动力学电池系统额定总电压,数据范围:位,偏移量,/V0.1V/0V0~750VBYTE7BYTE8电池生产厂商名称,标准ASCII码BYTE9BYTE10BYTE11BYTE12电池组序号,预留,由厂商自行定义BYTE13BYTE14BYTE15BYTE16电池组生产日期:年(比例:偏移量:数据范围:年位,,)1/19851985~2235BYTE17电池组生

新能源汽车充电接口标准要求

充电接口技术要求 充电接口是指用于连接活动电缆和电动汽车的充电部件,由充电插座和充电插头两部分构成。其中,充电插头是在电动汽车传导式充电过程中,与充电插座的结构和电气进行耦合的充电部件,它与活动电缆装配连接或一体化集成组成充电电缆;充电插座是安装在电动汽车或供电设备上用于耦合充电插头的部件。 在电动汽车的产业化过程中,充电接口的标准化至关重要。充电接口应该满足以下几方面的要求。 ①结构要求 充电插头和充电插座易触及的表面应无毛刺、飞边及类似尖锐边缘;充电插头和充电插座应有配属的保护盖,这些保护盖与其配属的部件之间应有起固定连接作用的附件装置(如链、绳等),且不使用工具时应不能拆卸。充电插头和充电插座的外壳上应标有制造商的名称或商标、产品型号、额定电压和额定电流等信息。充电插头和充电插座的端子应用标志符号加以标注。充电插座在电动汽车上安装后,其额定电压和额定电流的标志应易于辨识。在充电插头的明显区域(如锁紧装置的控制按钮表面)应有不同颜色来表示不同的充电模式。 充电接口应有锁止功能,用于防止充电过程中的意外断开。在锁止状态下施加2倍的规定插拔力的拔出外力时,连接不应断开,且锁止装置不得损坏。 充电电缆的导线宜采用铜或铜合金材料,导线的横截面积应按表1选择。 表1 充电电缆的导线规格要求 充电插头应装配电缆固定部件,使电缆与充电插头连接处受到外力时不会造成对端子的额外受力。充电接口内置的端子应以足够的接触压力将导线夹紧于金属表面之间,同时不造成导线的损坏。正确连接充电电缆后,不同极性端子之间或端子与其他金属部件之间不得有意外接触的危险。 充电接口可以使用助力装置,如果使用助力装置,则进行插入和拔出操作时,助力装置的操作力应满足上述条件。

警惕技术破解架空电动自行车新国标

警惕技术破解架空电动自行车新国标 作者:张海英 来源:《电动自行车》 2018年第7期 电动自行车相关管理部门既要从生产和销售环节入手,禁止销售企业破解限速装置,也要通过抽查用户或者调查 交通事故中出事电动自行车速度,倒查销售商、生产商。 1.电动自行车超速引起的舆论关注 据中央电视台报道,广西南宁去年电动自行车违规引发交通事故致53人死亡,超速是事故主要原因之一。在南宁雅迪专卖店,销售人员透露,虽然厂家每辆车都有限速装置,但用简单办法就可破解。销售人员只用不到10s就将一 辆电动自行车的所谓限速设置解除,最高时速可由原来的20 km提高到60 km以上。 电动自行车车速超标问题近年来持续引发舆论关注。根据之前相关规定,电动自行车最高车速应不大于20 km/h,但实际情况是,很多电动自行车最高时速可达60 km甚至上百千米。 2.出现电动自行车超速的原因 据销售人员透露,解除限速设置的方法是生产厂家告知的。也就是说,表面上看电动自行车最高车速只有20 km/h,但实际车速在60 km以上。为了掩人耳目,生产厂家设置了一个限速装置,然后告诉销售人员如何破解限速, 使得电动自行车实际车速远高于国家规定标准。 显而易见,电动自行车生产企业用限速装置来欺骗市场监管者;但在消费者面前,为了赚钱又原形毕露。这种两 面派的做法很可能是一种行业潜规则,是行业内的种公开秘密。 最近,国家市场监督管理总局、国家标准化管理委员会批准发布的新修订的《电动自行车安全技术规范》,规定 电动车最高时速是不得超过25 km。相比原标准虽然多了5 km,在一定程度上满足了生产销售企业和消费者需求,但 如果企业仍采取欺骗方式破解限速,新国标恐怕也会沦为摆设。 3. 限制电动自行车超速主要涉及的问题 实际上,落实新国标,限制电动自行车超速主要涉及2个问题。第一,生产企业设计的实际车速已远远超标了。 如果实际车速符合国标,根本就不用限速装置。第二,限速装置并非是真限速,而是欺骗监管者和外行的假限速。 4.落实新国标的方式 要想落实新国标,既要从生产和销售环节入手——监督生产企业严格按照国标设计实际速度,禁止销售企业破解 限速装置;也要通过抽查用户或者调查交通事故中出事电动自行车速度,倒查销售商生产商。然后对超标的违规企业 进行严厉处罚,让违法成本大于违规所得。 另外,有关部门还可以鼓励媒体监督、业内人士和用户来举报超标电动自行车企业,对举报者进行奖励,对违规 者进行重罚。 (稿件来源:法制日报) (编辑:姚鑫)

广东省电动车标准新管理办法

广东省电动车标准新管理办法 广东省自行车电动车行业协会日前透露,修订长达20xx年之久的电动自行车国家强制标准有了最新进展,新的国标将会把限行车速提高到26公里,而车重将提高到不能大于55公斤(不含电池重量)。下文是小编收集的广东省电动车标准新管理办法,欢迎阅读! 广东省电动车标准新管理办法内容全文 新的电动车国家强制性标准规定如下: 1、以蓄电池作为辅助能源,有两个车轮; 2、具有良好的脚踏骑行功能,能实现人力骑行、电动或电助力功能; 3、最高车速不超过26公里每小时; 4、整车重量不大于55公斤。其中,智动型40公斤、助动型50公斤、电动型55公斤 正在修订的国标把电动自行车分为3类:分别是(智动)型、(助动)型、(电动)型。智动型,车型较轻巧便捷,适合北京、上

海这样的大城市出行,以骑行带动电力,“边骑边来电”;助动型,适合在道路较宽敞、车辆较少的郊区和城乡结合部骑行,既可用电也可脚蹬;而电动型,主要适用于农村地区,因为农村车辆少,且距离相对较远。3类电动自行车重量分别为40公斤、50公斤和55公斤三档。 电动自行车的新国标对最受关注的车速拟从现行的最高 20km /h提高到26km /h的设计车速。“这是我们根据实际调查确定出来的一个比较安全的速度”。车速快了,对刹车也有新要求。据介绍,紧急刹车时,在普通路面的制动距离由原国标中的4米缩短到3.8米;雨雪等湿滑路面的制动从原来的15米降到12米,这样骑车人能在更短的安全距离内刹住车。 届时所有电动自行车上都会强制安装上一个无法拆卸的速度传感装置,“一旦车速超过设计的26公里,该装置就会自动报警,将电动自行车自动断电。”这意味着将来电动自行车不太可能被轻易改装、超速行驶,以此解决长期困扰电动车行业的超速问题。 整个新国标修订意见稿里,仅涉及安全的标准条款就增加了16条,引进了机械安全、电性能安全、行驶安全、材料安全等概念,且具有可操作性,“车速提高并不意味着安全系数降低”。每辆电动自行车在出厂时会设置一个15位编码,相当于它的“身份证”,就像汽车发动机号一样,让每辆车具有“唯一性”。

纯电动车BMS及整车系统CAN通信协议书模板

文件类型:技术类密级:保密 正宇纯电动车 电池管理系统与整车系统CAN通信协议 (GX-ZY-CAN-V1.00) 版本记录 版本制作者日期说明 V1.00 用于永康正宇纯电动车系统姓名日期签名 拟定 审查 核准

1 范围 本标准规定了电动汽车电池管理系统(Battery Management System ,以下简称BMS)与电机控制器(Vehicle Control Unit ,简称VCU)、智能充电机(Intelligent Charger Unit ,简称ICU)之间的通信协议。 本标准适用于电动汽车电池管理系统与整车系统和充电系统的数据交换。 本标准的CAN 标识符为29位,通信波特率为250kbps 。 本标准数据传输采用低位先发送的格式。 本标准应用于正宇纯电动轿车电池管理系统。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ISO 11898-1:2006 道路车辆 控制器局域网络 第1部分:数据链路层和物理信令(Road Vehicles – Controller Area Network (CAN) Part 1:Data Link Layer and Physical Signalling). SAE J1939-11:2006 商用车控制系统局域网络(CAN)通信协议 第11部分:物理层,250Kbps ,屏蔽双绞线(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 11:Physical Layer,250Kbps,Twisted shielded Pair). SAE J1939-21:2006商用车控制系统局域网络(CAN )通信协议 第21部分:数据链路层(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 21:Data Link Layer). 3 网络拓扑结构说明 电动汽车网络采用CAN 互连结构如下所示,CAN1总线为电池管理系统与电机控制器之间的数据通信总线,CAN2总线为电池管理系统与充电机之间的数据通信总线。电池管理系统内部主控单元与电池管理单元之间通过内部CAN 总线进行数据通信。电机控制器将BMS 的提供的总电压、电流及最高单体电压、最低单体电压、温度及关键状态显示在车载仪表上。 BMS-CCU BMS-BMU (1#)BMS-BMU (2#) 电池组远程监控终端(BWT) 彩色显示屏 (HMI)电机控制器(MCU ) 智能充电机 (ICU) INCAN CAN2 CAN1 RS232 RS485 图一 整车总线拓扑

电动汽车传导式充电接口标准对比

[摘要]:电动汽车的发展正在推动汽车,电力及能源产业的变革。在这一新兴产业中,标准化的进程至关重要,比如关于电动汽车和充电基础设施之间的充电接口标准,就影响了不同车型在不同国家和地区的电网之间如何快速,简便的进行电能的补充。 [编辑简介]:本文介绍了电动汽车传导式充电采用的方式、组合式充电接口(Combined charging)的概念及相关标准。[关键词]:电动汽车传导式充电接口 电动汽车的发展正在推动汽车,电力及能源产业的变革。在这一新兴产业中,标准化的进程至关重要,比如关于电动汽车和充电基础设施之间的充电接口标准,就影响了不同车型在不同国家和地区的电网之间如何快速,简便的进行电能的补充。 目前全球主要采用的传导式充电接口系统有: IEC 62196-1,2:2012年1月发布,主要被欧洲国家所采用的交流充电标准。 IEC 62196-3:目前还在制定过程中,预计2014年制定完成。主要内容是对直流充电接口的定义。 SAE J1772:2010年1月发布,是最早实施的充电接口标准,被美国及日本广泛使用。其5芯的交流充电接口,在IEC 62196-2中被定义为type 1接口。 CHAdeMO:该协会于2010年3月15日成立,成员单位大多数来自日本,主旨为推进快速充电规格在日本的统一,因此主要被日本车厂所采用。 GB/T 20234.1,2,3-2011:2011年12月颁布,2012年3月实施,共三部分组成,形式接近于IEC 62196-1,2,3。虽然目前是国标推荐标准,但解决了中国国内不同地区,不同电网公司,充电接口不统一的问题。 为了更好的对标准进行介绍,下面先列举标准中常用的充电接口术语定义(图1)。

相关文档
最新文档