平面向量与解三角形的归纳与复习

平面向量与解三角形的归纳与复习
平面向量与解三角形的归纳与复习

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理 ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

解三角形知识点归纳总结

第一章解三角形 .正弦定理: 2)化边为角: a : b: c sin A : sin B : sin C ? 7 a si nA b sin B a sin A b sin B ' c sin C J c sin C ' 3 )化边为角: a 2Rsin A, b 2Rsin B, c 2Rsin C 4 )化角为边: sin A sin B a ; sin B J b sin C b sin A a c' sin C c ' a b 5 )化角为边:si nA , si nB , si nC 2R 2R 3. 利用正弦定理可以解决下列两类三角形的问题: ① 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由 A+B+C=180,求角A,由正弦定理a 竺A, 竺B b sin B c sin C b 与c ②已知两边和其中一边 的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理旦 血 求出角B,由A+B+C=180求出角C,再使用正 b sin B 弦定理a 泄求出c 边 c sin C 4. △ ABC 中,已知锐角A ,边b ,贝U ① a bsin A 时,B 无解; ② a bsinA 或a b 时,B 有一个解; ③ bsinA a b 时,B 有两个解。 如:①已知A 60 ,a 2,b 2 3,求B (有一个解) ②已知A 60 ,b 2,a 2.3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数 .三角形面积 各边和它所对角的正弦的比相等, 并且都等于外 接圆的直径, 即 a b c sin A sin B sinC 2.变形:1) a b c a sin sin si sin 2R (其中R 是三角形外接圆的半径) b c sin sinC c 2R 沁;求出 sin C 1.正弦定理:在一个三角形中, bsin A

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

(浙江专用)高考数学二轮复习专题一三角函数与平面向量第2讲三角恒等变换与解三角形学案

第2讲 三角恒等变换与解三角形 高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题. 真 题 感 悟 1.(2018·全国Ⅲ卷)若sin α=1 3,则cos 2α=( ) A.89 B.79 C.-79 D.-89 解析 cos 2α=1-2sin 2 α=1-2×? ????132 =7 9 . 答案 B 2.(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 2 4 , 则C =( ) A.π2 B.π3 C.π4 D. π6 解析 根据题意及三角形的面积公式知12ab sin C =a 2 +b 2 -c 2 4,所以sin C =a 2 +b 2 -c 2 2ab =cos C ,所以在△ABC 中,C =π4 . 答案 C 3.(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________. 解析 因为a =7,b =2,A =60°,所以由正弦定理得sin B =b sin A a =2× 3 27=21 7.由 余弦定理a 2 =b 2 +c 2 -2bc cos A 可得c 2 -2c -3=0,所以c =3. 答案 21 7 3 4.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接 CD ,则△BDC 的面积是________,cos ∠BDC =________.

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

(完整版)解三角形知识点及题型总结

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形知识点归纳

解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C o .

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

平面向量与解三角形

第八单元平面向量与解三角形 (120分钟150分) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.锐角△ABC的三内角A、B、C所对边的长分别为a、b、c,若2c sin B=b,则角C的大小为 A.B.C.D. 解析:由正弦定理得2sin B==,∴sin C=,∴C=. 答案:A 2.若向量u=(3,-6),v=(4,2),w=(-12,-6),则下列结论中错误的是 A.u⊥v B.v∥w C.w=u-3v D.对任一向量,存在实数a,b,使=a u+b v 解析:因为u·v=0,所以u⊥v,显然w∥v,因为u与v不共线,所以对任意向量,存在实数a,b,使=a u+b v. 答案:C 3.在△ABC中,B=,三边长a,b,c成等差数列,且ac=6,则b的值是 A.B.C.D. 解析:因为2b=a+c,由余弦定理得b2=a2+c2-2ac cos B=(a+c)2-3ac,化简得b=. 答案:D 4.在△ABC中,AB=4,∠ABC=30°,D是边BC上的一点,且·=·,则·等于 A.—4 B.0 C.4 D.8 解析:由·=·,得·(-)=·=0,即⊥,所以||=2,∠BAD=60°,所以 ·=4×2×=4. 答案:C 5.在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为 A.B.C.D.-

解析:cos C==≥=,当且仅当a=b时等号成立. 答案:C 6.设A(a,1),B(2,b),C(4,3)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则 a与b满足的关系式为 A.5a-4b=3 B.4a-3b=5 C.4a+5b=14 D.5a+4b=14 解析:由与在方向上的投影相同,可得·=·?(a,1)·(4,3)=(2,b)·(4,3),即4a+3=8+3b,4a-3b=5. 答案:B 7.在△ABC内,角A,B,C的对边分别是a,b,c,若b sin B+a sin A=c sin C,c2+b2-a2=bc,则B等于 A.B.C.D. 解析:因为c2+b2-a2=bc,所以cos A==,所以cos A=,A=, 因为b sin B+a sin A=c sin C,所以b2+a2=c2,所以C=,B=. 答案:A 8.已知向量a=(x-1,2),b=(4,y),其中x>1,y>0,若a∥b,则log2(x-1)+log2y等于 A.1 B.2 C.3 D.4 解析:∵a∥b,则=,∴(x-1)y=8,∴log2(x-1)+log2y=log2(x-1)y=log28=3. 答案:C 9.在△ABC中,若(a+b+c)(a+b-c)=3ab且sin C=2sin A cos B,则△ABC是 A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.直角三角形 解析:因为(a+b+c)(a+b-c)=3ab,所以a2+b2-c2=ab,cos C==,所以C=,因为sin C=2sin A cos B,所 以c=2a·,得a=b,所以△ABC是等边三角形. 答案:B 10.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是

解三角形知识点归纳总结

解三角形知识点归纳总 结 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于 外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半 径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用 正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

必修五解三角形题型归纳

一. 构成三角形个数问题 1在ABC中,已知a x,b 2,B 45°,如果三角形有两解,则x的取值范围是( ) A. 2 x 2 2 B. x 2,2 C . 2 x 2 D. 0x2 2 ?如果满足ABC 60 , AC 12 , BC k的厶ABC恰有一个,那么k的取值范围是 3.在ABC中,根据下列条件解三角形,其中有两个解的是() A* CJ =S J =J = 45=B. a = 60 ;b -= 81; B = = 60°+J C” a —7 > b —5j八眇 D ?。二14 , b - 20, "4亍二. 求边长问题 4.在ABC 中,角A, B,C所对边a,b,c,若a 3,C1200,ABC的面积S 15血4 则c() A. 5 B .6 C . V39D7 5.在△ ABC 中,a1,B 450,S ABC 2,则b = 三. 求夹角冋题 6.在ABC中,ABC -,AB4V2, BC 3,则sin BAC( ) v'10V103^10<5 A. 10 B5 C . 10D5

7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 1 2 2 2 bcosA csinC, S (b c a ),则/ B=( 4 B . 60° C . 45° D . 30° 四. 求面积问题 &已知△ ABC 中,内角A , B, C 所对的边长分别为 a,b,c .若 a ZbcosAB -, c 1 ,则 △ ABC 的面积等于 ( ) g 6 4 2 9.锐角 ABC 中,角A 、B 、C 的对边分别是a 、b 、 1 c ,已知 cos2C - 4 ([)求 sinC 的值; (□)当 a 2, 2si nA si nC 时,求 b 的长及 ABC 的面积. 10?如图,在四边形 ABCD 中,AB 3,BC 7.3,CD 14, BD 7, BAD 120 a cosB A. 90° (1 )求AD 边的长; (2)求ABC 的面积.

解三角形知识点归纳总结归纳

欢迎阅读 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?=u u u r u u u r ( ) A .23- B .32- C .32 D .2 3 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=, x x 6636223852??++ =,解得1=x ,3 7 -=x (舍去) 故BC =2,从而3 28 cos 2222= ?-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,

三角函数及解三角形知识点

三角函数知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

三角函数和解三角形知识点

三角函数和解三角形知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点及原点重合,角的始边及x 轴的非负半轴重合,终边落在第几象限,则称α 为第几象限 角.第一象限角的集合为 {}360 36090,k k k αα?<,则,,. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 11 、 角 三 角 函 数 的基本关系:()221sin cos 1 αα+=() 2 222sin 1cos ,cos 1sin αααα=-=-;

相关文档
最新文档