白度:白度测定方法 白度

白度:白度测定方法 白度
白度:白度测定方法 白度

白度:白度测定方法白度

话题:白度化学分析方法计算方法标准

氧化铝,氢氧化铝白度测定方法1范围本标准规定了氧化铝,氢氧化铝及其化学制品在标准照明体D65氢氧漫射/垂直(d/0)或垂直/漫射(0/d)光学几何条件下蓝光白度的测定方法。本标准适用于氧化铝,氢氧化铝及其化学制品白度指数的测定。测定范围:WB70~99.9。2规范性引用文件下列文件中的条款通过本标准的引用成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不住日期的引用文件,其最新版本适用于本标准。B/T3977颜色的表示方法GB/T3978标准照明体及照明观测条件GB/T3979—1997 物体色的测量方法GB/T5698颜色术语GB/T6609.23氧化铝化学分析方法和物理性能测定方法取样GB/T6609.23氧化铝化学分析方法和物理性能测定方法试样的制备和贮存GB/T8170数值修约规则GB/T9087用于色度和光度测量的粉

体标准白板GB/T17749白度的表示方法JJG512国家计量检定规程白度计3术语和定义3.1 物体的反射因数及其他颜色术语采用GB/T5698的定义物体的反射因数reflectance factor在特定的照明条件下,在规定的立体角内,从物体反射的辐通量或光通量与从完全漫反射的辐通量或光通量之比3.2白度采用GB/T17749的定义,即:白度表征物体色白的程度,白度值越大,则白色的程度越大,即物体的反射因数越大。完全反射漫射体的白度等于100。4方法提要本标准以试料板对主波长457nm±2nm蓝光的反射因数,与氧化镁粉体标准白板反射漫射因数的对比,作为氧化铝,氢氧化铝极其化学制品白度的测定方法。5仪器及标样5.1白度计白度计采用10o视场D65标准照明体,光学几何条件为漫射/垂直(d/0)或垂直/漫射(0/d)方式,光谱响应在有效波长457nm±2nm,半波宽度为44 nm的蓝光测定条件。白度计按JJG512检定,达到一级标准。5.2压样器采用全国白度标准化工技术工作组推荐的HY—3型或相同性能的恒压粉体压样器。与白度计匹配使用,压片直径20mm~40mm。5.3白度标样5.3.1白度标样采用GSB A 67001氧化镁实物标样为白度计工作标准白板定值。 5.3.2氧化镁粉体标准白板应按照GB/T9087规定制作。同一贮存瓶的氧化镁白度标样,用恒压粉体压样器制成的标准压片,白度值之间的差别应不大于0.2。氧化镁于105℃~110℃烘箱中烘干,置干燥器内冷却至

室温,如有结块置于不污染粉体的研钵中,研细后再用。压制好的标准白板置于干燥气中避光保存,如无污染和损伤,可反复使用。5.4工作标准白板5.4.1 根据待测试样的大致范围,用陶瓷工作标准白板作为工作标准白板对仪器进行常规校正。5.4.2用与样品测定时使用的同一只恒压粉体压样器,制取氧化镁粉体标准白板,每周对陶瓷工作标准白板校准定值。5.4.3工作标准白板表面应平整,无裂纹,并置干燥器中在避光处保存。如有污染,须用绒布或药棉蘸无水乙醇擦净,然后置于干燥箱中在110℃±5℃烘干30min,取出,置干燥器中冷却至室温,用氧化镁粉体标准白板重新校准定值。5.5标准黑筒标准黑筒的反射因数不大于0.2,有仪器厂家校准,为防尘应口朝下放置或配防尘盖。6试样6.1按GB/T6609.22和GB/T6609.23有关规定进行取样和制样,应保持试样颗粒的均匀和完整性,防止取样,制样和贮存过程中发生破碎和粘结。6.2试样应保存在密闭容器中,防止吸潮和污染。6.3氧化铝及其化学制品,在300℃±10℃烘干2h,置干燥器中,冷却至室温。6.4氢氧化铝及其化学制品,在110℃±5℃烘干2 h,置干燥器中,冷却至室温。7测定步骤7.1试料根据试料板的直径和厚度及试样粒度情况,取一定量的试样(6)。

7.2测定次数独立地进行三次测定,取其平均值。7.3试料板的制备制样前应将压样器(5.2)各部件进行清洗和干燥。将试料(7.1)移入压样器(5.2)中,按压样器(5.2)的操作

程序压制试料板。将压样盒中毛玻璃片从样品板表面一下,紧靠毛玻璃板为成型工作面。在柔和光照下检查压片情况,压片应无凹陷,无凸起,无划痕,无裂纹,无污点。7.4试料板的测定按照白度计(5.1)的操作规程,选择光谱响应波长为457nm,开机预热达到性能稳定。用标准黑筒(5.5)为仪器调“零”,用与试料板(7.3)的白度接近的工作标准白板(5.4)校正白度计至规定的量值。稳定后,分别测定每块试料板的白度,读数精确至0.18结果计算按公式(1)计算试料的白度:WB=R457=Kb×∑R(λ)×F(λ) ×△λ…………………………………………(1)式中:WB———试样的蓝光白度;R457———白度计光谱响应在有效波长457nm±2nm,半波长宽度为44nm的蓝光条件下,测定试料板的反射因数;Kb ———归化系数Kb =1/∑F(λ) ×△λ∑R(λ) ———样品的光谱反射因数F(λ) ———蓝光白度计的相对光谱响应分布(表1)△λ———计算白度的波长间隔表1蓝光白度计的光源,光学系统和探测器相组合给出的相对光谱响应9精密度9.1重复性测定结果为在重复性条件下过的的两次独立测试结果的算术平均值。若这两个测试结果的绝对差值超过0.5,则需重新进行测定。9.2允许差实验室之间白度测定结果的允许差应不大于1.0。10质量保证和控制用GBSA67001氧化镁分体标准白板,每周校核一次本方法的有效性。当过程失控时,应找出原因。纠正错误后,重新

进行校核。附录A (资料性附录)目前应用的其他白度测量及计算公式根据百度测定历史的延续,产品种类的不断增加以及对外贸易的发展,氧化铝,氢氧化铝及其化学制品白度亦可采用以下方法测量和计算,但应在标准或测试报告中注明。 A.1方法简述本方法采用国际照明委员会(CIE)1964补充标准色度系统10o视场标准照明体D65,以三刺激值和色品坐标计算白度。 A.2测量方法 A.2.1光谱光度测量按GB/T3979—1997的3.2和6.3规定进行,并计算得到三刺激值X10,Y10,Z10。A.2.2三刺激值读(色度计)法测量按GB/T3979—1997的7.2规定进行,直接测得三刺激值X10,Y10,Z10。A.2.3按A.3或A.4的规定计算白度或WG或WH。A.3甘茨白度计算方法(CIE86)A.3.1甘茨白度WG 的计算公式白度WG按公式(A.1)计算:WG= Y10+800(x n,10—x10)+1700(yn,10—y10)) ………………………(A.1)式中:WG———样品在X10Y10Z10样品色度学系统的白度Y10———样品色度学系统的三刺激值中的Y10值X10 ;y10———样品在X10Y10Z10色度学系统的三色坐标中的X10 ;y10值x n,10;yn,10———样品完全反射漫射体在X10Y10Z10色度学系统的三色坐标中的x n,10;yn,10值,见表A.1A.3.2甘茨白度适用范围公式(A.1)为CIE推荐的中性白的评价公式,适用于下列范围:40<WG<(5 Y10—280),不适用于彩色样品。A.4亨特白度公式亨特百

溶解度的测定

硝酸钾溶解度得测定(方法1:结晶析出法) 实验原理: 先设计好不同溶质与溶剂得量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时得温度,即所得溶液为该温度下得饱与溶液,计算该温度下得溶解度。实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品就是否齐全、完好。 二、硝酸钾得称取与溶解。 1、用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、2.0g、2.5g,称量过程详见分组实验三得步骤二。将称好得5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取得3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾得结晶。 1.自水浴中取出大试管,插入一支干净得温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计得读数。当刚开始有晶体析出时,立即记下此时得温度t1,并填入下表中。 2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤得操作,分别测定开始析出晶体时得温度t2、t3。将读数填入表格。 四、溶解度曲线得绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤得操作,并将晶体开始析出时得温度读数填人表格。

测树学复习材料

测树学 题型:填空10题40分、选择10题20分、概念10分、简答2题10分、论述2题20分 计算约占50%,参考材料结合书本复习。 第1章 伐倒木材积测定 一、树干材积测定 (1)干形:树干的形状通称干形,研究树干形状的目的是测定材积。 通式:V=f o *g o *h (2)树干横断面的计算公式为: 式中:g —树干横断面; d —树干平均直径 (3)树干纵断面 干曲线:表示树干纵断面轮廓的对称曲线通常称为干曲线。 树干纵断面形状:截顶凹曲线体、圆柱体、截顶抛物线体和圆锥体 孔兹干曲线式为:(记住符号的含义) 式中:y 一树干横断面半径; x 一树干梢头至该横断面的长度; P —参数; r —形状指数。 二、伐倒木材积的测定技术 (1)伐倒木近似求积式 ①平均断面积近似求积式 ②中央断面积近似求积式 (2)区分求积式 概念:将树干区分成若干段,分别测算各分段材积,再把各段材积合计可得全树干材积.该法称为区分求积法。在树干的区分求积中,梢端不足一个区分段的部分视为梢头,用圆锥体公式计算其材积。 式中:g '—梢头底端断面积; l '一梢头长度。 (区分段个数一般≥5 ,区分段个数越多,精度越高) 分为: 1.中央断面区分求积式V=L*∑g i +1/3g ’L ’ ''3 1l g v =2 4 g d π=2r y Px =l d d l g g V n n )2(4)(212200+=+=π2 11 22 4V g L d L π==

2.平均断面区分求积式V=[1/2(g o+g n)+∑g i]*L+1/3g n*L (关于区分求积式,若考简述只需写概念,若考论述要加上公式。) 三、直径和长度的量测误差对材积计算的影响 P v=2P d+P L 式中:P v为材积误差率,P d为直径误差率,P L为长度误差率。 ①当长度测量无误差,即P L=0时,则P v=2P d ②当直径测量无误差,即P d=0时,则P v=P L ③当长度误差率与直径误差率相等时,直径测量的误差对材积计算的影响比长度测量误差的影响大一倍。 四、伐倒木造材 (1)原条:伐倒木剥去树皮且截去直径(去皮)不足6cm的梢头部分称作原条。 (2)原木:经过造材后形成的木段称作原木。 原条测定直径2.5米处,原木测定小头去皮直径。 (3)削度:树干自下而上直径逐渐减小,其单位长度直径减少的程度称为削度。 第二章立木材积的测定P27 1、测定胸径时注意事项: ①在我国森林调查工作中,胸高位置在平地是指距地面1.3m处。在坡地以坡上方1.3m处为准。在树干解析或样木中,取在根颈以上1.3m处。 ②胸高处出现节疤、凹凸或其他不正常的情况时,可在胸高断面积上下距离相等而干形较正常处,测直径取平均数作为胸径值。 ③胸高以下分叉的树,可以当作分开的两株树分别测定每株树胸径。 ④胸高断面积不圆的树干,应测相互垂直方向的胸径取其平均数。 2、胸高形数与实验形数关系 树干材积与比较圆柱体体积之比称为形数。 胸高形数:以胸高断面积为比较圆柱体的横断面的形数,以f1.3表示。(优点:测定容易(胸高断面是确定的)缺点:不能脱离树高单株反映干形)实践上作用:作为立木材积的换算系数V=G*H*F。 正形数:树干材积与树干某一相对高处的比较圆柱体的体积之比,记为f n。(消除胸高形数的缺点,其优缺点与胸高形数相反。) 实验形数:实验形数的比较圆柱体的断面积为胸高断面积,其高度为树高(h)加3m。(已知f1.3、H,可算出实验形数。) 3、立木材积三要素 胸高形数f1.3、胸高断面积g1.3、全树高h 4、形率 胸高形率:树干中央直径(d1/2)与胸径(d1.3)之比称之为胸高形率。表达式q2=(d1/2)/ d1.3形数与形率的关系: ①f1.3=q22前提条件是把树干当作抛物线体。 ②f1.3=q2-c前提条件树干抛物线体,且树高在18m以上。 ③形数、形率、树高有关系:在形率相同时,树干的形数随树高的增加而减小;在树高相同时则形数随形率的增加而增加。 5、用形率法求立木材积:根据形数与形率之间的关系推算胸高形数,再按下式计算单株立木材积:V=g1.3*h*f1.3 6、望高法(记住两个概念) 望点:树干上部直径恰好等于1/2胸径处的部位称作望点。

岩石孔隙度的测定

岩石孔隙度的测定 一、实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握气测孔隙度的流程和操作步骤。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占的体积越大,与标准室连通后,平衡压力就越低;反之,当放入岩心室内的岩样体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力后,根据标准曲线反求岩样的固相体积。按下式计算岩样的孔隙度: 三、实验流程 (a)流程图 (b)控制面板 图1 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体压力为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.发开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘;

6.用同样的方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯中,按上述方法测定装岩样后的平衡压力; 8.将上述数据填入原始记录表 五、实验数据处理 1.计算各个铜圆盘体积和岩样的外表体积 取编号为2的钢圆盘进行分析,其直径d=2.50cm,长度L=2.030cm; 所以,由得: 同理,可得表1中V f数据。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制标准曲线,并根据待测岩样测得的平衡压力,在标准曲线上反查出岩样的固相体积 由下表1中数据,可绘制标准曲线图如下: 图2 标准曲线图 所以,有上图2得:岩样固相体积V s=25.0cm3 4.计算岩样孔隙度 所以岩样孔隙度为20.10% 钢圆盘编 号2号3号4号1-4号 自由组合钢圆盘岩样编号 2,4 3,4 2,3,4 A15-1B 直径 d(cm) 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.482 长度 L(cm) 2.030 2.484 5.000 10.014 7.030 7.484 9.514 6.468 体积V f9.96 12.19 24.54 49.16 34.51 36.74 46.70 31.29

实验一 白度、光泽度、透光度的测定教程文件

实验一白度、光泽度、透光度的测定

实验一白度、光泽度、透光度的测定 一、实验目的 1.了解白度、光泽度、透光度的概念 2.了解造成白度、光泽度、透光度测量误差的原因 3.了解影响白度、光泽度、透光度的因素 4.掌握白度、光泽度、透光度的测定原理及测定方法 二、实验原理 各种物体对于投射在它上面的光,进行选择性反射和选择性吸收。不同的物体对各种不同波长的光的反射、吸收及透过的程度不同,反射方向也不同,就产生了各种物体不同的颜色(不同的白度)、不同的光泽度及不同的透光度。 三、仪器设备 1.ADCI-60-W型全自动白度仪(成套) 2.JKGZ型光泽度仪(成套) 3.77C-l型透光度仪(成套) 四、实验步骤 1.白度测定 (1)使用连接:将电源线与测试探头线按要求分别连接到主机的后面板上,接通电源。

此时按下主机后方的电源开关键,液晶显示测量主界面,探头灯点亮,表明仪器电源接通。 (2)预热:仪器开机后最好预热30分钟,可使测试探头的光源相对稳定(3)测量方法: a. 开机后默认选项为“调黑”,将探头置于黑盒,按“确定”键,听到报警音 后,自动返回主界面,调黑结束。 b. 调黑后系统默认选项为“调白”,将探头置于白板,按“确定”键,听到报警 音后,自动返回主界面,调白结束。 c. 调白后系统进入“测量”选项,将探头置于待测试样,按“确定”键,测量结 果自动显示为亨特白度,每一块瓷砖分五个不同位置记录数据。按 下方选择键选择表示方式为日用陶瓷白度,每一块瓷砖分五个不同 位置记录数据。 d. 测量结束后,关闭仪器。 2.光泽度测定 (1)定标:将黑玻璃标准板亮面向上放在平坦的桌面上,将仪器中心部位压在标准 板上,调整调节旋钮,使仪器读数为92.3。 (2)校准:用定标好的仪器测量白陶瓷板,指数为23.3,其值不应大于±1光泽单位。 (3)测量:用定标好的仪器去测量被测试样 (4)测量结束后,记录数据,关闭仪器。

实验6 电导法测定难溶盐的溶解度

实验10 电导法测定难溶盐的溶解度 一、实验目的 1. 掌握电导法测定难溶盐溶解度的原理和方法。 2. 学会电导率仪的使用方法。 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示,即电导: (10.1) 式中G称为电导,单位是西门子S、 导体的电阻与其长度成正比,与其截面积成反比,即: (10.2) 是比例常数,称为电阻率或比电阻。根据电导与电阻的关系,则有: (10.3) k称为电导率或比电导,它相当于两个电极相距1m,截面积为导体的电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol电解质全部置于相距为1m的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C表示,则摩尔电导可以表示为: (10.4) 式中Λm的单位是;C的单位是。Λm的数值常通过溶液的电导率k,经(10.4)式计算得到。而k与电导G有下列关系,由(10.3)式可知: (10.5) 对于确定的电导池来说,是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。

溶液的电导常用惠斯顿电桥来测定,线路如图10.1所示。其中S为信号发生器;R1、R2和R3是三个可变电阻,R x为待测溶液的阻值;H为检流计,C1是与R1并联的一个可 变电容,用于平衡电导电极的电容。测定时,调节R1、R2、R3和C1,使检流计H没有电流通过。此时,说明B、D两点的电位相等,有下面的关系式成立: (10.6) Rx的倒数即为该溶液的电导。 本实验测定硫酸铅的溶解度。直接用电导率仪测定硫酸铅饱和溶液的电导率(K溶液)和配制溶液用水的电导率(K水)。因溶液极稀,必须从溶液的电导率(K溶液)中减去水的电导率(K水),即为: K硫酸铅=K溶液-K水(10.7) 根据10.4式,得到: (10.8) 式中:C是难溶盐的饱和溶液的浓度。由于溶液极稀,Λm可视为Λm∞。因此: (10.9) 硫酸铅的极限摩尔电导可以根据数值求得。因温度对溶液的电导有影响,本实验在恒温下测定。 电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:二次蒸馏水配制 四、操作步骤

测树cha02

第二章林分调查 第一节林分调查因子 第二节标准地调查 第一节林分调查因子 本节重点: 概念 本节目录 一.林分 二.林分调查因子 一、林分Stand 将大面积的森林按其本身的特征和经营管理的需要, 区划成若干个 内部结构相同 且与四周相邻部分有显著区别的小块森林, 这种小块森林称为林分。 二、林分调查因子 林分调查因子 一.Stand description factor 二.能反映林分数量和质量特征的因子 林分调查因子 林分起源 林层(林相) 树种组成 林分年龄 平均胸径 平均高 林分密度 立地质量 林分蓄积量 林木质量 (一)Stand origin 1.分类 天然林 natural stand(forest) 人工林 artificial stand (planted forest) 飞播林:单列,或人工 2.确定 1)访问,考察已有资料 2)现地:林分特征 1.意义 (二)Storey 1.定义 林分中乔木树种的树冠所形成的树冠层次。 2.分类 单层林 single-storied stand 复层林 multi-storied stand

3.表示 4.划分标准 2、分类 ①单层林single-storied stand 明显地只具有一个林层 同龄、喜光的纯林、立地差 ②复层林multi-storied stand 具有两个或两个以上明显林层 3、表示 上→下,Ⅰ→Ⅱ→Ⅲ(罗马数字)… 主林层:蓄积量最大,经济价值最高的林层 次林层 4、划分标准 《森林资源规划设计调查主要技术规定》(2003)中规定划分林层的标准是: (1)各林层每公顷蓄积量大于30m3; (2)相邻林层间林木平均高相差20%以上; (3)各林层平均胸径在8cm以上; (4)主林层郁闭度大于0.3,其它林层郁闭度大于0.2。 (三)Species Composition 1.定义 组成林分的树种成分 林分内各林层、各树种蓄积量所占的比重 2.树种组成系数 某树种的M(或G)/林分总M(或总G) 3.写法 4.应用 5.分类 5、分类 ①纯林 pure stand 由一个树种组成的的林分 ②混交林 mixed stand 由两个或更多个树种组成的林分 实践上65% 4、写法 ①十分法表示 ②复林层分林层写 ③优势树种写在前 优势树种:蓄积量比重最大的树种 ④M相等,主要树种写在前 主要树种:或目的树种,在一个地区既定的立地条件下,最适合经营目的的树种。 ⑤组成系数2%≤ <-5%“+”表示

孔隙度测定

一.孔隙度定义: 岩石的总体积V b ,是由孔隙的体积V p 及固体颗粒体积(基质体积)V s 两部分组成。孔隙度(?)是指岩石中孔隙体积V p 与岩石总体积V b 的比值。表达式为 ?=V p V b ×100% 它是说明储集层储集能力的相对大小的基本参数。 二.孔隙度的分类 1.岩石的绝对孔隙度(?a ) 岩石的绝对孔隙度(?a )指掩饰的总孔隙体积(V a )与岩石外表体积(V b )之比,即 ?a =V a V b ×100% 2.岩石的有效孔隙度(?e ) 有效孔隙度是指岩石中有效孔隙的体积(V e )与岩石外表体积(V b )之比,即: ?e =V e V b ×100% 计算储量和评价油气层特性时一般之有效孔隙度。 3.岩石的流动孔隙度(?f ) 微毛细管孔隙虽然彼此连通,但未必都能让流体流过。例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f )与岩石外表体积(V b )之比,即: ?f =V f b ×100% 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。在油气田开发中,流动孔隙度具有一定的实用价值。 三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度 三.孔隙度分级标准 四.双重介质岩石空孔隙度 双重孔隙介质储层具有两种孔隙系统。第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。 总孔隙度?t 、裂缝孔隙度?f 和岩石原生孔隙度?p 之间有如下关系: ?p =?p +?f

有关白度测定仪的原理介绍

有关白度测定仪的原理介绍 白度测定仪又称智能白度测定仪,因其可用于测定面粉表面的兰光白度,也称为面粉白度测定仪。 智能白度测定仪采用脉冲闪光技术,具有自动校正功能,操作简便,精度高,在面粉、淀粉、食盐等需对产品白度进行测定的部门应用广泛。 工作原理 仪器利用积分球实现光谱漫反射率的测量,采用的标准照明体及观察条件符合GB3978-83及CIE1971推荐的d/o方式。 中心波长为457Bnm的漫射兰光均匀照射被测物质,物质白度被光电元件接收,信号经线性放大并通过计算机智能补偿,测定值由LED显示数值并经打印机打印。 符合标准 1、符合GB3978-83:标准照明体和照明观测条件。模拟D65照明体照明。采用d/o 照明观测几何条件(ISO2469),漫射球直径φ150mm,测试孔直径有φ30mm和φ19mm 两种,设有光吸收器,消除了试样镜面反射光的影响。 2、R457白度光学系统的光谱功率分布的峰值波长457nm,半高宽44nm;RY光学系统符合GB3979-83:物体色测量方法。 3、GB7973-87:纸浆、纸及纸板漫反射因数测定法(d/o法)。

4、GB7974-87:纸及纸板白度测定法(d/o法)。 5、GB8904.2:纸浆白度测定法。 6、GB1840:工业薯类淀粉测定方法。 7、GB13025.2:制盐工业通用试验方法,白度的测定 8、GBT/5950建筑材料与非金属矿产品白度测量方法。 9、柠檬酸白度及其检测方法 光学原理 由发光二极管发出的光线,经滤色片和骤光镜组成中心波长为457nm蓝紫色光线,进入积分球,光线在积分球内壁漫射后,均匀照射在测试口的试样上; 试样的漫反射的光线经骤光镜会聚、光栏截取、滤色片组滤波,由硅光电池接受,转成电信号,经精密放大器放大,计算机软件智能修正,由数码管显示结果,接上打印机,可将结果打印出来。

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法 1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。母液要是不及时测定,需立即在-15℃以下保存 2.测定 可溶性有机氮=可溶性全氮-(铵态氮+硝态氮) 要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。 以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定 氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1 L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8 溶液混合定容至1L) 测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。) 标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。稀释10倍即为10mg/L 的氮标准溶液。吸取氮标准溶液(梯度为0ml,1ml,2ml,3ml,4ml,5ml,6ml;对应浓度分别为0 mg/L,0.02 mg/L,0.04 mg/L,0.06 mg/L,0.08 mg/L,0.10 mg/L,0.12mg/L)于50ml容量瓶中,各加入1ml 氧化剂并定容,得氮的标准系列,与样品同样消煮测定A220和A275。以A(A= A220-A275)为纵标,氮浓度为横标绘制标准曲线。 硝态氮测定1 注:硝态氮测定1仅适合于农田土壤,腐殖质含量比较低的土壤,森林土壤和腐殖质含量比较高的土壤不适用,因为森林土壤和腐殖质高的土壤有腐植酸的颜色,干扰比色可采用硝态氮测定2进行测定

郁闭度及其测定方法

郁闭度及其测定方法 郁闭度及其测定方法2010-05-21 16:24郁闭度及其测定方法郁闭度是森 林资源调查中的一个重要调查因子,也是一个反映森林结构和森林环境的重要因子。在森林经营管理中,郁闭度作为小班区划、确定抚育采伐强度的重要指标, 并成为通过遥感图像进行森林蓄积量估测不可或缺的因子。郁闭度也是判定森 林的重要因子,我国《森林资源规划设计调查主要技术规定》中规定有林地的技术标准为郁闭度0.2以上(包括0.2),FAO对森林的定义也要求郁闭度大于10%, 森林的判定需要更为准确的郁闭度测定。然而,长期以来,郁闭度的基本内涵与 调查方法却没有受到足够的重视,存在着概念模糊、测定方法粗放等问题,不能 满足林业生产与生态建设的需要。 郁闭度是描述森林生态系统的状态与环境指标的最重要的特征之一。近年来,与郁闭度及其测定方法研究与应用相关的森林经营管理与生态研究不断深入,郁闭度也受到更多的关注与重视。郁闭度在水土流失、水源涵养、林分质量评价、森林景观建设等方面得到广泛的应用,并应用于林中光照研究、幼苗形态与解剖的影响、与溪流温度相关的森林经营管理、反映垂直和水平森林结构的林 冠多样性指数、与野生动植物生境相关的森林经营管理如在斑点猫头鹰、鹟鸟 栖息的森林管理等方面。同时,随着研究和应用的深入,对于郁闭度概念的认识、调查方法与仪器等的研究也在不断地完善和发展。但是,国内对郁闭度的基本内涵、测定方法与仪器等方面的研究报道甚少,在一定程度上制约了林业生产与生态研究的发展。 郁闭度是反映林分结构和密度的重要指标。由于应用领域与目的不同,与郁闭度相近或相似的概念很多,但概念的内涵并不明确,在某些情况下会造成混淆 甚至错误。在林学与生态中,从用途与调查方式上来看,与郁闭度相关的概念主 要有盖度(coverage)、透光孔隙度(canopy openness)、林冠密度(canopy density)、林冠开阔度(canopy openness)等。林冠的投影面积与林地面积之比称为郁闭度,其可以反映树冠的闭锁程度和树木利用生活空间的程度。由于树冠重叠,调查时要注意到林冠的投影面积并不总是等于林分中树冠的投影面积之和。

岩石孔隙度测定

中国石油大学(油层物理)实验报告 实验日期 成绩: 班级 学号: 姓名: 教师: 同组者 实验一 岩石孔隙度的测定 一. 实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二.实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心 杯岩样的固相(颗粒)体积越小,则岩 心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体 积越大,平衡压力越高。根据平衡压力的大小就可测得岩样的固相体积。 %100?=-f s f V V V φ 测定岩石骨架体积可以用①气体膨胀法 )12(211)(V V Vo P V P Vs Vo Po +-=+- ②气体孔隙度仪 三.实验流程

(a)流程图 仪器有下列部件组成: 1气源阀:供给孔隙度仪调节器低于1000Pa的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 2调节阀:将1000Pa的气体压力准确地调节到指定压力(小于1000Pa)。 3供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系 的平衡压力。 5样品阀:能使标准室内的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 四.实验步骤 1.将钢圆盘从小到大编号为1、2、3、4; 2.用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表 中; 3.打开样品阀及放空阀,确保岩心室气体为大气压; 4.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。 5.关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压 力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6..开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7.开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心 室向外推出,取出钢圆盘。 8.用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢 圆盘装入岩心室中,重复步骤2-5,记下平衡压力。

实验一 白度、光泽度、透光度的测定

实验一白度、光泽度、透光度的测定 一、实验目的 1.了解白度、光泽度、透光度的概念 2.了解造成白度、光泽度、透光度测量误差的原因 3.了解影响白度、光泽度、透光度的因素 4.掌握白度、光泽度、透光度的测定原理及测定方法 二、实验原理 各种物体对于投射在它上面的光,进行选择性反射和选择性吸收。不同的物体对各种不同波长的光的反射、吸收及透过的程度不同,反射方向也不同,就产生了各种物体不同的颜色(不同的白度)、不同的光泽度及不同的透光度。 三、仪器设备 1.ADCI-60-W型全自动白度仪(成套) 2.JKGZ型光泽度仪(成套) 3.77C-l型透光度仪(成套) 四、实验步骤 1.白度测定 (1)使用连接:将电源线与测试探头线按要求分别连接到主机的后面板上,接通电源。此时按下主机后方的电源开关键,液晶显示测量主界面,探头灯点亮,表明仪器电源接通。 (2)预热:仪器开机后最好预热30分钟,可使测试探头的光源相对稳定 (3)测量方法: a. 开机后默认选项为“调黑”,将探头置于黑盒,按“确定”键,听到报警音后, 自动返回主界面,调黑结束。 b. 调黑后系统默认选项为“调白”,将探头置于白板,按“确定”键,听到报警音 后,自动返回主界面,调白结束。 c. 调白后系统进入“测量”选项,将探头置于待测试样,按“确定”键,测量结 果自动显示为亨特白度,每一块瓷砖分五个不同位置记录数据。按下方选择键选 择表示方式为日用陶瓷白度,每一块瓷砖分五个不同位置记录数据。 d. 测量结束后,关闭仪器。 2.光泽度测定 (1)定标:将黑玻璃标准板亮面向上放在平坦的桌面上,将仪器中心部位压在标准 板上,调整调节旋钮,使仪器读数为92.3。 (2)校准:用定标好的仪器测量白陶瓷板,指数为23.3,其值不应大于±1光泽单位。 (3)测量:用定标好的仪器去测量被测试样 (4)测量结束后,记录数据,关闭仪器。

实训5 药物溶解度测定

实训5 药物溶解度测定 一、目的要求 1.了解药典对药物近似溶解度的规定。 2.理解药物结构特点(极性)与溶解性的关系。 3.了解CTC的形成对药物溶解度的影响及CTC在药剂学中的应用。 二、实验原理 药物的溶解度是指在一定的温度下,在一定体积的溶剂中药物形成饱和溶液时的浓度。溶解度的大小,表明一种药物在某一种溶剂中被分散的难易程度。药物溶解时,药物的分子结构不会改变,是一种物理性质。 溶剂一般分为三类:以水为代表的极性溶剂、以甲醇和乙醇为代表的亲水性有机溶剂和以苯、石油醚为代表的亲脂性有机溶剂。溶解的经验规则:相似相溶。 为了适应某种制剂的要求而将药物制成盐或加入助溶剂形成电子转移复合物(CTC),这是增加药物在水中溶解度的常用方法。 三、实验方法 (一)不同药物在水中的溶解度测定 1.“极易溶”药物的溶解:称取1.50克的药物于合适的试管中,加入纯化水1.0~1.5毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.“易溶”药物的溶解:称取1.0克的药物于合适的试管中,加入纯化水1.0~10毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 3.“溶解”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水1.0~3.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 4.“略溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水3.0~10.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 5.“微溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水10.0~100.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 (注:以上实验是根据药典对药物溶解度定义设计的,药物在所加的溶剂范围内均可溶解,实验时原则上加入最小溶剂量即可,如果出现不溶的现象,则可能是药物的纯度差、药物的称量和溶剂的取量不准确等因素引起。将实验结果折算为标准溶解度。) (二)同一种药物在不同溶剂中的溶解度测定 1.取三支试管,一支加入0.01克的维生素C,加入乙醚10.0毫升,另两支均加入0.1克的维生素C,再分别加入10.0毫升乙醇和1.0毫升纯化水,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.取三支试管,一支加入0.1克的水杨酸,加入纯化水10.0毫升,另两支均加入0.1克的水杨酸,再分别加入1.0毫升乙醇和1.0毫升丙酮,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 思考题: 1.药物的极性与药物在水中的溶解性有什么关系? 2.什么是药物溶解度? 3.简述药典对药物近似溶解度的规定和溶解度的实验方法。 1

可溶性有机碳的测定

可溶性有机碳测定: 1. 取10 g 新鲜土样,按照土:水为1∶5的比例混匀,在25℃条件下,以250 r/min 的速度振荡1 h,接着在转速为15 000 r/min 离心10min,上部悬浮液过0·45μm 薄滤膜[1],以后的步骤采取测有机碳的方。 2. 取过0·45μm 薄滤膜的溶液放入消煮管中,加5ml 0.8000mol/L 的1/6K 2Cr 2O 7标准溶液, 然后用注射器注人5ml 浓硫酸,旋转摇匀,在消煮管上加一小漏斗。 3. 将盛土样的消煮放人铁丝笼架中,放入已预热至185 -190oC 的油浴锅中(豆油)加热。 此时应控制锅内温度在170-180oC ,沸腾开始,准确加热5min ,取出冷却,如溶液呈绿色,表示重铬酸钾用量不足,应再取较少的样品(或适当增加重铬酸钾的量)重做。 4. 冷却后的溶液呈橙黄色或黄绿色,用洗瓶将消煮管中的溶液洗人250ml 三角瓶中,使三 角瓶内溶液体积在60-80ml 左右,加邻啡啰啉指示剂3—4滴,用0.2mol /L FeSO 4滴定,溶液的颜色变化为:橙黄—→蓝绿—→棕红色,记录硫酸亚铁用量(V )。 每批分析样,应做2—3个空白;空白标定用0.1-0.5g 石英砂代替土样,其它步骤与测定土样时完全相同,记录硫酸亚铁用量(V 0)。 5. 计算方法 有机碳(g/kg )=10001.1003.0)(0.58000.02100????-??K m V V V 有机质(g/kg )=有机碳(g/kg )×1.724 式中:0.8000——1/6 K 2Cr 2O 7标准溶液的浓度(mol/L ); 5.0——1/6 K 2Cr 2O 7标准溶液的体积(ml ); V 0——空白标定用去硫酸亚铁溶液体积(ml ); V ——滴定土样用去硫酸亚铁溶液体积(ml ); 0.003——1/4碳原子的摩尔质量(g/m mol); 1.1——氧化校正系数; 1.724——将有机碳换算成有机质的系数; m 1——风干土样质量(g ); K 2——将风干土换算成烘干土系数。土壤碳氮比的计算: )/() /(kg g kg g 全氮有机碳碳氮比= 1.耕作措施对土壤有机碳和活性有机碳的影响.严昌荣,刘恩科,何文清,刘爽,刘勤.

溶解度的测定

硝酸钾溶解度的测定(方法1:结晶析出法)实验原理: 先设计好不同溶质和溶剂的量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时的温度,即所得溶液为该温度下的饱和溶液,计算该温度下的溶解度。 实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品是否齐全、完好。 二、硝酸钾的称取和溶解。 1. 用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、 2.0g、 2.5g,称量过程详见分组实验三的步骤二。将称好的5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取的3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾的结晶。 1.自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度t1,并填入下表中。

2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度t2、t3。将读数填入表格。 四、溶解度曲线的绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾 5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度读数填人表格。 2.根据所得数据,以温度为横坐标,溶解度为纵坐标,绘制溶解度曲线图。 五、整理实验用品。 1.用试管刷清洗玻璃仪器。 2.整理实验用品,恢复实验前的摆放位置。 注意事项: 1.为了使测量结果准确,称取硝酸钾晶体的质量和量取倒入试管的蒸馏水的体积应尽量准确。 2.水浴加热时,烧杯里的水面不能低于试管里的液面。温度计应插在溶液的中部,使所示的温度具有代表性。 3.使试管里的液体升温时应采用水浴加热,而不能用酒精灯直接加热。

土壤容重孔隙度含水率等测定方法

1.土壤含水量(含水率)测定 采用酒精燃烧法测定。 操作步聚: (1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录) (2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重) (3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。 冷却后,马上称出重量(得干土重十盒重)。每层重复三次。 (4)土壤含水量及现有贮水量计算 ①土壤含水量(重量)=%重(干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100? =水分重/干土重×l00% ②土壤含水量(体积)=) ()容重(土壤含水量(重量%)33g/cm 1g/cm ? =%土壤体积 水分体积100? (注:水的容重一般取lg /cm 3) 2.土壤物理性质测定 采用环刀法 操作步聚: (1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录): V =πr 2H 式中:V —环刀体积(cm 3) R —环刀内半径(cm) H —环刀高度(cm) 将环刀在天平上称重(做好标记、记录)。 (2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。 (3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重)

溶解度的测定

实验2 溶解度的测定 37 一 目的 藉由不同温度下测定物质的溶解度,以了解温度与溶解度之间的关系,并以图形表达之。 二 实验原理 溶质的溶解度会受到许多因素的影响,如溶质的本性、溶剂的种类、温度…等。即使是在同一种溶剂中,如图E2-1所示,不同的溶质在水中的溶解度也各不相同,硝酸钾在约22℃以下,其溶解度小于氯化钠,但高于此温度时,其溶解度则远大于氯化钠。大部分的固体溶质,其溶解度随着温度的增高而变大,但是如下图所示有些变化较大,有些则变化较小。 图E2-1中的各条曲线是如何画出来的?我们可以在高温下配制数支不同浓度的不饱和溶液,然后依序让试管内溶液的温度徐徐降低,直至溶液中有碎屑开始出现时,记录当时的温度,将其浓度换算即可得知该温度的溶解度,将数点不同温度下的溶解度在图形中相连,即可得相似的曲线。 三 实验器材 每組 器材(规格) 数量 器材(规格) 数量 天平 共享 中型试管(18 mm 口径) 4支 试管夹 1支 烧杯(600 mL ) 1个 量筒(25 mL ) 1个 电热板和磁搅拌子(或其他加热装置) 1组 温度计 1支 末端有环的铁丝(可自制) 1支 试管架 1座 溶解度的测定 如何使更多的固体溶到水中? 2 连结课本P.116 图E2-1 各种固体溶解度与温度关系

36高中化学(全)实验活动手册 四实验试药 每組 药品份量药品份量 水约20 mL 硝酸钾(KNO3)约14 g 五实验步骤 1 取600 mL烧杯,装热水 半满并置于电热板上,开 启电源,把火力调至最 小,加热烧杯内的水。 2 称取质量为2.0 g、3.0 g、 4.0 g和 5.0 g的硝酸钾倒入 四支试管。 3 再各加入5.0 g水于四支 试管。 4 将4支试管放入装水烧 杯中,以水浴法加热。 5 注意观察各试管内固体。 6 依序用试管夹将固体已 溶解的试管取出(其先后 顺序应为加了2.0 g、3.0 g、4.0 g和5.0 g硝酸钾 固体的试管),先进行下 一步骤,直到所有试管均 取出为止,关闭电热板的 电源。

(完整word版)土壤孔隙度的测定(精)

土壤的孔隙度试验方法: 分别选择土壤为沙土、壤土和黏土的田地各100m2进行田间持水量试样,把100m2等分两块,一块用1.3kg的液体肥与水一起冲施,一块用水灌溉。一周后,同时在施肥田地与不施肥的田地采取土壤并编上编号作试验。试验步骤如下: 1、孔隙度,%=(1-土壤容重/土壤比重*100 2、土壤容重的测定 先用铁铲刨平耕层的土面,将环刀托套在环刀无刃的一端,环刀刃朝下,用力均衡地压环刀托把,将环刀垂直压入土中。如土壤较硬,环刀不易插入土中时,可用土锤轻轻敲打环刀托把,待整个环刀全部压入土中,且土面即将触及环刀托的顶部(可由环刀托盖上之小孔窥见时,停止下压。用铁铲把环刀周围土壤挖去,在环刀下方切断,并使其下方留有一些多余的土壤。取出环刀。将其翻转过来,刃口朝上,用削土刀迅速刮去黏附在环刀外壁上的土壤,然后从边缘向中部用削土刀削平土面,使之与刃口齐平。盖上环刀顶盖,再次翻转环刀,使已盖上顶盖的刃口一端朝下,取下环刀托。同样削平无刃口端的土面并盖好底盖。将装有土样的环刀迅速装入木箱带回室内,在天平上称取环刀及湿土质量,将称重后的环刀和土壤在105℃烘箱中烘至恒重,称量。 计算:土壤容重,g/cm3=烘干土样质量(g/环刀容积(cm3 3,、土壤比重的测定 取通过2mm孔径筛的风干试样约10g,经小漏斗装入已知质量的比重瓶中,称取瓶加风干试样质量。另称取5g左右试样按3.1方法测定水分含量。 向装有样品的比重瓶中缓缓注入水,至水和土的体积约占比重瓶的1/3~1/2为宜。缓缓摇动比重瓶,使土粒充分浸润,将比重瓶放在电砂浴上加热,沸腾后保持微沸1h,煮沸过程中应经常摇动比重瓶,驱除土壤中的空气。煮沸完毕,将冷却的无CO2水沿瓶壁徐徐加入比重瓶至瓶颈,用手指轻轻敲打瓶壁,使残留土中的空气逸尽,粘附在瓶壁上的土粒沉入瓶底。静止冷却,澄清后测量瓶内水温。加水至瓶口,塞上毛细管塞,瓶中多余的水即从塞上毛细管孔中溢出,用滤纸擦干后称取瓶+水+土质量。

白度仪的使用方法

WSB——V智能白度测定仪 一、概述 白度仪用于测量物体表面的兰光白度,测定结果数码显示。仪器操作简便,测量精度高。适用于面粉、淀粉、米粉、食盐、纺织品、印染、化纤、塑料、瓷土、滑石粉、白水泥、涂料、油漆、搪瓷、陶瓷、纸张、纸浆等需对产品白度进行测定的部门。 二、工作原理 仪器利用积分球实现绝对光谱漫反射率的测量。由光源发出的兰紫色光线,进入积分球,光线在积分球内壁漫反射之后,照射在测试口的试样上,由试样反射的光线经聚光镜、光栏杆、滤色片组后由硅光电池接收,转换成电信号。另有一路硅光电池接收球体内的基底信号。两路信号分别放大,混合处理,测定结果数码显示。 三、操作方法 1、开机:接通电源,显示器从120.0开始倒计时,两分钟后显示标准白板背面的标准值。 2、调零:将黑筒放入试样口,按较零,3秒后显示0.0。 3、校准:取下黑筒,将工作白板放入试样口,按校准,3秒后显示工作白板的白度值。 4、测定:将待测物品放入试样口,显示的数值为该物品的白度值。 5、粉样样品的制备:将粉样盒用干净的刷子刷干净,在压盖中放入毛玻璃,旋紧粉样盘,将待测样品轻轻放入粉样盒中并刮去多出平面的部分,放上压块,旋上压粉器,顺旋把手,到听见嗒嗒的响声即认为样品已经压实,逆旋把手720°,旋出压粉器,取出压块,盖上塑料底盒,翻转粉样盒,旋下压盖,揭开毛玻璃,将粉样盒放入试样口,显示的数据即为样品的白度。

四、校准处理 当工作白板与仪器原配白板的白度不一致时,依选位和升数来校准仪器。 1、选位:按选位,三位显示器中某一位会更亮,再按选位,更亮位会左移。 2、升数:按升数,更亮的某一位数会上升,继续按升数,到要求为止。显示的数与白板的背面的值一致时,将白板放入试样口,按校准,3秒后显示器显示工作白板的白度值。6、操作流程:开机→2分钟后→装上黑筒→按较零→3秒后→取下黑筒,装上标准白板→按校准→3秒后→取下白板→装上样品后显示的数据为样品的白度值。 五、注意事项 1、仪器使用环境应干燥清洁,工作台平整、平稳。 2、仪器有良好的接地,确保安全。 3、更换保险丝:拉开电源插座下面的小盒,有两粒保险丝,取出靠里面的一粒,将外面的一粒移入并还原。 4、工作白板表面保持清洁,防止划伤,如表面有污迹,可用干净脱脂棉蘸无水乙醇擦洗,干燥后使用。 5、黑筒用完倒着放,防止异物进入。

相关文档
最新文档