函数的应用题一(高三)

函数的应用题一(高三)
函数的应用题一(高三)

函数的应用题(1)

一、 建构函数模型的应用性问题

1.某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消

费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资

为600元,该店应交付的其它费用为每月13200元.

(Ⅰ)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数;

(Ⅱ)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?

2.某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次

品率P 与日产量x (件)之间大体满足关系:()()()1

1,96 962 ,3x c x N x P x c x N ?≤≤∈??-=??>∈??其中c为小于的正常数.)()()1

1,96 962 ,3

x c x N x P x c x N ?≤≤∈??-=??>∈??其中c为小于的正常数 注:次品率P

=

次品数生产量

,如0.1P =表示每生产10件产品,约有1件为次品.其余为合格品.

已知每生产一件合格的仪器可以盈利A 元,但每生产一件次品将亏损

2

A

元,故厂方希望定出合适的日产量. (Ⅰ)试将生产这种仪器每天的盈利额T (元)表示为日产量x (件)的函数; (Ⅱ)当日产量为多少时,可获得最大利润?

3.某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )

满足R (x )=???>≤≤-+-)5(

2.10)50( 8.02.44.02x x x x .假定该产品销售平衡,那么根据上述统计规律.

(1)要使工厂有盈利,产品x 应控制在什么范围?

(2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少?

4.为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计)?

5.运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为v 千米/小时、2v 千米/小时、10v 千米/小时,每千米的运费分别为a 元、b 元、c 元.且b <a <c ,又这批海鲜在运输过程中的损耗为m 元/小时,若使用三种运输工具分别运输时各自的总费用(运费与损耗之和)互不相等.试确定使用哪种运输工具总费用最省.(题中字母均为正的已知量)

6.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位小时)的函数,记作y=f(t),下表是某日各时的浪高数据

经长期观测y=f(t)的曲线可近似地看成函数y=A cosωt+b.

(1)根据以上数据,求出函数y=A cosωt+b的最小正周期T,振幅A及函数表达式;

(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪者进行运动.

7.某外商到一开放区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.

(1)若扣除投资及各种经费,则从第几年开始获取纯利润?

(2)若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万元出售该厂,问哪种方案最合算?

8.某厂使用两种零件A、B装配两种产品P、Q,该厂的生产能力是月产P产品最多有2500件,月产Q产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个.已知P产品每件利润1000元,Q产品每件2000元,欲使月利润最大,需要组装P、Q产品各多少件?最大利润多少万元.

9. 随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员a 2人(140

3

,为获得最大的经济效益,该公司应裁员多少人?

10.医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表. 已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.

(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天) (2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天) 已知:lg 2=0.3010.

11.在一很大的湖岸边(可视湖岸为直线)停放着一只小船,由于缆绳突然断开,小船被风刮跑,其方向与湖岸成15°角,速度为2.5km/h ,同时岸边有一人,从同一地点开始追赶小船,已知他在岸上跑的速度为4km/h ,在水中游的速度为2km/h.,问此人能否追上小船.若小船速度改变,则小船能被人追上的最大速度是多少?

12.有一个受到污染的湖泊,其湖水的容积为V 立方米,每天流出湖泊的水量都是r 立方米,现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合,用g (t )表示某一时刻t 每立方米湖水所含污染物质的克数,我们称为在时刻t 时的湖水污染质量分数,已知目前污染源以每天p 克的污染物质污染湖水,湖水污染质量分数满足关系式g (t )=

r

p +

[g (0)-

r

p ]·e

t v

r

(p ≥0),其中,g (0)是湖水污染的初始质量分数.

(1)当湖水污染质量分数为常数时,求湖水污染的初始质量分数; (2)求证:当g (0)<

r

p 时,湖泊的污染程度将

越来越严重; (3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时污染水平的5%?

13.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.

(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?

(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

14.某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利额为y 万元.

(1)写出y 与x 之间的函数关系式;

(2)从第几年开始,该机床开始盈利(盈利额为正值); (3 ) 使用若干年后,对机床的处理方案有两种:

(i )当年平均盈利额达到最大值时,以30万元价格处理该机床;

(ii )当盈利额达到最大值时,以12万元价格处理该机床,问用哪种方案处理较为合算?请说明你的理由.

二、建构不等关系的应用性问题

1. 某人上午7时乘摩托艇以匀速V 千米/小时(4≤V ≤20)从A 港出发前往50千米处的B 港,然后乘汽车以匀速W 千米/小时(30≤W ≤100)自B 港向300千米处的C 市驶去,在同一天的16时至21时到达C 市, 设汽车、摩托艇所需的时间分别是x 小时、y 小时,若所需经费)8(2)5(3100y x p -+-+=元,那么V 、W 分别为多少时,所需经

费最少?并求出这时所花的经费.

2. 某商场经过市场调查分析后得知,20XX 年从年初开始的前n 个月内,对某种商品需求的累计数)(n f (万件)近

似地满足下列关系:12,,3,2,1,)18)(2(90

1

)( =-+=

n n n n n f (Ⅰ)问这一年内,哪几个月需求量超过1.3万件?

(Ⅱ)若在全年销售中,将该产品都在每月初等量投放市场,为了保证该商品全年不脱销,每月初至少要投放多少件商品?(精确到件)

用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,

并使混合食物内至少含有56000单位维生素A和63000单位维生素B.

(Ⅰ)用x,y表示混合食物成本c元;

(Ⅱ)确定x,y,z的值,使成本最低.

三、建构数列模型的应用性问题

1.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2000年底全县的绿地已占全县总面积的30%.从20XX 年起,市政府决定加大植树造林、开辟绿地的力度,则每年有16%的原沙漠地带变成了绿地,但同时,原有绿地的4%又被侵蚀,变成了沙漠.

(Ⅰ)在这种政策之下,是否有可能在将来的某一年,全县绿地面积超过80%?

(Ⅱ)至少在多少年底,该县的绿地面积才能超过全县总面积的60%?

2. 某铁路指挥部接到预报,24小时后将有一场超历史记录的大暴雨,为确保万无一失,指挥部决定在24小时内筑一道归时堤坝以防山洪淹没正在紧张施工的遂道工程。经测算,其工程量除现有施工人员连续奋战外,还需要20辆翻斗车同时作业24小时。但是,除了有一辆车可以立即投入施工外,其余车辆需要从各处紧急抽调,每隔20分钟有一辆车到

达并投入施工,而指挥部最多可组织25辆车。问24小时内能否完成防洪堤坝工程?并说明理由.

参考答案

1. 讲解 本题题目的篇幅较长,所给条件零散杂乱,为此,不仅需要划分段落层次,弄清每一层次独立的含义和相互间的关系,更需要抓住矛盾的主要方面.由题目的问题找到关键词——“收支平衡”、“还清所有债务”,不难想到,均与“利润”相关.

从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题.为此,首先应该建立利润与职工人数、月销售量q 、单位商品的销售价p 之间的关系,然后,通过研究解析式,来对问题作出解答.

由于销售量和各种支出均以月为单位计量,所以,先考虑月利润. (Ⅰ)设该店的月利润为S 元,有职工m 名.则

()4010060013200S q p m =-?--.

又由图可知:()()

2140, 405882 5881p p q p p -+≤≤??=?-+<≤??.

所以,

()()()()()()

21404010060013200 4058824010060013200 58<81p p m p S p p m p -+-?--≤≤??=?

-+-?--≤?? 由已知,当

52p =时,0S =,即

()()214040100600132000p p m -+-?--=解得50m =.即此时该店有50名职工.

(Ⅱ)若该店只安排40名职工,则月利润

()()()()()()

21404010037200 4058824010037200 58<81p p p S p p p -+-?-≤≤??=?

-+-?-≤??当4058p ≤≤时,求得55p =时,S 取最大值7800元.

当5881p <≤时,求得61p =时,S 取最大值6900元. 综上,当

55p =时,S 有最大值7800元.

设该店最早可在n 年后还清债务,依题意,有1278002680002000000n ?--≥. 解得5n ≥.

所以,该店最早可在5年后还清债务,此时消费品的单价定为55元. 点评 求解数学应用题必须突破三关:

(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义. (2)建模关:即建立实际问题的数学模型,将其转化为数学问题. (3)数理关:运用恰当的数学方法去解决已建立的数学模型.

2. 讲解:(Ⅰ)当x c >时,23P =

,所以,每天的盈利额120332

A

T xA x =-?

=.

当1x c ≤

≤时,196P x =

-,所以,每日生产的合格仪器约有1196x x ??- ?-??件,次品约有196x x ?? ?-??

件.故,

每天的盈利额

()113196962296A x T xA x x A x x x ?

?????=--?=- ? ? ? ?---??????

综上,日盈利额T (元)与日产量x (件)的函数关系为:

()3, 1296x

x A x c T x ???-≤≤???=-???

?

(Ⅱ)由(Ⅰ)知,当x c >时,每天的盈利额为0.

当1x c ≤

≤时,()3296x

T x A

x ??=-

? ?-?

?

.为表达方便,令96x t -=,则09695c t <-≤≤.故

()39611441

147969797202222t T t A t A A t t ?-????=--=--≤-> ? ? ???

??)3961144114796979702222t T t A t A A A t ?-????=--=--≤-=> ? ? ?????.(等号当且仅当

144

t t

=

,即()1288t x ==即时成立).所以, (1)当88c ≥时,max 147

2

T A =(等号当且仅当88x =时成立)

(2) 当188c ≤<时,由1x c ≤

≤得129695c t <-≤≤,易证函数()144

g t t t

=+

在(12,)t ∈+∞上单调递增(证明过程略). 所以,()()96g t g c ≥

-.所以,

()2114411441441892979796022961922c c T t A c A A t c c ??+-????=--≤---=> ? ? ?--?????

?)2

114411441441892979796022961922c c T t A c A A t c c ??+-????=--≤---=> ? ? ?--??????. 即2max

14418921922c c T A c ??

+-= ?-??

(等号当且仅当x c =时取得)

综上,若8896c ≤<,则当日产量为88件时,可获得最大利润;若188c ≤<,则当日产量为c 时,可获得

最大利润.

点评 基本不等式和函数的单调性是求解函数最值问题的两大重要手段.

3. 解:依题意,G (x )=x +2,设利润函数为f (x ),则

??

?>-≤≤-+-=)5(

2.8)

50( 8.22.34.0)(2x x x x x x f (1)要使工厂有赢利,则有f (x )>0. 当0≤x ≤5时,有–0.4x 2+3.2x –2.8>0,得15时,有8.2–x >0,得x <8.2,∴5

综上,要使工厂赢利,应满足15时f (x )<8.2–5=3.2

所以当工厂生产400台产品时,赢利最大,此时只须求x =4时,每台产品售价为

4

)

4(R =2.4(万元/百台)=240(元/台).

4分析:关键在于理解题意而列出关系式,找到a 与b 间的等量关系.函数最小值可应用重要不等式或利用导数解决.

解法一:设经沉淀后流出的水中该杂质的质量分数为y ,则由条件y =ab

k

(k >0为比例系数)其中a 、b 满足

2a +4b +2ab =60 ①

要求y 的最小值,只须求ab 的最大值.由①(a +2)(b +1)=32(a >0,b >0)且ab =30–(a +2b ) 应用重要不等式a +2b =(a +2)+(2b +2)–4≥124)22)(2(2

=-++b a

∴ab ≤18,当且仅当a =2b 时等号成立将a =2b 代入①得a =6,b =3.

解法二:由2a +4b +2ab =60,得a

a

b +-=

230,

记a

a

a a

b u

+-=

=2)30((0<a <30)则要求y 的最小值只须求u 的最大值.

由2

2

)2()2(64++-=

'a a u ,令u ′=0得a =6,且当0<a <6时,u ′>0,当6<u <30时

u ′<0,∴a a a u +-=

2)30(在a =6时取最大值,此时b =3.,从而当且仅当a =6,b =3时,y =ab

k

取最小值.

5. 解:设运输路程为S (千米),使用汽车、火车、飞机三种运输工具运输时各自的总费用分别为y 1(元)、y 2(元)、y 3(元).

则由题意,,)2(.)(21

S v m b y S v m a m v S aS y +=+=+

=S v

m b a y y S v m c y ]2)[(.)10(213+-=-+=,由a >b ,各字母均为正值,所以y 1–y 2>0,即y 20,由c >b 及每字母都是正值,得c >b +v

m

52.

所以,当c >b +v m 52时y 2

m

52时,y 3

6. 解:(1)由表中数据,知T =12,ω=

6

π=T .

由t =0,y =1.5得A +b =1.5.

由t =3,y =1.0,得b =1.0.所以,A =0.5,b =1.振幅A =21,∴y =16cos 21+t π

(2)由题意知,当y >1时,才可对冲浪者开放.∴16

cos 21+t π>1, t 6cos π

>0.

∴2k π–

2

26

2

π

ππ

π

+

<<

k t ,

即有12k –3

由0≤t ≤24,故可令k =0,1,2,得0≤t <3或9

7.解:由题意知,每年的经费是以12为首项,4为公差的等差数列,设纯利润与年数的关系为f (n ),则f (n )=50n –

[12n +

2

)

1(-n n ×4]–72 =–2n 2+40n –72

(1)获纯利润就是要求f (n )>0,∴–2n 2+40n –72>0,解得2

n n f )(=40–2(n +n

36

)≤16.当且仅当n =6时取等号.故此方案先获利6×16+48=144(万美元), 此时n =6,②f (n )=–2(n –10)2+128.

当n =10时,f (n )|max =128.故第②种方案共获利128+16=144(万美元).

故比较两种方案,获利都是144万美元,但第①种方案只需6年,而第②种方案需10年,故选择第①种方案.

8. 解:设分别生产P 、Q 产品x 件、y 件,则有

???≤+≤+???≤+≤+??

?≤≤≤≤6000

4700032120008214000641200025000y x y x y x y x y x 则有依题意有设利润S =1000x +2000y =1000(x +2y )

x +2y =m (2x +3y )+n (x +4y )=x (2m +n )+y (3m +4n )

∴???=+=+24312n m n m ∴???

????

==51

52n m 有x +2y =

52(2x +3y )+51(x +4y )≤5

2×7000+51

×6000.

当且仅当???=+=+60004700032y x y x 解得?

??==10002000

y x 时取等号,此时最大利润S max =1000(x +2y )=4000000=400(万元).

另外此题可运用“线性规划模型”解决.

9. 解 设裁员x 人,可获得的经济效益为y 万元,则 bx bx b x a y 4.0)01.0)(2(-+-=

=ab x a x b

2])70(2[100

2+---

依题意 x a -2≥a 243

?

∴0

a

.

又140

(1)当0<70-a ≤2a

,即70

(2)当70-a >2a ,即140

a

x = , y 取到最大值;

综上所述,当70

a

人. 在多字母的数学问题当中,分类求解时需要搞清:为什么分类?对谁分类?如何分类?

10. 讲解 (1)由题意病毒细胞关于时间n 的函数为

12-=n y , 则由,10281≤-n

两边取对数得

,82lg )1(≤-n n ≤27.5,

即第一次最迟应在第27天注射该种药物.

(2)由题意注入药物后小白鼠体内剩余的病毒细胞为%2226

?,

再经过x 天后小白鼠体内病毒细胞为x 2%2226??, 由题意x 2%2226??≤108,两边取对数得

2.6,82lg 22lg 2lg 26≤≤+-+x x 得,

故再经过6天必须注射药物,即第二次应在第33天注射药物.

本题反映的解题技巧是“两边取对数”,这对实施指数运算是很有效的.

11讲解: 不妨画一个图形,将文字语言翻译为图形语言, 进而想法建立

数学模型.

设船速为v ,显然

h

km v /4≥时人是不可能追上小船,当

20≤≤v km/h 时,人不必在岸上跑,而只要立即从同一地点直接下水就可 B

v t

2(1-k )t

15°

船的速度,人只有先沿湖岸跑一段路后再游水追赶,当人沿岸跑的轨迹和人游水的轨迹以及船在水中漂流的轨迹组成一个封闭的三角形时,人才能追上小船。设船速为v ,人追上船所用 时间为t ,人在岸上跑的时间为)10(<<

k kt ,则人在水中游的时间

为t k )1(-,人要追上小船,则人船运动的路线满足如图所示的三角形.

,||,)1(2||,4||vt OB t k AB kt OA -== 由余弦是理得

???-+=15cos ||||2||||||222OB OA OB OA AB 即4

264.2)()4()1(42222+??-+=-vt kt vt kt t k

整理得04]8)26(2[1222=-+-+-v k v k .

要使上式在(0,1)范围内有实数解,则有112

402

<-

解得h km v v /22,222max =≤<即. 故当船速在]22

,2(内时,人船运动路线可物成三角形,即人能追上小船,船能使人追上的最大速度为h km /22,

由此可见当船速为2.5km /h 时, 人可以追上小船. 涉及解答三角形的实际应用题是近年高考命题的一个冷点, 复课时值得关注.

12. 讲解(1)∵g (t )为常数, 有g (0)-r

p

=0, ∴g (0)=

r

p .

(2) 我们易证得0

g (t 1)-g (t 2)=[g (0)-

r

p ]e

1t v

r --[g (0)-

r

p ]e

21

t v r -=[g (0)-

r

p ][e

1t v

r

--e

21

t v r -]=[g (0)-

r

p ]

)(2112)

(t t v

r

t v

r t v

r e

e e +-,

∵g (0)·

r

p <0,t 1

21

t v r >e

1t v

r ,∴g (t 1)

故湖水污染质量分数随时间变化而增加,污染越来越严重.

(3)污染停止即P =0,g (t )=g (0)·e

t v

r -,设经过t 天能使湖水污染下降到初始污染水平5%即g (t

)=5% g(0)

∴20

1=e t v r

-,∴t =

r

v

ln20, 故需要r

v

ln20天才能使湖水的污染水平下降到开始时污染水平的5%.

13. 讲解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为36003000

1250

-=,所以这时租出了88

辆车.

()()30003000100150505050x x f x x --??=---? ??

?. 整理得:()()2

211622100040503070505050

x f x x x =-+-=--+.

所以,当4050x =时,

()f x 最大,最大值为307050.即当每辆车的月租金定为4050元时,租赁公司的月收益

最大,最大月收益是307050元.

点评:实际问题的最值要注意自变量的取值范围.

14. 讲解 本例兼顾应用性和开放性, 是实际工作中经常遇到的问题. (1)

98]42

)

1(12[50-?-+

-=x x x x y =984022

-+-x x . (2)解不等式 984022

-+-x x >0,

得 5110

-<x <5110+.

∵ x ∈N , ∴ 3 ≤x ≤ 17. 故从第3年工厂开始盈利.

(3)(i) ∵ )x

x x x x y 982(4098402+-=-+-=

≤40129822=?-

当且仅当x

x

98

2=

时,即x=7时,等号成立. ∴ 到20XX 年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元. (ii)

y=-2x 2

+40x-98= -2(x-10)2

+102,

∴当x=10时,y

max

=102.

故到20XX 年,盈利额达到最大值,工厂共获利102+12=114万元. 解答函数型最优化实际应用题,二、三元均值不等式是常用的工具.

二.1.讲解: 题中已知了字母, 只需要建立不等式和函数模型进行求解.

由于103,5.125.2,100450≤≤≤≤∴≤≤=x y V V

y 同理及又149≤+≤

y x ,

23),23(131)8(2y x z y x y +=+-=-令.)5(3100x P +-+=

则z 最大时P 最小.

作出可行域,可知过点(10,4)时, z 有最大值38, ∴P 有最小值93,这时V=12.5,W=30. 视y x z

23+=这是整体思维的具体体现, 当中的换元法是数学解题的常用方法.

2. 讲解:(Ⅰ)首先,第n 个月的月需求量=()()()1, 1

1, 212

f n f n f n n =???--≤≤??

)18)(2(901

)(n n n n f -+=

, ∴

()171 1.330

f =<.

当2n ≥时,

)19)(1)(1(90

1

)1(n n n n f -+-=

- ∴ 21()(1)(335

19)

90

f n f n n n --=-++ 令()(1) 1.3f n f n -->,即117193532

>++-n n ,解得:

73

14

<

即这一年的5、6两个月的需求量超过1.3万件.

(Ⅱ)设每月初等量投放商品a 万件,要使商品不脱销,对于第n 个月来说,不仅有本月投放市场的a 万件商品,还有前几个月未销售完的商品.所以,需且只需:0)(≥-

n f na ,

∴ 90

)18)(2()(n n n n f a -+=≥

又∵9

10]2)18()2([90190)18)(2(2=-++≤-+n n n n ∴ 910≥

a

即每月初至少要投放11112件商品,才能保证全年不脱销. 点评:实际问题的解答要注意其实际意义.本题中a 的最小值,不能用四舍五入的方法得到,否则,不符合题意.

3. 讲解:(Ⅰ)由题,1194c

x y z =++,又100x y z ++=,所以,40075c x y =++.

(Ⅱ)由60070040056000, 10080040050063000

x y z z x y x y z ++≥?=--?

++≥?及得,46320

3130

x y x y +≥??

-≥?,

所以,75450.x y +≥ 所以,40075400450850,c

x y =++≥+=

当且仅当4632050

, 313020

x y x x y y +==???

?

-≥=??即时等号成立. 所以,当x =50千克,y =20千克,z =30千克时,混合物成本最低,为850元.

点评:本题为线性规划问题,用解析几何的观点看,问题的解实际上是由四条直线所围成的区域0

0463203130x y x y x y ≥??≥?

?

+≥??-≥?上使得40075c x y =++最大的点.不难发现,应在点M (50,20)处取得.

三、1.讲解:本题为实际问题,首先应该读懂题意,搞清研究对象,然后把它转化为数学问题.不难看出,这是一道数列型应用问题.因此,我们可以设:

为n a ,则我们所要回答的问题就是:

(Ⅰ)是否存在自然数n ,使得n a >80% ? (Ⅱ)求使得n a >60%成立的最小的自然数n . 为了解决这些问题,我们可以根据题意,列出数列

{}n a 的相邻项之间的

函数关系,然后由此递推公式出发,设法求出这个数列的通项公式.

由题可知:0

3

30%10

a ==

, ()()25

4

541%16%411+

=

-+-=+n n n n a a a a 所以,当1n ≥时,25

4

541+=-n n a a ,两式作差得:

()1154

-+-=-n n n n a a a a

又1000

04441152525510

a a a a a ??-=+-=-= ???

所以,数列

{}1n n a a --是以10110a a -=

为首项,以5

4

为公比的等比数列.

所以,()()()112100n n n n n a a a a a a a a ---=-+-+

+-+ 14(1())

3414105()41052515

n

n

-=+=-?- 由上式可知:对于任意N n ∈,均有5

4

<

n a .即全县绿地面积不可能超过总面积的80%.

(Ⅱ)令53>

n

a ,得42()55

n <, 由指数函数的性质可知:()4()5

n

g n =随n 的增大而单调递减,因此,我们只需从0n =开始验证,直到找到

第一个使得42

()55

n <的自然数n 即为所求.

验证可知:当0,1,2,3,4n =时,均有42()55n >,而当5n =时,42

()0.3276855

n =<,

由指数函数的单调性可知:当5n ≥时,均有42

()55

n <.

所以,从2000年底开始,5年后,即20XX 年底,全县绿地面积才开始超过总面积的60%. 点评:(Ⅱ)中,也可通过估值的方法来确定n 的值.

2.讲解: 引入字母, 构建等差数列和不等式模型.

由20辆车同时工作24小时可完成全部工程可知,每辆车,每小时的工作效率为

480

1

,设从第一辆车投入施工算起,各车的工作时间为a 1,a 2,…, a 25小时,依题意它们组成公差3

1-=d (小时)的等差数列,且

48025)(1,1,242521≥?+≥+++≤a a a a a a 即则有

,化简可得19282≥-a .

解得245

123,51231

<≥由于a .

可见a 1的工作时间可以满足要求,即工程可以在24小时内完成.

函数应用题-(2009-2018)高考数学分类汇编含解析

【命题规律】 1. 根据待定系数法、几何公式、解三角形确定函数解析式 2. 利用导数、基本不等式或解三角形求最值或范围. 【真题展示】 1【2009江苏,19】按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为 m m a +;如果他买进该产品的单价为n 元,则他的满意度为 n n a +.如果一个人对两种交易(卖 出或买进)的满意度分别为 1h 和2h .现假设甲生产A 、B 两种产品的 单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为 A m 元和 B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为 h 乙(1)求h 甲和h 乙 关于 A m 、 B m 的表达式;当 35A B m m =时,求证:h 甲=h 乙;(2)设35 A B m m =,当A m 、B m 分别为多少时, 甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为0h ,试问能否适当 选取 A m 、 B m 的值,使得0h h ≥甲和0h h ≥乙同时成立, 但等号不同时成立?试说明理由.【答案】(1)详见解析; (2) 20,12B A m m == 时,甲乙两人同时取到最大的综合满意度为5 (3) 不能

故当1120 B m =即20,12B A m m ==时, (3)由(2)知:0h 由05 h h ≥=甲得: 12552A B A B m m m m ++?≤,

所以不能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立. 2【2015江苏高考,17】(本小题满分14分) 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边 界的直线型公路,记两条相互垂直的公路为12l l , ,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l , 的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l , 所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2a y x b =+(其中a ,b 为常数)模型. (1)求a ,b 的值; (2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

初中一次函数典型应用题

中考一次函数应用题 近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由 于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例, 也许对你有所帮助。 例1 已知雅美服装厂现有 A 种布料70 米,B 种布料52 米,现计划用这两种布料生产M,N两种型号的时装共80 套。已知做一套M型号的时装需要 A 种布料0. 6 米,B种布料0.9 米,可获利润45 元;做一套N型号的时装需要A种布料 1.1 米,B 种布料0. 4 米,可获利润50 元。若设生产N种型号的时装x,用这批布料生产这两种型号的时装所获总利润为y 元。 套数为 (1)求y 与x的函数关系式,并求出自变量的取值范围; (2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少? 例2 某市电话的月租费是20 元,可打60 次免费电话(每次 3 分钟),超过60 次后,超过部分每次0. 13 元。 (1)写出每月电话费y (元)与通话次数x之间的函数关系式; (2)分别求出月通话50 次、100 次的电话费; (3)如果某月的电话费是27. 8 元,求该月通话的次数。 例3 荆门火车货运站现有甲种货物1530 吨,乙种货物1150 吨,安排用一列货车将这批货物运往广州, 这列货车可挂A、B两种不同规格的货厢50 节,已知用一节 A 型货厢的运费是0. 5 万元,用一节 B 型货厢的运费是0.8 万元。 (1)设运输这批货物的总运费为y (万元),用A 型货厢的节数为x(节),试写出y 与x之间的 函数关系式; (2)已知甲种货物35 吨和乙种货物15 吨,可装满一节 A 型货厢,甲种货物25 吨和乙种货物35 吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。 (3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?

高考数学复习点拨 巧解函数模型应用题

去伪存真 巧解函数模型应用题 新课标加大了对应用问题的考查,而函数的应用问题也是训练同学们建立模型的好素材,因此也成为了高考命题的热点,本文通过比较建立不同的数学模型,来探讨如何建立效果最好的函数模型。 例:某皮鞋厂,从今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双, 1.3万双,1.37万双。由于产品质量好,款式新颖,前几个月的产品销售情况良好。为了推销员在推销产品时,接受定单不至于过多或过少,需要估测以后几个月的产量,厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程。厂里也暂时不准备增加设备和工人。假如你是厂长,将会采用什么办法估算以后几个月的产量。 分析:本题是通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型。 解:由题意知:可以得到四个点()()()()1,1,2,1.2,3,1.3,4,1.37A B C D 。 解法一:用一次函数模拟 设模拟函数为y ax b =+,以,B C 两点的坐标代入函数式,有2 1.23 1.3 a b a b +=??+=? 解得 0.11a b =??=? ,所以得0.11y x =+。 评价:此法的结论是:在不增加工人和设备的条件下,产量会月月上升1000双,这是不可能的。 解法二:用二次函数模拟 设2 y ax bx c =++,将,,A B C 三点的坐标代入,有 1,42 1.2,93 1.3,a b c a b c a b c ++=??++=??++=? 解得0.05,0.35,0.7,a b c =-??=??=? 所以2 0.050.350.7y x x =-++。 评价:有此法计算4月份产量为1.3万双,比实际产量少700双。而且,由二次函数性质可知,产量自4月份开始将月月下降(图象开口向下,对称轴方程是 3.5x =),这显然不符合实际情况。 解法三:用幂函数模拟 设y b =,将,A B 两点的坐标代入,有1 1.2 a b b +=??+=解得0.48,0.52.a b =??=? 所以0.52y =。 评价:以3,4x x ==代入,分别得到 1.35, 1.48y y ==,与实际产量差距较大。这是因为

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

(完整版)一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结 考点1:一次函数的概念. 相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 1、已知一次函数k x k y )1(-=+3,则k = . 2、函数n m x m y n +--=+1 2)2(,当m= ,n= 时为正比例函数;当m= , n 时为一次函数. 考点2:一次函数图象与系数 相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上, 0

是 . 8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( ) A.m >0,n <2 B. m >0,n >2 C. m <0,n <2 D. m <0,n >2 9.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __. 10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。 考点3:一次函数的增减性 相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0m C. 2m 5. (2011内蒙古赤峰)已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。(填“>”、“<”或“=”号) 6.当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ). A .y ≥-7 B .y ≥9 C .y >9 D .y ≤9 7.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).

一次函数的应用专题

精心整理 一次函数的应用 一.选择题 1.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法: ①甲、乙两地之间的距离为560km; ②快车速度是慢车速度的1.5倍; ③快车到达甲地时,慢车距离甲地60km; ④相遇时,快车距甲地320km A.1 2 A. 3.t(小时)③A、 A.1 4 A.1 5 6l1、l2分 x= h 人相距7km. (6题图)(7题图) 7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中: ①甲队每天挖100米; ②乙队开挖两天后,每天挖50米; ③甲队比乙队提前3天完成任务; ④当x=2或6时,甲乙两队所挖管道长度都相差100米. 正确的有.(在横线上填写正确的序号)

8.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是. 三、解答题: (行程问题) 8.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点) (1 (2 及 9. (1 (2 为t (3 10.小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示. (1)小林的速度为米/分钟,a= ,小林家离图书馆的距离为米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象; (3)小华出发几分钟后两人在途中相遇? 11.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t (小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答: (1)甲车出发多长时间后被乙车追上? (2)甲车与乙车在距离A地多远处迎面相遇?

指数函数对数函数应用题

与指数函数、对数函数相关的应用题较多,如人口的增长(1981年、1996年高考题)、环保等社会热点问题,国民生产总值的增长、成本的增长或降低、平均增长率等经济生活问题,放射性物质的蜕变、温度等物理学科问题等. 一、人口问题 例1、某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题: ⑴写出该城市人口数y(万人)与年份x(年)的函数关系式; ⑵计算10年以后该城市人口总数(精确到0.1万人); ⑶计算大约多少年以后该城市人口将达到120万人(精确到1年). 二、增长率问题 例2、按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y 随存期x 变化的函数关系式.如果存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?(注:“复利”,即把前一期的利息和本金加在一起算作本金,再计算下一期利息.) 例3、某乡镇现在人均一年占有粮食360千克,如果乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食,求出函数y关于x的解析式.

三、环保问题 例4、一片森林面积为a ,计划每年砍伐一批木材,每年砍伐的百分比相等,则砍伐到面积一半时,所用时间是T 年,为保护生态环境,森林面积至少要保留原面积的 14,已知到今 年为止,森林剩余面积为原来的2 . ⑴到今年为止,该森林已砍伐了多少年? ⑵今后最多还能砍伐多少年? 四、物理问题 例5、牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度是T 0,则 经过一定时间h 后的温度T 将满足T -T a = 2 1(T 0-T a ),其中T a 是环境温度,使上式成立所需要的时间h 称为半衰期.在这样的情况下,t 时间后的温度T 将满足T -T a =h t )21((T 0-T a ). 现有一杯ο195F 用热水冲的速溶咖啡,放置在ο75F 的房间中,如果咖啡降温到ο 105F 需20分钟,问欲降到ο95F 需多少时间? 例6、设在海拔x m 处的大气压强是y Pa ,y 与x 之间的函数关系式是kx ce y =,其中c,k 为常量.已知某地某天在海平面的大气压为 1.01×105Pa ,1000m 高空的大气压为0.90×105Pa ,求600m 高空的大气压强(结果保留3个有效数字).

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

一次函数应用题精编(附答案)

一次函数应用题专题训练 1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x 之间的函数关系. (1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离; (2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上) 2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票). (1)求a的值. (2)求售票到第60分钟时,售票听排队等候购票的旅客人数. (3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?

3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离.... 分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示. (1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围. 4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示: 销售方式 粗加工后销售 精加工后销售 每吨获利(元) 1000 2000 已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完. ⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? ⑵如果先进行精加工,然后进行粗加工. ①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式; ②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间? O y/km 90 30 a 0.5 3 P 甲 乙 x/h

最新一次函数的应用典型练习题

一次函数的应用典型练习题 1、若点(1,2)及(m ,3)都在正比例函数y=kx 的图象上,求m 的值. 2、已知直线y=kx+b 经过点(-2,-1)和点(2,-3),求这条直线的函数解析式. 3、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式. 4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式. 5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,求y 与x 之间的函数关系式. 6、 声音在空气中传播的速度y (米/秒)(简称音速)是气温x (℃)的一次函数,下表列出了一组不同气温时的音速: (1)求y 与x (2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,那么此人与燃放的烟花所在地约相距多远? x y 2 1

7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用 水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示: (1)分别写出x≤5和x>5时,y与x的函数解析式; (2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准. (3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨? 8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓 球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价 的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒). (1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的 付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系 式. (2)就乒乓球盒数讨论去哪家商店购买合算? 9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这 两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示. (1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系 式; (2)两种租书方式每天租书的收费分别是多少元? (3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合 算?

高考数学-应用题专题

1 高考数学-应用题 应用题类型: 1.代数型(1)函数型(2)不等式型(3)数列型(4)概率统计型 2.几何型(1)三角型(2)解析几何型(3)立体几何型 1. 某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利? (2)若干年后,有两种处理方案: 方案一:年平均获利最大时,以26万元出售该渔船 方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算. 解析. (1)由题意知,每年的费用以12为首项,4为公差的等差数列. 设纯收入与年数n 的关系为f (n ),则 ++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n . 由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<

2 2. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当2000≤≤x 时,求函数()x v 的表达式; (Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ?=可以达到最大,并求出最大值.(精确到1辆/小时) 解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然 ()b ax x v +=在[]200,20是减函数,由已知得???=+=+60200200b a b a ,解得??? ????=-=320031b a 故函数()x v 的表达式为()x v =()?? ???≤≤-<≤.20020,20031,200,60x x x (Ⅱ)依题意并由(Ⅰ)可得()=x f ()?????≤≤-<≤.20020,2003 1,200,60x x x x x 当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=?; 当20020≤≤x 时,()()()310000220031200312 =??????-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立. 所以,当100=x 时,()x f 在区间[]200,20上取得最大值 3 10000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.

2019年高三题库 届高三数学函数综合练习

e C.e 函数综合练习 姓名:评分: 一、选项择题: 1.集合A={y∈R|y=lg x,x>1},B={-2,-1,1,2}则下列结论正确的是()A.A B= {-2,-1}B.(C A)B=(-∞,0) R C.A B=(0,+∞)D.(C A)B={-2,-1} R 2.a<0是方程ax2+2x+1=0至少有一个负数根的() A.必要不充分条件B.充分不必要条件 C.充分必要条件D.既不充分也不必要条件 3.在同一平面直角坐标系中,函数y=g(x)的图象与y=e x的图象关于直线y=x 对称。而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=-1,则m的值是() A.-e B.-1 D. 1 e 4.若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e x,则有() A.f(2)-3B.a<-3C.a>-1 3D.a<- 1 3 7.函数y=x(x-1)+x的定义域为() A.{x|x≥0} C.{x|x≥1}{0}B.{x|x≥1} D.{x|0≤x≤1}

+ 0) + - 1) - + 0) , log ( x - 1) 的定义域为 1) 8.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中 汽车的行驶路程 s 看作时间 t 的函数,其图像可能是( ) s s s s O t O t O t O t A . B . C . D . 9.设奇函数 f ( x ) 在 (0, ∞) 上为增函数,且 f (1) = 0 ,则不等式 的解集为( ) A . (-1, (1, ∞) B . (-∞, 1) (0, C . (-∞, 1) (1, ∞) D . (-1, (01) f ( x ) - f (- x ) x < 0 10.“ x -1 < 2 成立”是“ x ( x - 3) < 0 成立”的( ) A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分也不必要条件 二、填空题: 11.函数 f ( x ) = x - 2 - 1 2 . 12.设曲线 y = e ax 在点 (0, 处的切线与直线 x + 2 y + 1 = 0 垂直,则 a = . 13.已知函数 f ( x ) = x 2 + 2 x + a , f (bx ) = 9 x 2 - 6 x + 2 其中 x∈R,a ,b 为常数,则 方程 f (ax + b ) =0 的解集为 . 14.设函数 y = f ( x ) 存在反函数 y = f -1 ( x ) ,且函数 y = x - f ( x ) 的图象过点(1,2), 则函数 y = f -1 ( x ) - x 的图象一定过点 . 三、解答题: 15. (本小题满分 14 分)已知集合 A = {x | ( x - 2)[ x - (3a + 1)] < 0},B = (2a , a 2 + 1) (1)当 a = 2 时,求 A B ; (2)求使 B ? A 的实数 a 的取值范围 16.(本小题满分 12 分) 已知 p :方程 x 2 + mx + 1 = 0 有两个不等的负实根, q :方程 4 x 2 + 4(m - 2) x + 1 = 0 无实根. 若 p 或 q 为真,p 且 q 为假. 求实数 m 的取值范围。

一次函数经典应用题

一次函数经典应用题 3.某加油站五月份营销一种油品的销售利润(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元; (2)分别求出线段AB与BC所对应的函数关系式; (3)我们把销售每升油所获得的利润称为利润率,那么,在O A.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案) 4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y与x之间的函数表达式; (3)求这辆汽车从甲地出发4h时与甲地的距离.

5.邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求: (1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多长时间? 6.星期天8:00~8:30员以每车20立方米的加气量,依次 给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图2所示. (1)8:00~8:30,燃气公司向储气罐注入了多少立 方米的天然气? (2)当x ≥0.5时,求储气罐中的储气量y (立方米) 与时间x (小时)的函数解析式; (3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由. 分 小

一次函数的应用题分类总结整理

一、明确函数类型,利用待定系数法构建函数表达式; 特点:所给问题中已经明确告知为一次函数 ....关系或者给出函数的图像为直线或直线的一部分时,就等于告诉我们此函数为“一次函数”,此时可以利用待定系数法,设关系式为:y=kx+b,然后寻找满足关系式的两个x与y的值或两个图像上的点,代入求解即可。 常见题型:销售问题中售价与销量之间常以表格形式给出的有规律的变化,蕴含着一次函数关系;行程问题中的路程与时间的关系常给出函数的图像(多是直线或折线); 【典型例题赏析】 1.(2010 江苏连云港)(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系. 售价 x(元) …70 90 … 销售量y(件) … 300 0 1000 … (1)求销售量y(件)与售价x(元)之间的函数关系式; (2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元? 2.已知A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城, 甲车到达B城后立即沿原路返回.图2是它们离A城的距离y(千米) 与行驶时间x(小时)之间的函数图像。 (1)求甲车在行驶过程中y与x之间的函数关系式; (2)当它们行驶了7小时时,两车相遇.求乙车的速度. 3.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系. (1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

高三数学函数综合题训练(含详解)

高三函数综合题 1.已知函数f(x)=2x+2-x a(常数a∈R). (1)若a=-1,且f(x)=4,求x的值; (2)若a≤4,求证函数f(x)在[1,+∞)上是增函数; (3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围. 2.已知函数f(x)=x2+(x-1)|x-a|. (1)若a=-1,解方程f(x)=1; (2)若函数f(x)在R上单调递增,求实数a的取值范围; (3)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立,求a的取值范围.

3.已知函数f(x)=x|x-a|+2x-3. (1)当a=4,2≤x≤5,求函数f(x)的最大值与最小值; (2)若x≥a,试求f(x)+3>0的解集; (3)当x∈[1,2]时,f(x)≤2x-2恒成立,求实数a的取值范围. 4.已知函数f(x)=x2-1,g(x)=a|x-1|. (1)若函数h(x)=|f(x)|-g(x)只有一个零点,求实数a的取值范围; (2)当a≥-3时,求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.

答案详解 1.已知函数f (x )=2x +2-x a (常数a ∈R ). (1)若a=-1,且f (x )=4,求x 的值; (2)若a≤4,求证函数f (x )在[1,+∞)上是增函数; (3)若存在x ∈[0,1],使得f (2x )>[f (x )]2 成立,求实数a 的取值范围. 解:(1)由a=-1,f (x )=4,可得2x -2-x =4,设2x =t , 则有t-t -1 =4,即t 2 -4t-1=0,解得t=2±5,当t=2+5时,有2x =2+5,可得x=log 2(2+5). 当t=2-5时,有2x =2-5,此方程无解.故所求x 的值为log 2(2+5). (2)设x 1,x 2∈[1,+∞),且x 1>x 2, 则f(x 1)-f(x 2)=(2x 1+2 -x 1 a)-(2x 2+2 -x 2 a)=(2x 1-2x 2)+ 2 11 2 2 2 2 x x x x +-a= 2 12 1 2 2 2 x x x x +-(2 x 1+x 2 -a) 由x 1>x 2,可得2x 1>2x 2,即2x 1-2x 2>0,由x 1,x 2∈[1,+∞),x 1>x 2,得x 1+x 2>2,故2x 1+x 2>4>0, 又a≤4,故2x 1+x 2>a ,即2x 1+x 2-a >0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在[1,+∞)上是增函数. (3)因为函数f (x )=2x +2-x a ,存在x ∈[0,1], f (2x )>[f (x )]2?22x +2-2x a >22x +2a+2-2x a 2?2-2x (a 2 -a )+2a <0 设t=2-2x ,由x ∈[0,1],可得t ∈[ 4 1,1],由存在x ∈[0,1]使得f (2x )>[f (x )]2 , 可得存在t ∈[ 4 1,1],使得(a 2-a )t+2a <0,令g (t )=(a 2 -a )t+2a <0, 故有g( 41)=4 1(a 2-a)+2a <0或g (1)=(a 2 -a )+2a <0, 可得-7<a <0.即所求a 的取值范围是(-7,0). 2.已知函数f (x )=x 2 +(x-1)|x-a|. (1)若a=-1,解方程f (x )=1; (2)若函数f (x )在R 上单调递增,求实数a 的取值范围; (3)若a <1且不等式f (x )≥2x -3对一切实数x ∈R 恒成立,求a 的取值范围. 解析:(1)当a=-1时,f (x )=x 2 +(x-1)|x+1|,故有,f(x)= ???-<-≥-11 1 122x x x , 当x≥-1时,由f (x )=1,有2x 2 -1=1,解得x=1,或x=-1. 当x <-1时,f (x )=1恒成立, ∴方程的解集为{x|x≤-1或x=1}. (2)f(x)= ? ??<-+≥++-a x a x a a x a x a x )1()1(22

相关文档
最新文档