通信原理开放性实验项目设计

通信原理开放性实验项目设计
通信原理开放性实验项目设计

收稿日期:2004 10 15 修改日期:2005 04 25

作者简介:寇艳红(1969 ),女,河南许昌人,博士,副教授

通信原理开放性实验项目设计

寇艳红,杨 枫,陈 雁

(北京航空航天大学电子信息工程学院,北京 100083)

摘 要:本文在北京航空航天大学202教研室研制出的一套开放性的软硬件相结合的通信

原理实验平台基础上,以M CU +FPGA 主控单元为核心,结合外部相对独立的功能电路,给出

了PC M 编译码系统和(7,4)汉明码编译码传输系统等几个实验项目范例的设计实现,为引

导学生完成综合性、开放性和探索性的实验打下基础。

关键词:通信原理,开放性,教学实验,单片机,FPGA

中图分类号:TN911 文献标识码:B 文章编号:1002 4956(2005)11 0105 03

通信技术的快速发展,要求通信专业的学生和科技人员不但要掌握扎实的理论基础,还应具有较强的工程概念和动手能力及开拓创新和快速适应工作的综合能力。传统的本科通信原理课程着重于经典通信理论,而课程实验大多以软件仿真为主,辅以少量验证性的硬件实验,使得学生的实践动手能力得不到充分的锻炼。由北京航空航天大学电子信息工程学院202教研室研制的通信原理开放性实验平台,将通信理论与电路系统设计结合在一起,让学生把通信系统的理论应用到实际的设计、构造和实验过程中去。本文首先介绍了此实验平台的系统架构和开放性的特点,然后以PC M 信号变换过程的液晶显示及A 率压扩、(7,4)汉明码编译码传输系统为例阐述了具体实验项目的设计思想和实现方法,并给出了相应的实验结果。

1 实验平台的系统架构

本通信原理开放性实验平台基于 PC +单片机+FPGA 架构,同时设置了许多相对独立的外部功能电路,其结构框图如图1所示。

单片机采用Cygna l 公司的高速(22M I PS)中央控制器C8051F022,FPGA 器件采用A l tera 公司的FLEX 10K50A 。实验板上设置了大量的可以自由配置的基本功能器件和模块、多种总线和扩展接口包括与上位机通信的串口,在电路上设置了足够的测试脚,学生可以利用短路线完成一些需要的连接,为开展丰富的软硬件实验项目提供了余地。2 实验项目设计实例

2.1 PC M 采编器

PC M 采编器是通信原理课程教学中的基本实验项目之一。国内已有的通信原理实105

中国科技论文统计源期刊 实 验 技 术 与 管 理 V o.l 22 N o .11 2005

图1 通信原理开放性实验平台结构框图

验系统中大多包含了PC M 采编器,但是大都使用专用的集成芯片来实现PC M

实验中的图2 PC M 采编器的采样量化编码过程的液晶显示

采样、量化和编码等一系列过程,无法使学生深入

了解PC M 的原理和实现过程。本试验平台采用由

单片机控制下的LC M 240128ZK 液晶显示模块进行

实验数据的显示和对比,较之示波器或逻辑分析仪

观察波形更为方便灵活。通过外部功能电路实现

采样量化,在FPGA 上实现编码的A 率压扩,清楚

地展示了对数PC M 的实现过程[1~3]。图2示出了

采样量化编码过程的液晶显示效果。

图2中液晶各行的显示说明如下:

0~31行:96ksps 采样的240个点的波形,代表原始信号。幅度值进行8倍的压缩。32~63行:每4行为一个量化单位,共8级量化。每12列输出对应点代表采样、量化后的幅度的线段(并显示相应刻度标线)。

64~95行:相应幅度(3bit)的NRZ 码(即非归零的三位二进制码)。

96~127行:相应的曼彻斯特(m anchester)码。

PC M 采编器实验中A 率压扩部分设计为独立的FPGA 程序模块,在实验时可以提供给学生下载,结合其它功能电路来实现学生自己的实验系统。图3,图4示出了A 率压扩的仿真结果,与文献[4]中给出的A 律PC M 和线性PC M 的变换关系表相符。这里采用线性13位与A 率8位相对应是因为其误差级相同。图3 A 率PC M 编码仿真结果

106实 验 技 术 与 管 理

图4 A 率PC M 解码仿真结果

通过电路板上的按键可以进行数据采样和显示屏的翻屏操作。结合FPGA 的模块设计,使学生做实验的时候自己连接电路,下载并修改相应的单片机与FPGA 软件包,根据需要选用不同的信号源、采样率和量化标准,不同的传输信道以及不同的编译码方式,通过观察液晶显示结果来加深对PC M 基带编码理论的理解。

2.2 (7,4)汉明码编译码传输系统

(7,4)汉明码是通信系统传输过程中重要的纠错编码方式,本文在FPGA 上实现了(7,4)汉明码编译码传输系统的全部过程。首先用m 序列发生器产生伪随机序列,4位一截取,作为信息码元进入(7,4)汉明码编码器,产生监督位,组成许用码组。然后模拟信道特性加入误码,送入译码器,纠错,译码,得到信息码。将m 序列发生器的串行输出和译码器输出进行并串转换后的波形进行比较,可以分析汉明码的纠错能力。

电路原理框图如图5所示

:

图5 汉明码编译码传输系统原理框图

系统的仿真结果如图6

所示。

图6 系统仿真结果图

由图6可以看出,当传输信道中没有误码(即STB 的七位都为0)时,OUTPUT 与SE R I A L 的数据一致,此时没有报警(即ALARM 为低电平);当信道中有一位误码(即STB 有一位为1)时,无论误码在哪一位,OUTP UT 与SER I A L 的数据仍相一致,但此时有报警(即ALARM 为高电平),表示信道中有误码;当信道中有两位误码(即STB 有两位为1)时,仍有报警,但OUTPUT 与SER I A L 的数据不一致,因为(7,4)汉明码的最小码距为d=3,只能纠一位错误,在超出纠错能力的情况下,反而会因 乱纠 而产生新的误码。

本实验系统完全在FPGA 上实现,系统的6个组成部分均可作为彼此独立的功能模块供学生选择下载,使用于所需要的其它实验中。学生可以在程序中改变m 序列的周期来产生不同的伪随机序列,还可以在信道模拟的模块中改变误码的位置和位数,来观察汉明码的纠错结果,通过对比深入理解差错控制编码和分组码的原理和应用。

(下转第114页)

107

寇艳红,等:通信原理开放性实验项目设计

114实 验 技 术 与 管 理

了解生产实际、技术应用和革新情况。

(6)制订严格的带鼓励性的实验成绩管理办法 大学生的自主自立意识要求我们充分放开,让他们自主实验,但实验室必须制订具体措施确保开放实验教学有条不紊高效地进行。要加强对开放实验教学过程的监督管理,特别是要制订一套严格又具有鼓励性的实验成绩考核办法,促使学生重视实验。考核的范围是本学期所有与实验相关的内容,考核1人1题,内容随机抽定,重点是仪器的使用、常用电路性能指标的测试、自行设计和搭接电路的能力,考核的形式是实验理论和动手操作相结合,考核的最终成绩由平时实验成绩、考核成绩综合而定。另外我们规定,平时实验成绩不合格的,不能参加实验考核。凡实验成绩不合格的不能参加课程设计。

电子技术的日新月异迅猛发展给电气信息类学科基础课程实验教学提出了更高更全面的要求,作为实验技术人员,应充分认识到形势喜人、形势逼人,以高度的责任感和主人翁意识投入到开放实验教学工作中去,为培养优秀的电子技术人才,推动祖国电子事业的发展,艰苦奋斗、顽强拼搏,不断地探索,不断地实践。

参考文献:

[1]中国电子学会教育分会.中国电子高等教育国际化[M].北京:机械工业出版社,2004年.

[2]陈大鹏,吴丽芳.实验室开放的实践与探索[J].实验技术与管理,2003,20(6):159 161.

[3]张立平,等.必须建立与开放式研究型大学相适应的实验室[J].实验技术与管理,2003,20(6):5 7.

[4]涂庭亚.创新能力培养是实验室建设和管理工作的重点[J].实验室研究与探索,2003,22(2):

8 10.

(上接第107页)

3 结束语

在通信原理开放性实验平台上系统控制、逻辑转换和高速数据处理是由MCU+FP GA核心模块来完成的。本文用K eil C语言编写MC U的控制及液晶显示模块程序,用VHDL硬件描述语言编写所需逻辑电路的FPGA程序,在实验平台上实现了PC M采编器以及(7,4)汉明码编译码传输系统。通过在液晶上显示实验系统中不同兴趣点的数据波形,使学生能够清楚地理解实验系统中各个环节的功能及整个实验的数据流程,方便地进行波形的检验和对比。FPGA实现的技术途径使得学生可以很容易地修改实验系统的搭接和参数的选择,从而观察不同设计下的硬件信号真实效果。

参考文献:

[1]潘琢金.C8051F020/1/2/3混合信号ISP FLA S H微控制器数据手册[S].沈阳:沈阳新华龙电子有

限公司,2002.

[2]宋万杰,罗 丰,吴顺君.CPLD技术及其应用[M].西安:西安电子科技大学出版社,1999.

[3]带中文字库图形液晶显示模块LC M240128ZK使用说明书[S].北京青云创新科技发展有限公

司,2003.

[4]曹志刚,钱亚生.现代通信原理[M].北京:清华大学出版社,1992.

通信原理课程设计报告书

通信原理课程设计 题目:脉冲编码调制(PCM)系统设计与仿真 院(系):电气与信息工程学院 班级:电信04-6班 姓名:朱明录 学号: 0402020608 指导教师:赵金宪 教师职称:教授

摘要 : SystemView 仿真软件可以实现多层次的通信系统仿真。脉冲编码调制(PCM )是现 代语音通信中数字化的重要编码方式。利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。通过仿真展示了PCM 编码实现的设计思路及具体过程,并加以进行分析。 关键词: PCM 编译码 1、引言 随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于信号的用于通信系统的动态仿真软件SystemView 具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。 SystemView 具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。 本文主要阐述了如何利用SystemView 实现脉冲编码调制(PCM )。系统的实现通过模块分层实现,模块主要由PCM 编码模块、PCM 译码模块、及逻辑时钟控制信号构成。通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。 2、系统介绍 PCM 即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM 的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT 的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,我国采用了A 律方式,由于A 律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM 编码示意图见图1。 图1 PCM 原理框图 下面将介绍PCM 编码中抽样、量化及编码的原理: (a) 抽样 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。 (b) 量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理课程设计

通信原理课程设计 --基于FPGA的时分多路数字基带传输系统的设计与开发 指导老师:戴慧洁武卫华 班级:通信111班 组长:徐震震 组员:胡彬、韦景山、谢留香、 徐勇、周晶晶、张秋红 日期:

一、课程设计目的 通信系统课程设计是一门综合设计性实践课程。使大家在综合已学现代通信系统理论知识的基础上,借助可编程逻辑器件及EDA技术的灵活性和可编程性,充分发挥自主创新意识,在规定时间内完成符合实际需求的通信系统电路设计与调试任务。 它不仅能够提高大家对所学理论知识的理解能力,更重要的是能够提高和挖掘大家对所学知识的实际运用能力,为将来进入社会从事相关工作奠定较好的“能力”基础。 二、课程设计内容 时分多路数字电话基带传输系统的设计与开发 三、课程设计要求任务 1、64Kb/S的A律PCM数字话音编译码器的开发设计 2、PCM 30/32一次群时分复接与分接器的开发设计 3、数字基带编码HDB3编译码器的开发设计 4、同步(帧、位、载波同步(可选))电路的开发设计

四、小组分工 小组成员负责项目 徐震震同步(帧同步、位同步) 谢留香PCM 30/32一次群时分复接 韦景山64Kb/S的A律PCM数字话音编码 胡彬PCM 30/32一次群时分分接 徐勇64Kb/S的A律PCM数字话音译码 周晶晶数字基带编码HDB3译码 张秋红数字基带编码HDB3编码 五、时分多路数字电话基带传输系统框图

PCM编码设计 一、设计要求 1、PCM编码器输入信号为: 一个13位逻辑矢量的均匀量化值:D0,D1…D12 其中:D0为极性位,取值范围在-4096~+4096之间; 一个占空比为1/32的8K/S的取样时钟信号; 一个占空比为50%的2.048Mb/S的合路时钟信号; 2、PCM编码器输出信号为: 一个8位逻辑矢量的13折线非均匀量化值:C0,C1…C7 其中:C0为极性位.C0=1为正,C0=0为负; 一个占空比为1/32的8K/S的取样时钟信号; 一个占空比为50%的2.048Mb/S的合路时钟信号; 二、PCM编码分析 脉冲编码调制(PCM)在通信系统中完成将语音信号数字化功能。是一种对模拟信号数字化的取样技术,将模拟信号变换为数字信号的编码方式,特别是对于音频信号。PCM 对信号每秒钟取样8000 次;每次取样为8个位,总共64kbps。PCM的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,本设计采用了A律方式。 在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理设计性实验

通信原理设计性实验 实验一常用信号及其频谱 一实验目的: 1 使学生掌握用MA TLAB语言获取通信常用信号的方法 2 使学生掌握编程获取信号频谱和功率谱的方法 二实验内容: 1 编程获取通信常用波形(矩形、三角形和抽样信号)及其频谱 2 获取常用信号的功率谱 三实验过程 1 简介MA TLAB 2 讲解矩阵的输入方法,矩阵的加、减、乘除运算 〉〉A=[1 2 3; 2 3 3;3 4 5]; 〉〉A+B; 〉〉A*B 〉〉A/B 〉〉A。*B 3 通信中常用的MA TLAB函数 >>ones(3) >> zeros (3) >> plot >> axis >> title 4 MA TLAB 的判断语句,循环语句,分支语句 1)判断语句 if 表达式1 命令 elseif表达式2 命令 … end 2) 分支语句switch和case switch (a) case 0 case 1 case 2 … Otherwise end 3) 循环语句 for n=3:32 r(n)=n; end

5 程序编写 点击工具栏最左边按钮或菜单栏File---》new- M file, 编程界面如下所示 1)主函数 clear all; close all; T=2*pi; t=0:0.01:T; st=sin(t); [f,sf]=T2F(t,st); subplot(311);plot(t,st); title('信号'); subplot(312);plot(f, abs(sf)); axis([-5 5 0 max(abs(sf))]); title('信号的频谱'); psf=(abs(sf).^2)/T; subplot(313);plot(f,psf); axis([-5 5 0 max(psf)]); title('信号的功率谱密度'); 2)子函数 function [f,sf]=T2F(t,st) dt=t(2)-t(1); T=t(end); df=1/T; N=length(st); f=-N/2*df:df:N/2*df-df; sf=fft(st); sf=T/N*fftshift(sf); 3) 将函数保存,函数名不能是数字或中文,必须英文字母开头,后面可跟数字,函数名

通信原理课程设计(1)

通信原理课程设计报告 题目:基于MATLAB 的M-QAM调 制及相干解调的设计与仿真班级:通信工程1411 姓名:杨仕浩(2014111347) 解博文(2014111321) 介子豪(2014111322) 指导老师:罗倩倩 成绩: 日期:2016 年12 月21 日

基于MATLAB的M-QAM调制及相干解调的设计与仿真 摘要:正交幅度调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在自适应信道调制技术中得到了较多应用。本次课程设计主要运用MATLAB软件对M =16 进制正交幅度调制系统进行了仿真,从理论上验证16进制正交幅度调制系统工作原理,为实际应用和科学合理地设计正交幅度调制系统,提供了便捷、高效、直观的重要方法。实验及仿真的结果证明,多进制正交幅度调制解调易于实现,且性能良好,是未来通信技术的主要研究方向之一,并有广阔的应用前景。 关键词:正交幅度调制系统;MATLAB;仿真

目录 1引言 (1) 1.1课程设计的目的 (1) 1.2课程设计的基本任务和要求 (1) 1.3仿真平台Matlab (1) 2 QAM系统的介绍 (2) 2.1正交幅度调制技术 (2) 2.2QAM调制解调原理 (5) 2.3QAM的误码率性能 (7) 3 多进制正交幅度(M-QAM)调制及相干解调原理框图 (9) 4 基于MATLAB的多进制正交幅度(M-QAM)调制及相干解调设计与仿真 (10) 4.1系统设计 (10) 4.2随机信号的生成 (10) 4.3星座图映射 (11) 4.4波形成形(平方根升余弦滤波器) (13) 4.5调制 (14) 4.6加入高斯白噪声之后解调 (15) 5 仿真结果及分析 (20) 6 总结与体会 (23) 6.1总结 (23) 6.2心得体会 (24) 【参考文献】 (25) 附录 (26)

通信原理实验-抽样定理

学生实验报告

) 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。见图4。如果fs<fH,就会出现频谱混迭的现象,如图5所示。 在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。采用标准抽样频率fs=8KHZ。改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 验证抽样定理的实验方框图如图6所示。在图8中,连接(8)和(14),就构成了抽样定理实验电路。由图6可知。用一低通滤波器即可实现对模拟信号的恢复。为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ

2、多路脉冲调幅系统中的路际串话 ~ 多路脉冲调幅的实验方框图如图7所示。在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。 分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。N路抽样脉冲在时间上是互不交叉、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。 多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。 图7 多路脉冲调幅实验框图 冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但是幅度上趋势连续的。而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 3、多路脉冲调幅系统中的路标串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。但是如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象。当“拖尾”严重,以至入侵邻路时隙时,就产生了路标串话。 在考虑通道频带高频谱时,可将整个通道简化为图9所示的低通网络,它的上截止频率为:f1=1/(2

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理课设-基于Systemview的通信系统的仿真

目录 第1章绪论 (1) 第2章 SystemView的基本介绍 (2) 第3章二进制振幅键控 2ASK (4) 3.1 2ASK调制系统 (4) 3.2 2ASK调制解调系统 (6) 3.3 2ASK系统仿真结果分析 (9) 第四章二进制频移键控 2FSK (10) 4.1 2FSK调制系统 (10) 4.2 2FSK调制解调系统 (12) 4.3 2FSK仿真结果分析 (17) 第5章二进制移相键控 2PSK (18) 5.1 2PSK调制系统 (18) 5.2 2PSK调制解调系统 (19) 5.3 2PSK仿真结果分析 (23) 第6章二进制差分移相键控 2DPSK (24) 6.1 2DPSK实验原理 (24) 6.2 2DPSK仿真结果分析 (29) 第7章实验总结 (30) 第8章参考文献 (30) 第9章谢辞 (32)

第1章绪论 通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。 本次课程设计的目的是在学习以上三种调制的基础上,通过Systemview仿真软件,实现对2ASK,2FSK,2PSK,2DPSK等数字调制系统的仿真,同时对以上系统有深入的了解。 Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。 在此次课程设计之前,先学会熟练掌握Systemview的用法,在该软件的配合下完成各个系统的结构图,还有调试结果图。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。

通信原理实验指导书161702

通 信 原 理 实 验 指 导 书 (2017版) 编者 张水英 汪泓 浙 江 理 工 大 学 2017年3月

目 录 实验一 常规双边带幅度调制系统设计及性能分析 (1) 实验二 模拟信号数字化传输系统的建模与分析 (6) 实验三 BPSK调制、解调实验 (9)

实验一 常规双边带幅度调制系统设计及性能分析 一、实验目的 1、熟悉常规双边带幅度调制系统各模块的设计; 2、研究常规双边带幅度调制系统的信号波形、信号频谱、信号带宽、输入信噪比、输出信噪比及两者之间的关系; 3、掌握 MATLAB 和SIMULINK 开发平台的使用方法; 4、熟悉 Matlab 与Simulink 的交互使用。 二、实验仪器 带有MATLAB 和SIMULINK 开发平台的微机。 三、实验原理 AM 信号产生的原理图如图1所示。AM 信号调制器由加法器、乘法器和带通滤波器(BPF )组成。图中带通滤波器的作用是让处在该频带范围内的调幅信号顺利通过,同时抑制带外噪声和各次谐波分量进入下级系统。 图1 AM 信号的产生 3.1 AM 信号时域表达式及时域波形图 AM 信号时域表达式为 0()[()]cos AM c s t A m t t ω=+ 式中0A 为外加的直流分量;为输入调制信号,它的最高频率为 ()m t

m f ,无直流分量;c ω为载波的频率。为了实现线性调幅,必须要求 0max ()m t A ≤ 否则将会出现过调幅现象,在接收端采用包络检波法解调时,会产生严重的失真。如调制信号为单频信号时,常定义0(/)AM m A A β1=≤为调幅指数。 AM 信号的波形如图2所示,图中认为调制信号是单频正弦信号,可以清楚地看出AM 信号的包络完全反应了调制信号的变化规律。 t t t t ()m t 0(A m t +cos c t ω s ()AM t 图2 AM 信号波形 3.2 AM 信号频域表达式及频域波形图 对AM 信号进行傅里叶变换,就可以得到AM 信号的频域表达式 ()ω如下: AM S 0()[(AM ()] 1 [)()][()()]2 AM c c c c S s t M M A ωωωωωπδωωδωω==++?+++?F 式中,()M ω是调制信号的频谱。 ()m t

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

《通信原理课程设计》

信息工程学院 2014 / 2015学年第一学期 课程设计报告 课程名称:通信原理课程设计 专业班级:统本电信1201 学生学号:12610304152213 12520527151362 学生姓名:陈钰康 夏涛 指导教师:田亚楠

摘要 8PSK(8 Phase Shift Keying,8移相键控)是八进制相移键控,它是一种相位调制算法。相位调制(调相)是频率调制(调频)的一种演变,载波的相位被调整用于把数字信息的比特编码到每一词相位改变(相移)。 8PSK中的“PSK”表示使用移相键控方式,移相键控是调相的一种形式,用于表达一系列离散的状态,8PSK对应8种状态的PSK。如果是其一半的状态,即4种,则为QPSK,如果是其2倍的状态,则为16PSK。因为8PSK拥有8种状态,所以8PSK每个符号(symbol)可以编码3个比特(bits)。8PSK抗链路恶化的能力(抗噪能力)不如QPSK,但提供了更高的数据吞吐容量。本次课程设计过程中,利用了MATLAB7.1仿真实现了8PSK信号的调制与解调,并仿真8PSK载波调制信号在高斯白噪声信道下的误码率及误比特率性能,并用MATLAB仿真出了调制信号、载波信号及已调信号的波形图和频谱图。并在高斯白噪声下,讨论了8PSK 误码率及误比特率性能。 关键字:8PSK;载波的调制;解调;

目录 一.设计内容及要求(PSK信号的仿真) (1) 二.相关理论知识的论述分析 (1) 2. 1.1、8PSK的概念 (1) 2. 1.2、8PSK的特点 (1) 2.2.1、 PSK的调制 (2) 2.2.2、调制的概念 (2) 2.2.3、调制的种类 (2) 2.2.4、调制的作用 (3) 2.2.5、调制方式 (3) 三.系统原理框图及分析(8PSK的原理) (3) 四.完整的设计仿真过程 (4) 五.仿真结果输出及结论 (6) 六.仿真调试中出现的错误、原因及排除方法 (7) 七.总结本次设计,指出设计的核心及应用价值,提出改进意见和展望 (7) 八.收获、体会 (7) 九.参考文献 (8)

2018通信原理实验指导书

实验1 CMI码型变换实验 一、实验目的 1、了解CMI码的编码规则。 2、观察输入全0码或全1码时各编码输出码型,了解是否含有直流分量。 3、观察CMI码经过码型反变换后的译码输出波形及译码输出后的时间延迟。 4、熟练掌握CMI与输入信号的关系。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 CMI/BPH编译码实验原理框图 2、实验框图说明 CMI编码规则是遇到0编码01,遇到1则交替编码11和00。由于1bit编码后变成2bit,输出时用时钟的1输出高bit,用时钟的0输出低bit,也就是选择器的功能。CMI译码首先也是需要找到分组的信号,才能正确译码。CMI码只要出现下降沿了,就表示分组的开始,找到分组信号后,对信号分组译码就可以得到译码的数据了。

四、实验步骤 概述:本项目通过改变输入数字信号的码型,分别观测编码输入输出波形与译码输出波形,测量CMI编译码延时,验证CMI编译码原理并验证CMI码是否存在直流分量。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。13号模块的开关S3置为0011,即提取512K同步时钟。 3、此时系统初始状态为:PN为256K。 4、实验操作及波形观测。 (1)观测编码输入的数据和编码输出的数据:用示波器分别观测和记录TH38#和TH68#的波形,验证CMI编码规则。 (2)观测编码输入的数据和译码输出的数据:用示波器分别观测和记录TH38#和TH138#的波形,测量CMI码的时延。 (3)断开电源,更改连线及设置。 开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。将模块13的开关S3置为0011即提取512K同步时钟。 将模块2的开关置为00000000 00000000 00000000 00000011,用示波器分别观测编码输入的数据和编码输出的数据,调节示波器,将信号耦合状况置为交流,观察记录波形。保持

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理实验报告

通信原理实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用 subplot(311); % 设置3行1列的作图区,并在第1区作图 plot(t,x1); title('占空比25%'); axis([0 ]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 ]); subplot(313); plot(t,x3);

title('占空比75%'); axis([0 ]); 图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4::4; T=4; % 设置信号宽度x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1);

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

相关文档
最新文档