塑料耐化学,耐老化性对比

塑料耐化学,耐老化性对比
塑料耐化学,耐老化性对比

,各种塑料的化学稳定性依次为:PTFE>FEP>PCTFE>PPS>PE>PP>PAN>PET>PS>AS>EVA>PVC>ABS>PMMA>PC>POM>PA

以上排序是根据全国塑料研究所技术情报协作网编著的《中外树脂牌号大全》附录十六"各种树脂的化学稳定性"整理,仅供参考。

耐老化的排行我还没有具体的排行资料,因为塑料的耐老化性能是可以通过添加抗老化剂得到大大提高的。不同品种聚合物因其化学结构不同,其抗老化性不同。现查到聚合物对不同环境的耐老化性表,不知对您是否有用。

聚合物耐光氧化性耐热氧化性耐臭氧氧化性耐水降解性

PE 劣可优优

PP 劣劣优优

聚异丁烯劣良优优

PS 劣良优优

PVC 可可优良

PTFE 优优优优

POM劣劣良可

PPO劣可优良

PAN可良优良

PMMA优良优良

PA66 可可优可

PET可良优良

PC 可良优良

PSF 劣优优良

ABS劣劣可良

PF(木粉)可良优劣

PF(云母) 良良优良

脲醛优优优优

PU(酯型)可可优可

丁苯橡胶劣劣劣良

乙丙橡胶劣可劣优

热塑性塑料的性能

热塑性塑料的性能 对于用于汽车内饰的热塑性塑料,除了常规的物理性能、流动性能、力学性能(抗拉强度、弯曲强瘦、冲强度)、热性能、燃烧性能,我们还关注热塑性塑料其他一些特性。 (1)收缩率 热塑性塑料的特性是在加热后熔融,冷却后收缩,当然加压以后体积将缩小。在注塑成型过程中,先将塑料熔体注射入模具型内,充填结束后熔体冷却固化,从模具中取出塑件时出现收缩,称为成型收缩。塑料件再从模具中取出后稳定一段时间,塑料件的尺寸仍会出现微小的变化。这种变化称为后收缩。另一种变化是某些吸湿性塑料因吸湿而出现胀。例如PA610吸水量在1.5-2.0%时,零件尺寸增加0.1-0.2%。玻璃纤维增强PA66的含水量为40%时,尺寸约增加0.3%。 收缩率S由下式表示: S=100%×(D?M)/D 公式中: S为塑件的收缩率 D为模具尺寸(长、宽、高) M为塑件尺寸(长、宽,高) 收缩率的计算方法都是一样的,但是测试收缩率的模具尺寸不一样,这就导致同样的材料,采用不同尺寸的模具,得到收缩率值不一样。 (2)流动性

在一定温度、压力下,塑料能够充满模具各部分型腔的性能,称作流动性。流动性差,注射成型时需较大的注射压力或者较高的料筒温度;流动性太好,容易产生飞边。通常可以用熔融指数来直观地表示塑料的流动性。熔融指数大,流动性好。熔融指数小,流动性差。 (3)熔化温度(熔点T) 熔化温度是指结晶型聚合物从高分子链结构的三维有序态 转变为无序的黏流态时的温度。高分子材料是不同分子量的高分子的混合物,有一定的分子量分布。因此,高分子材料的熔融是一个过程。例如PP材料的熔融从153℃左右开始,到165℃左右达到 熔融的峰值。165℃为PP的熔点,到170℃左右熔融完全结束。(4)降解 在化学或物理作用下聚合物分子的聚合度降低的过程称为 降解。聚合物在热、力、氧气、水及光辐射等作用下往往发生降解。降解实质是大分子链发生结构变化的过程。 (5)结晶 聚合物分子形成的一种有序的聚集态结构叫结晶。聚合物的聚集态结构对注塑条件及制品性能的影响非常明显,聚合物按聚集结构可分为结晶型和非结晶型。结晶型聚合物的分子链呈规则排列,而非结晶聚合物的分子链呈不规则的无定型的排列。分子结构简单,对称性高,没有刚性基团,柔性链的聚合物都能形成

材料的物理性能与化学性能

、物理性能 物理性能是指材料固有地属性,金属地物理性能包括密度、熔点、电性能、热性能、磁性能等. 文档来自于网络搜索 ()密度:密度是指在一定温度下单位体积物质地质量,密度表达式如下:文档来自于网络搜索 ρ 式中ρ——物质地密度(); ——物质地质量(); ——物质地体积(). 常用材料地密度(℃) 材料铅铜铁钛铝锡钨塑料玻璃 钢 碳纤维复合材料密度[] 密度意义:密度地大小很大程度上决定了工件地自重,对于要求质轻地工件宜采用密度较小地材料(如铝、钛、塑料、复合材料等);工程上对零件或计算毛坯地质量也要利用密度.文档来自于网络搜索 ()熔点:是材料从固态转变为液态地温度,金属等晶体材料一般具有固定地熔点,而高分子材料等非晶体材料一般没有固定地熔点. 文档来自于网络搜索 常用材料地熔点 材料钨钼钛铁铜铝铅铋锡铸铁碳钢铝合金 熔 点℃ 熔点意义:金属地熔点是热加工地重要工艺参数;对选材有影响,不同熔点地金属具有不同地应用场合:高地熔点金属(如钨、钼等)可用于制造耐高温地零件(如火箭、导弹、燃气轮机零件,电火花加工、焊接电极等),低地熔点金属(如铅、铋、锡等)可用于制造熔丝、焊接钎料等. 文档来自于网络搜索 ()电阻率:电阻率用ρ 表示,电阻率是单位长度、单位截面积地电阻值,其单位为Ω.文档来自于网络搜索 电阻率地意义:是设计导电材料和绝缘材料地主要依据.材料地电阻率ρ越小,导电性能越好.金属中银地导电性最好、铜与铝次之.通常金属地纯度越高,其导电性越好,合金地导电性比纯金属差,高分子材料和陶瓷一般都是绝缘体.导电器材常选用导电性良好地材料,以减少损耗;而加热元件、电阻丝则选用导电性差地材料制作,以提高功率. 文档来自于网络搜索 ()导热率:导热率用导热率λ表示,其含义是在单位厚度金属,温差为℃时,每秒钟从单位断面通过地热量.单位为(.K).文档来自于网络搜索 常用金属地热导率 材料银铜铝铁灰铸铁碳钢 热导率[(.K)] (℃) 金属具有良好地导热性,尤其是银、铜、铝地导热性很好;一般纯金属具有良好地导热性,合金地成分越复杂,其导热性越差. 文档来自于网络搜索 导热率地意义:是传热设备和元件应考虑地主要性能,对热加工工艺性能也有影响. 散热器等传热元件应采用导热性好地材料制造;保温器材应采用导热性差地材料制造.热加工工艺与导热性有密切关系,在热处理、铸造、锻造、焊接过程中,若材料地导热性差,则

耐老化高分子材料的研究及应用

耐老化高分子材料的研究及应用 聚合物及其制品在使用或贮存过程中,由于受众多环境因素(光、热、氧、潮湿、应力、化学侵蚀等)的影响,其性能(强度、弹性、硬度、颜色等)逐渐变坏,如外观上变色发黄、变软发粘,变脆发硬,物化性质上分子量、溶解度、玻璃化温度的增减,力学性能上强度、弹性的消失等等,这些现象统称为老化。其实它跟金属的腐蚀是相似的。 高分子的老化方式主要有光氧化、热氧化、化学侵蚀、生物侵蚀等。 一、光氧化 涂料、塑料、橡胶、合成纤维等制品在日光或强的荧光下(因为含有害紫外线较普通荧光灯多),因吸收紫外线而引发自我氧化,导致聚合物降解,使制品的外观和物理机械性能恶化,这一过程称为光氧化还原或光老化 聚合物在光的照射下,分子链的断裂取决于光的波长与聚合物的键能,各种键的离解能为167~586kJ/mol 。在可见光范围内,聚合物一般不被离解,但呈激发状态。应此在氧存在下,聚合物易发生光氧化过程。例如聚烯烃RH,被激发了的C —H 键容易与氧作用。 —RH+ O2 —→R?+?O—OH R?+O2—→R—O—O?—RH→R—O2H+R? 此后开始连锁式的自动氧化降解过程。水、微量的金属元素特别是过渡金属及其化合物都能加速光氧化过程。为延缓或防止聚合物的光氧化过程,需要加入光稳定剂。 光稳定剂凡能屏障或抑制光氧化还原或光老化过程而加入的一些物质称为 光稳定剂。太阳辐射的电磁波在通过空间和臭氧层时,290nm以下和3000nm以

上的射线几乎都被滤除,实际到达地面的为290nm—3000nm的电磁波,其中波长范围为400—800nm(约占40%)的是可见光,波长约为800—3000nm(约占55%)的是红外线,而波长约为290—400nm(仅占5%)的是紫外线,其中,紫外线对聚合物的破坏作用最大。为了阻止紫外线对高分子材料的老化作用,可以加入光稳定剂。工业上对光老化的有效防止阻缓,多以两种以上有不同作用机理的抗老化剂复配,因为各种抗老化剂特别是光吸收剂都有自身对紫外线不同的吸收波段。复配配方如:二笨甲酮+苯并三唑类加受阻胺(HAL)类,可以起到单一光稳定剂所无法达到的最佳效果。 表-1 西欧各种塑料使用光稳定剂的量……○1 目前工业上使用的光稳定剂有:光屏蔽剂、紫外光吸收剂和能量转移剂(又称淬灭剂)等。 (1)光屏蔽剂

十四种常用热塑性塑料(非常详细。家电结构必备)

十四种常用的热塑性塑料之一 默认分类 2009-06-25 16:38 阅读114 评论0 字号:大中小1. PP 1.1性能和用途 PP< Polypropylene聚丙烯)是与我们日常生活密切相关的通用树脂,是丙烯最重要的下 游产品,世界丙烯的50%,我国丙烯的65%都是用来制聚丙烯。聚丙烯是世界上增长最快 的通用热塑性树脂,总量仅仅次于聚乙烯和聚氯乙烯 PP是结晶性塑料,一般为呈不规则圆形表面有蜡质光泽白色颗料。密度0.9-0.91g/cm3,是塑料中最轻的一种。有较明显的熔点,根据结晶度和分子量的不同,熔点在170℃左 右,而其分解温度在290℃以上,因而有着很宽的成型温度范围,成型收缩率1.0-2.5%。P P的使用温度可达100℃,具有良好的电性能和高频绝缘性,且不受湿度影响。但低温下 易脆,不耐磨,易老化。适于制作一般机械零件,耐腐蚀零件和绝缘零件。此外,用PP 料制做的铰链产品具有突出的耐疲劳性能。 1 . 2 成型注意事项 PP的吸湿性很小,成型前可以不要干燥,如果存偖不当,可在70℃左右干燥3小时。成型流动性好,但收缩范围及收缩值大,易发生缩孔,凹痕,变形。冷却速度快,浇注系统及 冷却系统应缓慢散热。PP在成型时要特别注意控制原料的熔化时间,PP长期与热金属接 触易分解。易发生融体破裂,料温低方向方向性明显,低温高压时尤其明显。模具温度方面,在低于50℃度时,塑件不光滑,易产生熔接不良,流痕,在90℃以上易发生翘曲变形。塑料壁厚须均匀,避免缺胶,尖角,以防应力集中。 2.PE 2.1性能和用途 PE< Polyethylene 聚乙烯),有高密度聚乙烯<低压聚合),低密度聚乙烯<高压聚合),线形低密度聚乙烯,超高分子量聚乙烯等多种,密度在0.91-0.97 g/cm3之间,成型收缩率为1.5-3.6%。熔点在120-140℃左右,分解温度在270℃以上。PE的耐腐蚀性,电绝缘性

PETG的耐化学性能很好的

PETG的耐化学性能很好的,比PC PMMA等都好。 化学品名耐化性 醋酸Acetic Acid(40%) ◎ 丙酮Acetone ○ 硫酸铝Aluminum Sulphate ◎ 氨水Ammonia(10%) ○ 戊基醋酸Amyl Acetate ○ 戊基乙醇Amyl Alcohol ◎ 苯Benzene △ 安息酸Benzoic Acid(Solid) ◎ 苯甲基醋酸Benzyl Acetate △ 苯甲基乙酸Benzyl Alcohol △ 丁基醋酸Butyl Acetate △ 丁基乙醇Butyl Alcohol ◎ 丁基硬酯酸Butyl Stcarate ◎ 四氯化碳arbon Tetrachloride ◎ 柠檬酸Citric Acid ◎ 乙醇腊Celyl Alcohol ◎ 氯仿Chloroform △ 邻苯二甲酸盐Ci-alkyl Phthalate ◎ 清洁剂Detergents ◎ 二乙基乙醇2-Ethyl Ethanol ◎ 乙基醋酸Ethyl Acetate △ 甲醛Formaldehyde(40%) ◎ 蚁酸Formic Acid(30%) ◎ 香叶醇Geraniol ◎ 乙二醇Glycol ◎ 丙三醇Glycerine ◎ 氢酸Hydrobromic Acid(50%) ◎ 氢氯酸Hydrobromic Acid(10%) ◎ 氢氟酸Hydrobromic Acid(60%) ○ 过氧化氢Hydrogen peroxide ◎ 异丙醇Isopropyl Alcohol ◎ 润滑油Lubrication Grease and Oils ◎ 甲醇Methyl alcohol ◎ 矿物油Mineral oil ○ 石腊Paraffin ◎ 汽油Petrol ◎ 碳酸钠Sodium Garbonate ◎ 氯化钠Sodium Chloride ◎ 氢氧化钠Sodium Hydroxide △ 硫酸Sulphuric Acid(30% dilute) ◎ 甲苯Toluene ◎酒石酸Trataric Acid ◎ 二甲苯Xylene ◎ 氯化锌Zinc Chloride ◎ ◎代表优Completely non-erosive / ○代表可Slightly erosive / △代表劣Unusable ◆上表为测试数值,仅供参考用。/ Testing value of the above list for reference only

热固性塑料与热塑性塑料

热固性塑料与热塑性塑料

塑料是以高分子量合成树脂为主要成分,在一定条件下(如温度、压力等)可塑制成一定形状且在常温下保持形状不变的材料。 塑料按受热后表面的性能,可分为热固性塑料与热塑性塑料两大类。前者的特点是在一定温度下,经一定时间加热、加压或加入硬化剂后,发生化学反应而硬化。硬化后的塑料化学结构发生变化、质地坚硬、不溶于溶剂、加热也不再软化,如果温度过高则就分解。后者的特点为受热后发生物态变化,由固体软化或熔化成粘流体状态,但冷却后又可变硬而成固体,且过程可多次反复,塑料本身的分子结构则不发生变化。 塑料都以合成树脂为基本原料,并加入填料、增塑剂、染料、稳定剂等各种辅助料而组成。因此,不同品种牌号的塑料,由于选用树脂及辅助料的性能、成分、配比及塑料生产工艺不同,则其使用及工艺特性也各不相同。为此模具设计时必须了解所用塑料的工艺特性。 第一节热固性塑料

常用热固性塑料有酚醛、氨基(三聚氰胺、脲醛)聚酯、聚邻苯二甲酸二丙烯酯等。主要用于压塑、挤塑、注射成形。硅酮、环氧树脂等塑料,目前主要作为低压挤塑封装电子元件及浇注成形等用。 一、工艺特性 (一)收缩率 塑件自模具中取出冷却到室温后,发生尺寸收缩这种性能称为收缩性。由于收缩不仅是树脂本身的热胀冷缩,而且还与各成形因素有关,所以成形后塑件的收缩应称为成形收缩。 1.成形收缩的形式成形收缩主要表现在下列几方面: (1)塑件的线尺寸收缩由于热胀冷缩,塑件脱模时的弹性恢复、塑性变形等原因导致塑件脱模冷却到室温后其尺寸缩小,为此型腔设计时

必须考虑予以补偿。 (2)收缩方向性成形时分子按方向排列,使塑件呈现各向异性,沿料流方向(即平行方向)则收缩大、强度高,与料流直角方向(即垂直方向)则收缩小、强度低。另外,成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。产生收缩差使塑件易发生翘曲、变形、裂纹,尤其在挤塑及注射成形时则方向性更为明显。因此,模具设计时应考虑收缩方向性按塑件形状、流料方向选取收缩率为宜。 (3)后收缩塑件成形时,由于受成形压力、剪切应力、各向异性、密度不匀、填料分布不匀、模温不匀、硬化不匀、塑性变形等因素的影响,引起一系列应力的作用,在粘流态时不能全部消失,故塑件在应力状态下成形时存在残余应力。当脱模后由于应力趋向平衡及贮存条件的影响,使残余应力发生变化而使塑件发生再收缩称为后收缩。一般塑件在脱模后10小时内变化最大,24 小时后基本定型,但最后稳定要经30~60天。通常热塑性塑料的后收缩比热固性大,挤塑

塑料低温实验报告

塑料材料低温实验分析报告 目的: 测试注塑制品在低温及低温储藏后恢复到常温力学性能的变化。 实验过程: 选用公司原料PP(129980002)、耐热PP(839000011)、耐热PP(8390000111)、高耐热PP (129980015)、共聚PP(839000010)、ABS(129980001)、阻燃ABS(839000016)、高光HIPS (129980023)注塑样条,然后分三种情况对其拉伸强度、断裂伸长率、弯曲强度、简支梁冲击强度、悬臂梁冲击强度进行测试: 1.室温养护24h,测试样条性能; 2.室温养护24h→恒温恒湿箱-20℃放置48h,测试样条性能; 3.室温养护24h→恒温恒湿箱-20℃放置48h→室温放置48h,测试样条性能。 实验结果:

各种塑料测试分析: 原料PP(129980002)测试情况表明,低温放置后恢复到室温与室温下测试值相差不大均能满足使用要求;在低温测试其拉伸强度、弯曲强度增强满足使用要求,断裂伸长率、简支梁冲击强度、悬臂梁冲击强度下降不能满足使用要求,其中断裂伸长率下降明显。

两种耐热PP测试情况表明,低温放置后恢复到室温与室温下测试值相差不大均能满足使用要求;在低温测试其拉伸强度、弯曲强度增强满足使用要求,断裂伸长率、简支梁冲击强度、悬臂梁冲击强度下降不能满足使用要求,其中断裂伸长率下降明显。对耐热PP(8390000111)进行热变形实验,室温情况下为115.3℃,低温恢复后为116.6℃,均能满足使用要求。

高耐热PP(129980015)测试情况表明,低温放置后恢复到室温与室温下测试值相差不大均能满足使用要求;在低温测试其拉伸强度、弯曲强度增强满足使用要求,断裂伸长率、简支梁冲击强度、悬臂梁冲击强度下降不能满足使用要求。 共聚PP(839000010)测试情况表明,低温放置后恢复到室温与室温下测试值相差不大除悬

常用热塑性塑料原料性能和用途解析

常用热塑性塑料原料性能和用途 一、PP是Polypropylene的英文简写,中文名为聚丙烯。 聚丙烯(PP)的优点: 1、具有优良的力学性能,其强度、弹性都比HDPE高,抗弯曲疲劳性好。 2、具有良好的耐热性,熔点在164-170℃,制品能在100℃以上温度进行消毒灭菌,热变形温度通常能达到110℃,脆化温度为-35℃。 3、化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它化学试剂都比较稳定。 4、聚丙燃的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受温度影响。 聚丙烯(PP)的缺点: 1、收缩率大,厚壁制品易凹陷。 2、在低温下,冲击强度较差。 3、静电度高,与铜接触易老化。 4、对紫外线很敏感。 聚丙烯(PP)性能表: 注:PP性能参数以扬子石化的J340为依据。 抗冲击改性PP与纯PP对比,其优点在于: 1、冲击强度、韧性和力学模量显著提高,由性能表可以看出,改性后的PP,代表刚性的拉伸强度、弯曲强度和硬度都比纯PP高,而代表韧性的冲击强度也提高,尤其提高了PP的低温脆性。 2、降低了收缩率,有效改善制品的翘曲变形和表面缩陷现象。 3、提高PP的抗老化性,大大增加了制品的使用寿命。 二、HDPE是High Density Polyethylene 的英文简写,中文名为高密度聚乙烯。 高密度聚乙烯(HDPE)的优点: 1、抗冲击性以及耐寒性好,耐抗环境应力开裂。 2、化学稳定性极佳,耐油性好。

3、吸水及微小,透水率低,有机蒸汽的透过率较大。 4、电绝缘性好,在一切频率范围内,介电性能都极其优异。 高密度聚乙烯(HDPE)的缺点: 1、HDPE的使用温度不高,一般在110℃以下。 2、HDPE的耐老化性差,在大气、阳光、氧的作用下,逐渐变脆,力学强度和电性能下降。 3、在成型温度下,会因氧化作用,而引起粘度下降,出现变色,产生条纹。 高密度聚乙烯(HDPE)性能表: 悬臂梁缺口冲击强度J/m 拉伸屈服强度 /Mpa 断裂伸长率 /% 洛氏硬 度 密度g/cm3熔体流动速率g/10min >49>27>800>610.955-0.962 6.1-8.0 注:HDPE性能参数以盘锦石化的5070EA为依据。 三、ABS是Acrylonitrile Butadiene Styrene 的英文简写,中文名为丙烯晴--丁二烯--苯乙烯共聚物。 丙烯晴--丁二烯--苯乙烯共聚物(ABS)的优点: 1、刚性好,冲击强度高,且在低温时也不会快速下降。 2、耐热性和耐低温性好,耐磨性很高,耐化学药品性,电器性能优良。 3、易于加工,加工尺寸稳定性。 4、表面光泽好,容易涂装、着色,还可以进行喷涂金属、电镀、焊接和粘接等二次加工性能。 丙烯晴--丁二烯--苯乙烯共聚物(ABS)的缺点: 1、ABS在空气中的吸湿性较强,在注塑成型前必须先进行干燥,需将树脂在70-80°C预干燥4h以上。 2、耐候性差。 丙烯晴--丁二烯--苯乙烯共聚物(ABS)性能表: 悬臂梁缺口冲击强度/ kg.cm/cm 拉伸强度/ kg/cm2 断裂伸长 率/% 弯曲强度 kg/cm2 洛氏硬 度/R 密度 g/cm3 熔体流动速率200℃ ×5kgg/10min 1848020790116 1.05 1.8

常用塑料的性能比较及选择

常用塑料的性能比较及选择 由于合成材料有着卓越的性能,因而在包装领域中被大量应用。大多塑料都可用于饮料食品包装和塑料瓶的制备,其中用量最大的是价格低廉的聚烯烃。常用的塑料种类有:聚乙烯(PE)、聚氯乙烯(PVC)、聚丙烯(PP)、聚酯(PET或PETP)、聚偏二氯乙烯(PVDC)及聚碳酸酯(PC)。 聚乙烯(PE) 聚乙烯是世界上产量最大的合成树脂,也是消耗量最大的塑料包装材料,约占塑料包装材料的30%。 低密度聚乙烯(LDPE)透明度较好,柔软、伸长率大,抗冲击性与耐低温性较HDPE为优,在各类包装中用量仍较大,但作为食品包装材料其缺点较明显。 高密度聚乙烯(HDPE)具有较高的结晶度,允许较高的使用温度,其硬度、气密性、机械程度、耐化学药品性能都较好,所以大量采用吹塑成型制成瓶子等中空容器。由于它具有较高的耐油脂性能,广泛用于盛装牛奶、牛奶制品,包装天然果汁和果酱之类的食品。 不过HDPE的保香性差,装食品饮料不宜久藏。但可利用它具有热封性能好的特点,将其作为复合薄膜的内层材料。如二层、三层复合材料,已大量应用于饮料包装,美国采用玻璃纸/粘合剂/PE的复合瓶专盛柠檬汁。 聚氯乙烯(PVC) PVC塑料大致可分为硬制品、软制品和糊状制品三类。硬制品增塑剂一般少于5%,软制品中增塑剂多达20%以上。 硬质PVC因不含或很少含有增塑剂,其成品无增塑剂的异味,而且机械强度优良,质轻,化学性质稳定,所以制成的PVC容器广泛用于饮料包装。用注拉吹法生产的PVC瓶子无缝线,瓶壁厚薄均匀,可用于盛装碳酸饮料如可口可乐等。 PVC材料的安全性一直是人们关注的问题。用于包装的PVC树脂中的氯乙烯含量不能高于1×10-6,即1千克PVC树脂只允许含1毫克氯乙烯单体,用这种PVC树脂生产的瓶子包装饮料,在食品中测不出氯乙烯单体。 聚丙烯(PP) 聚丙烯薄膜是高结晶结构,渗透性为聚乙烯的1/4~1/2,透明度高,光洁,加工性能高,广泛用于制备纤维、成型制品,但主要是塑料薄膜。 目前,具有气密性、易热合性的聚丙烯的涂布薄膜及与其它薄膜、玻璃纸、纸、铝箔等复合的复合材料已大量生产,用PP复合材料制作的容器可用于饮料包装。 各类PP都有一个带静电的共同特点,为解决这个问题,一般在薄膜上涂布防静电剂或者将防静电剂混炼于薄膜中。在薄膜上涂布气密性好的聚偏二氯乙烯类树脂可提高PP的抗氧化性。

耐老化改性PP

耐老化改性PP 衡水金轮网销部讯:改性PP属于改性塑料中的一种,主要分为玻纤增强、填充、增韧、阻燃等方面的改性。由于PP是密度很小的材料,同样体积情况下重量轻,应用越来越广。尤其在日常生活中经常能见到它的影子,配色也很丰富。然而也经常与遇到一些关于老化的情况,比如一些改性PP制品使用时间较长,或者在户外等长期阳光照射的环境中,老化的现象经常出现,这就必须提到今天要说的耐老化改性PP。 在一些低温室内环境下,改性PP不容易老化,但在紫外线、热、氧等外界因素的影响下会发生某些化学反应,主要表现为红外吸收光谱中出现羟基峰,随后生成过氧化物,断裂后形成游离基,进一步引起大分子链裂解、支化、交联,使改性PP失去高分子材料的特征,丧失部分使用价值。这些游离基会继续攻击主链上的其他碳原子,导致新的降解反应,还会伴随着游离基之间的藕合或交联,分子量下降速度有所减慢,但材料在宏观上会变脆。降解过程中产生的氧化结构会进一步提高对光引起降解的敏感性。 老化主要表现在粘度下降和熔体流动速率的增加,这意味着改性PP分子量变小,失去了粘稠度,与水无异,自然性能会大打折扣,甚至材料作废。在生活中可能会经常遇到塑料编织袋,在室外一两个月的时间就会逐渐变成粉末,无法再次使用,这就是关于改性PP最典型的例子。

对于改性PP的耐热氧老化性能,虽然它很容易老化,但在其制造中都要加入少量的抗氧剂以保证不会很快老化,这种抗氧剂用量很少,只能保证其正常的贮存、运输过程中不至于老化,用于室外使用的材料还需要加入防老化剂,在正常条件下,主要是防止热养老化和自由基老化。 POE和成核剂对材料的老化性能均有影响,但影响不大,而硫酸钡能较大幅度提高老化性能。抗氧剂、光稳定剂对材料耐老化性能有很大提高,其中光稳定剂作用非常明显。

耐高温工程塑料特性

耐高温工程塑料特性 耐高温工程塑料是一类由于它本身的特殊结构,从而在高温条件下,仍能保持它自已具有较高机械性能的塑料;一般有如下几类:PPO PPS PSF 改性PSF 聚芳砜聚芳脂。这类材料中,它们的结构中都有一个高刚性的苯环,同时又具有难氧化的氧基,硫基,砜基,这种组合,附于它们耐高温和高刚性。 PPO 简称 PPO 俗称 学名聚苯醚 英文名polyphenylene oxide 本色 PPO是一种琥珀色透明材料,比重与水相近,为1.06。 燃烧特征:难燃,离火后熄灭,火焰呈浓浓黑烟,塑料熔融时发出花果臭。 优点PPO最大的优点是:具有热塑料性塑料中最高的玻璃化温度210℃,因此,它的耐高温性能是非常高的; PPO具有高温下沸水蒸煮的能力,不变形,不分解。 PPO硬而韧,抗蠕变性能高。它的表面硬度比PA POM PC 高,蠕变性比这三种材料低;在较低的温度下-135℃下仍具有很好的延伸性;尺寸稳定 PPO可以金属化处理,即可以电度或真空镀膜 PPO的介电性能优良,在很宽的频率,温度,湿度下,都能保持恒定。 缺点: PPO在有机溶剂的情况下,会出现应力开裂 PPO不耐气候,易受阳光的照射下变色。 PPO流动性差,难加工 用途由于以上的优点,PPO最适用于在潮湿的而有载荷的情况下,即需要优良的介电性能,又要有较高的机械性能,并且尺寸稳定的场合:如调谐片,微波绝缘等 水处理设备,水蒸馏设备,水泵的零件 耐蒸煮器材,如:医疗器械,食品材料 高刚度,高强度的电器外壳及其它零件 它是比PC更高级的外壳材料 注塑性能:: PPO是结晶性塑料,有明显的熔点,217℃时熔化,但它的粘度大,难以有效的流动,360℃时就分解;一般加工温度为280℃--340℃;PPO吸水,在有水分的情况下,能引起分解,需要烘干,可以用140℃烘干2-4小时即可 另外,NORYL是PPO的改性产品,与PPO相比,它的机械性能下降很多,但也可以与PC 相比,可以代替 PPS 简称 PPS 俗称 学名聚苯硫醚 英文名polyphenylene sulfide 本色 PPS本色是一种白色材料,它结晶度高,硬而脆,热稳定性优良,可呈热固性塑料的

耐候聚丙烯老化性能的研究

耐候聚丙烯老化性能的研究 聚丙烯由于合成方法简单,且具有原料来源丰富、价格低廉、有良好的物理力学性能与加工性能,从而成为塑料产量增长最快的品种之一,其产量在五大通用 塑料中占第三位。近年来,PP 材料越来越多的被应用到家电制造中,20 世纪90 年代初,日本住友和三菱化学株式会社首先研制开发成功空调器用耐候改性PP 新型材料。然而,国内部分大量使用耐候PP 改性材料制造空调器主机外壳的厂商,如海尔、海信等,其原料却主要是依赖于进口,因此,研制这种高性能的耐候PP 专用料,具有很大的市场前景。 由于聚丙烯链上存在着大量不稳定的叔碳原子,在有氧的情况下,只需要很小的能量就可以将叔碳原子上的氢脱除而成为叔碳自由基。叔碳自由基非常活跃,它能造成分子链的各种反应的发生,包括链增长、链降解,从而造成PP 原有性能的丧失,造成PP 材料的老化[1~3 ]。PP 由于极易老化,如果不加入抗氧剂,在 室外一个月,其基本物理性能将全部丧失。因此将其用于室外使用,必须想办法提高其耐老化性能。 对于聚丙烯的耐热氧老化性能,许多人已经做了大量的研究,并且取得丰硕的成果,而聚丙烯的耐光氧老化性能由于受实验条件(周期长、模拟自然条件困难、设备投资大) 的限制,研究的并不多。本实验的目的是在齐鲁石化公司生产的EPF30R 的基础上,对其进行改性,使其耐老化性能能够达到或超过日本进口的耐候改性PP ,从而实现国产化的要求。因此,一方面尽量模拟自然气候的变化进行实验,获得PP 改性材料耐老化性能的变化;另一方面,在同一实验条件下对两种材料进行老化实验,通过耐老化性能的对比,也可获得PP 改性材料耐老化能力的基本数据,借此也可判断EPF30R 的改性材料是否能够满足耐候的性能要求。 1 实验 1. 1 原料 聚丙烯,EPF30R ,齐鲁石化公司; 弹性体(POE) ,美国DOW 公司; 成核剂, MTK-122 ( DICPK) , 日本大油墨公司; ,粒径5μm ,市售; BaSO 4 抗氧剂1010 ,L K-10 ,辽阳有机化工厂; 抗氧剂168 ,L K-68 ,辽阳有机化工厂; 紫外线吸收剂,UV-531 ,北京三安化化工产品有限公司; 自由基捕获剂,UV-770 ,北京三安化化工产品有限公司;

分析:五类耐高温的工程塑料

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/fb5133299.html,)分析:五类耐高温的工程塑料 耐高温工程塑料是一类由于它本身的特殊结构,从而在高温条件下,仍能保持它自已具有较高机械性能的塑料; 一般有如下几类: PPS、PSF、PPO改性PSF、聚芳砜、聚芳脂。这类材料中,它们的结构中都有一个高刚性的苯环,同时又具有难氧化的氧基,硫基,砜基,这种组合,附于它们耐高温和高刚性。 一、PPS PPS(聚苯硫醚polyphenylenesulfide)本色是一种白色材料,它结晶度高,硬而脆,热稳定性优良,可呈热固性塑料的高耐性的特征。纯净的PPS不能注塑,因为它粘度太大,不易流动,注塑用的PPS都经过改性,加过很多填料和改性剂,也就是说注塑用的PPS是改性PPS。 1、燃烧特征 不燃,离火后熄灭。但相互敲打时,发出金属般的“叮当”声。 2、最大优点 在较高的温度下,能耐任何溶剂的腐蚀; PPS抗蠕变性能高,其它机械性能也比较高;

PPS在高温下,也能保持它的机械性能和尺寸; PPS的介电性能优良,在很宽的频率,温度,湿度下,都能保持恒定。 3、缺点 PPS流动性差,难加工 4、用途 由于以上的优点,PPS最适用于在高温和潮湿的而有载荷的情况下,做隔热,防腐和绝缘材料 5、注塑性能 PPS是结晶性塑料,有明显的熔点,280℃时熔化,但它的粘度大,难以有效的流动,400℃时就分解;一般加工温度为300℃——340℃;PPO吸水,在有水分的情况下,能引起分解,需要烘干,可以用140℃烘干2-4小时即可

二、PSF PSF是一种微带琥珀色透明材料(也有的PSF是象牙色的不透明材料),比重中等,为1.24。 1、燃烧特征 难燃,离火后熄灭,火焰呈黄褐色烟雾,塑料燃烧熔融而同时发出橡胶的焦味。 2、最大优点 具有突出的耐高温和耐低温性能;在150℃时,仍能保持它的机械强度的80%,在-100℃时,也能保持它的机械强度的75%; PSF有突出抗蠕变性能,这使它各种机械强度保持的持久; PSF具有突出的高温介电性能,在190℃高温下,在水中,在湿气中,仍能保持介电性能; PSF具有突出的耐幅射能力; PSF可以金属化处理,即可以电度或真空镀膜 3、缺点 PSF在不会发生水解,但在高温和及载荷的情况下,水会促使它出现应力开裂 PSF流动性差,难加工 4、用途

12种橡胶耐300种化学药品性能表

表的阅读方法 可用的顺序以1、2、3、4、5表示,这是通过综合考虑体积变化率及其它物理性质而决定的。 1. 也可用于动态部位,体积变化率在10%以内 2. 根据使用条件,也可用于动态部位,体积变化率在20%以内 3. 可用于静态部位,体积变化率在30%以内 4. 根据使用条件,可用于静态部位,体积变化率在100%以内 5. 不能使用。体积变化率在100%以上。 此外,橡胶采用了ISO的分类符号。但,Q:硅橡胶,U:聚氨酯橡胶。 另外,本表的耐性排名为参考值,实际的混合橡胶,可能会因品牌、使用环境的不同而 有所变化。 参考文献: 1. 杜邦公司:VITON Bulletin No.15 氟化橡胶的耐液体性 2. 杜邦公司:Elastmer Review 3. Goodrich公司:Hycar Report 4. Polymer公司:Technical Report 5. J.H.Perry:Chemical Engineering Hand-book 6. 信越化学:Silicone Review 7. Parkerseal公司:Seal Compound manual 8. The Los Angeles Rubbor Group Inc:The General Chemical Resistance of Various Elastomers 9. 日本华尔卡:测试数据

552

各种弹性体橡胶的耐性一览表 橡胶温度药品 丙烯酸乙酯 丙烯酸丁酯 丙烯腈 沥青 乙炔 乙醛 乙酰胺 乙酰醋酸酯 乙酰苯 丙酮 苯胺 苯胺 苯胺盐酸盐 亚麻子油 戊醇 戊烷氯萘 戊基萘 亚硫酸 亚硫酸钠 安息香酸 安息香酸苄基 Anderol、L-774 (双酯类) 氨(液体) ″ 氨(气体) ″ 氨水(30%) 硫磺 异辛烷 异癸烷 异丁醇 异丙醇 异丙醚一氧化碳 威士忌 5 5 3

耐老化测试部分标准

耐老化测试部分标准 同科橡胶塑料研究所 GB/T 15750-2008 压电陶瓷材料性能测试方法老化性能的测试 GB 7911.13-1987 热固性树脂装饰层压板耐老化性能的测定 GB/T 7545-1992 避孕套贮存期间耐老化性能的测定 EN ISO 877-1996 塑料玻璃板下日光暴晒耐老化及性能测定 DIN EN 12224-2000土工织物及其相关产品.耐气候老化性能的测定 JBT 6072-1992 塑料耐擦伤性能试验方法 BS EN 2743-2002 航空航天系列.纤维增强的塑料.未老化材料测试前状态调节的标准程序 GBT 1040.3-2006 塑料拉伸性能的测试 GBT 7962.10-1987 无色光学玻璃测试方法耐辐射性能测试方法 GBT 3857-2005 玻璃纤维增强热固性塑料耐化学介质性能试验方法 HGT 2716-2008 橡胶或塑料涂覆织物静态耐臭氧龟裂性能的测定 GB-T 11547-1989 塑料耐液体化学药品(包括水)性能测定方法 HGT 2716-1995 橡胶或塑料涂覆织物静态耐臭氧龟裂性能的测定 GB/T 3857-1987 玻璃纤维增强热固性塑料耐化学药品性能试验方法 BS EN 12759-2001 橡胶或塑料涂覆织物.耐液体性能测定 DIN EN 12759-2001 橡胶或塑料涂层织物.耐液体性能测定 NF G37-136-2002 橡胶或塑料涂层织物.耐液体性能的测定 EN 12759-2001橡胶或塑料涂层织物.耐液体性能的测定 ISO 2897-2-1994塑料.耐冲击聚苯乙烯.第2部分性能的测定 jis k7362-1999 塑料.暴露在透过玻璃的日光下、自然气候老化或实验室光源下颜色改变和性能变化的测定 BS 2782-1 Method 131B-1983 塑料试验方法.热性能.挠性聚氯乙烯板材加热老化延伸性测定 DIN-Fachbericht CEN/TR 15697-2008 水泥.耐硫酸盐的性能测试.技术报告的情况 GBT 16578.2-2009 塑料薄膜和薄片耐撕裂性能的测定第2部分:埃莱门多夫(Elmendor)法 GBT 14152-1993 热塑性塑料管材耐外冲击性能试验方法真实冲击率法 HG/T 3048-2009 橡胶或塑料涂覆织物耐组合剪切曲挠和磨擦性能的测定 DIN EN ISO 6603-1-2000塑料.硬质塑料耐冲击性能的测定.第1部分非仪器操作的冲击试验 BS EN 12280-3-2002橡胶或塑料涂层织物.加速老化试验.物理性老化环境老化NF T51-428-1998 塑料.酚醛树脂.B-变化测试板上反应性能的测定 DIN 52008-2006 天然石料试验方法.耐气候老化的评估 HGT 2581.1-2009 橡胶或塑料涂覆织物耐撕裂性能的测定第1部分:恒速撕裂法 HGT 2581.1-2009 橡胶或塑料涂覆织物耐撕裂性能的测定第1部分:恒速撕裂法 ISO 13477-2008 流体输送用热塑性塑料管材.耐快速裂纹扩展(RCP)性能的测定.小尺寸稳态试验(S4试验)

常用热塑性塑料特性介绍(精)

ABS PC PC+ABSPC+GF ABS 塑料 /丙烯 腈 -丁二烯 -苯乙烯共聚物聚碳酸酯工程塑料合金 聚碳酸酯 +玻纤 抗拉强度 kgf/cm2400-500560-670490-6501000-1300 冲击强度 kg.cm/c m215-3030-10028-8018-40 耐磨性一般差一般较好 热变形温度 °C80-120130-13890-130190 成型温度 °C180-240280-320220-300280-320模具温度 °C30-6070-9050-8060-90流动性一般一般一般较差 收缩率‰ 0.5-0.70.5-0.80.4-0.70.1-0.5 吸水率 %0.2-0.450.160.4-0.70.07-0.2透光率 %09000 常用热塑性塑主要特性总结综合性能佳 应用电器零件、收 音机外壳 透明 led lens NB使用最 多,机构四大 件,内部结构

件等 超薄机种四大件综合性能好热 变形温度低 机械性能好成 型温度高耐磨 性差 机械性能佳成型温度高 PA POM PE PMMA PP PS 尼龙 /聚酰胺聚甲醛 /赛钢聚乙烯有机玻璃 /聚甲基丙烯酸甲酯聚丙烯聚苯乙烯 750-800700-84080-160350-630300-390350-8405.3-5.87.6862.7-222-6.41-1.7较好较好一般一般差一般 70-8012435-4574-10290-12090-100240-280180-220160-220180-240180-260180-26040-9040-6030-6030-6040-6030-60较好一般较好一般较好较好 1.0-3.01.8-2.21.5-3.50.2-0.60.7-1.20.2-0.61.3-1.90.22-0.25 <0.010.1-0.4<0.010.05-0.20 75-85 92 85 88-92

FKM 耐化学品性能比较表

氟橡胶 耐化学品性比较表 是否可以使用的参考基准 A:适合使用 C:不推荐使用 B:可以使用 D:无法使用 化学品名(常温,常压,100%浓度)AFLAS? 100/150/300AFLAS? 200FKM(2元系)FKM(3元系) 全氟橡胶乙醛Acetaldehyde D D D D C 乙酰胺Acetamide A B D C A 醋酸Acetic Acid, Glacial C D D D A 无水醋酸Acetic Anhydride B C D D A 丙酮Acetone D D D D A 乙腈Acetonitrile A A A A A 苯乙酮Acetophenone D D D D A 氯乙酰Acetyl Chloride A A A A A 乙酰丙酮Acetylacetone D D D D A 乙炔Acetylene A A A A A 丙烯酸Acrylic Acid D D D D A 丙烯腈Acrylonitrile B C C C A 己二酸Adipic Acid B C C C A 氯丙烯Allyl Chloride B C C C A 对氨基苯甲酸Aminobenzoic Acid A B C C A 对氨基吡啶Aminopyridine C D D D A 液氨Ammonia Gas, Cold A C D D A 氢氧化铵Ammonium Hydroxide A A B B A 醋酸正戊酯Amyl Acetate D D D D A 氯戊烷Amyl Chloride A A A A A 戊醇Amyl Alcohol A A B B A 戊基氯代萘Amyl chloronaphthalene B B A A A 戊基萘Amylnaphthalene B B A A A 苯胺Aniline B C D C A 盐酸苯胺Aniline Hydrochloride A A B B A 阿尼林油Aniline Oils B C C C A 王水Aqua Regia C C C C B 砷酸Arsenic Acid A A A A A 三氯化砷Arsenic Trichloride D D D D A ASTM-燃料C ASTM-Reference Fuel C D C A A A ASTM-燃料D ASTM-Reference Fuel D D C A A A ASTM-油No.1ASTM-Reference Oil No.1A A A A A ASTM-油No.3ASTM-Reference Oil No.3A A A A A 苯甲醛Benzaldehyde B C D D B 苯Benzene D C A A A 苯磺酸Benzene Sulfonic Acid A A A A A

热塑性增强塑料

热塑性增强塑料 热塑性增强塑料一般由树脂及增强材料组成。目前常用的树脂主要为尼龙(PA)、聚苯乙烯(PS)、ABS、AS,聚碳酸酯(pc)、线型聚酯、聚乙烯(PE)、聚丙烯(PP)、聚甲醛(POM)等。增强材料一般为无碱玻璃纤维(有长短两种,长纤维料一般与粒料长一致为2~3毫米,短纤维料长一般小于0.8 毫米)经表面处理后与树脂配制而成。玻纤含量应按树脂比重选用最合理的配比,一般为20%~40%之间。由于各种增强塑料所选用的树脂不同,玻纤长度、直径,有无含碱及表面处理剂不同其增强效果不一,成型特性也不一。 如前所述增强料可改善一系列力学性能,但也存在一系列缺点:冲击强度与冲击疲劳强度低(但缺口冲击强度提高);透明性、焊接点强度也降低,收缩、强度、热膨胀系数、热传导率的异向性增大。故目前该塑料主要用于小型,高强度、耐热,工作环境差及高精度要求的塑件。 2.1工艺特性 ⑴流动性差增强料熔融指数比普通料低30%~70%故流动性不良,易发生填充不良,熔接不良,玻纤分布不匀等弊病。尤其对长纤维料更易发生上述缺陷,并还易损伤纤维而影响力学性能。 ⑵成型收缩小、异向性明显成型收缩比未增强料小,但异向性增大沿料流方向的收缩小,垂直方向大,近进料口处小,远处大,塑件易发生翘曲、变形。 ⑶脱模不良、磨损大不易脱模,并对模具磨损大,在注射时料流对浇注系统,型芯等磨损也大。 ⑷易发生气体成型时由于纤维表面处理剂易挥发成气体、必须予以排出,不然易发生熔接不良、缺料及烧伤等弊病。 2.2成型注意事项 为了解决增强料上述工艺弊病,在成型时应注意下列事项: ⑴宜用高温、高压、高速注射。 ⑵模温宜取高(对结晶性料应按要求调节),同时应防止树脂、玻纤分头聚积,玻纤外露及局部烧伤。 ⑶保压补缩应充分。 ⑷塑件冷却应均匀。 ⑸料温、模温变化对塑件收缩影响较大,温度高收缩大,保压及注射压力增大,可使收缩变小但影响较小。 ⑹由于增强料刚性好,热变形温度高可在较高温度时脱模,但要注意脱模后均匀冷却。 ⑺应选用适当的脱模剂。 ⑻宜用螺杆式注射机成型。尤其对长纤维增强料必须用螺杆式注射机加工,如果没有螺杆式注射机则应在造粒后象短纤维料一样才可在柱塞式注射机上加工。 2.3成型条件 常用热塑性增强塑料成型条件见表(略)。 2.4模具设计注意事项 ⑴塑件形状及壁厚设计特别应考虑有利于料流畅通填充型腔,尽量避免尖角、缺口。 ⑵脱模斜度应取大,含玻璃纤维15%的可取1°~2°,含玻璃纤维30%的可取2°~3°。当不允许有脱模斜度时则应避免强行脱模,宜采用横向分型结构。 ⑶浇注系统截面宜大,流程平直而短,以利于纤维均匀分散。 ⑷设计进料口应考虑防止填充不足,异向性变形,玻璃纤维分布不匀,易产生熔接痕等不良后果。进料口宜取薄片,宽薄,扇形,环形及多点形式进料口以使料流乱流,玻璃纤维均匀分散,以减少异向性,最好不采用针状进料口,进料口截面可适当增大,其长度应短。 ⑸模具型芯、型腔应有足够刚性及强度。 ⑹模具应淬硬,抛光、选用耐磨钢种,易磨损部位应便于修换。 ⑺顶出应均匀有力,便于换修。 ⑻模具应设有排气溢料槽,并宜设于易发生熔接痕部位。

相关文档
最新文档