混凝土配比技术规范

混凝土配比技术规范
混凝土配比技术规范

严格按照技术规范的相关规定,进行砼配合比设计,是保证砼施工质量的重要环节。

砼有四项技术性质,即工艺性质,力学性质,砼的变形,和砼的耐久性。砼配合比设计,要按照这四项技术性质,分别满足设计强度的要求,满足施工和易性的要求,满足耐久性的要求,以及满足经济性的要求。

在公路工程监理实践中,发现部分工地试验室,设计砼配合比当中,存在不满足四项要求的现象。尤其突出的是低强度等级砼配合比设计,水灰比与单位水泥用量,低于相关规范的规定。水下砼配合比设计,砂率与单位用水量,低于相关规范的规定等等。

水灰比、砂率、单位用水量,是砼配合比设计的三大参数。正确运用这三大参数,决定砼配合比设计的成败。

有的工地试验室,在低强度等级砼配合比设计中,运用给定的计算公式,所求出的水灰比较大。水灰比越大,单位水泥用量则越小,没有对照相关规定就直接指导施工,是严重的设计错误。因为,砼结构所处环境不同,耐久性要求对其约束也有所不同。如设计强度等级C 15的砼配合比,坍落度30mm,水泥强度等级32.5,单位用水量189 kg/m3。按照公式计算,水灰比为0.66,水泥用量为286kg/m3,计算方法没有错误。经过监理审核,对照JTJ 041—2000《公路桥涵施工技术规范》表11.3.4的规定。

表11.3.4 混凝土的最大水灰比和最小水泥用量

混凝土结构所处环境无筋混凝土钢筋混凝土

最大水灰比最小水泥用量(kg/m3) 最大水灰比最小水泥用量

(kg/m3)

温暖地区或寒冷地区,无侵蚀物质影响,与土直接接触 0.60 250 0.55 275

严寒地区或使用除冰盐的桥涵 0.55 275 0.50 300

受侵蚀性物质影响 0.45 300 0.40 325

注:①本表中的水灰比,系指水与水泥(包括外掺混合材料)用量的比值。

②本表中的最小水泥用量,包括外掺混合材料。当采用人工捣实混凝土时,水泥用量应增加25kg/m3。当掺用外加剂且能有效地改善混凝土的和易性时,水泥用量可减少25kg/m3。

③严寒地区系指最冷月份平均气温≤-10℃且日平均温度在≤5℃的天数≥145d的地区。

该结构物为无筋混凝土,所处环境,限制最大水灰比不能大于0.60,该配合比的水灰比为0.66,显然不能满足耐久性要求。

有的工地试验室,在水下砼配合比设计中,砂率仅仅给定38%。相对于高强度砼,砂率很高,然而对于水下砼而言砂率则太低。由于细集料少,粗集料多,砼流动性和粘聚性较差,泌水严重,砼在运输过程中易离析,不能满足施工和易性要求。从而在水下砼浇灌中,往往堵塞管道,造成断桩事故。砂率所以给定错误,在于设计者没有执行有关规范的规定。依据JTJ 041—2000《公路桥涵施工技术规范》6.5.3水下混凝土配制 4 混凝土配合比的含砂率宜采用,水灰比宜采用0.5—0.6。有试验依据时含砂率和水灰比可酌情增大或减小。经过监理审核,该水下砼配合比砂率在0.4~0.5范围之外,应重新试配。

要避免砼配合比设计错误,必须熟悉施工技术规范的相关规定。因此,把分散于各技术规范中,有关砼配合比设计的条文,集中于本文中,与同行共勉。

一、水下砼

1、可采用火山灰水泥、粉煤灰水泥、普通硅酸盐水泥或硅酸盐水泥,使用矿渣水泥时应采取防离析措施。

水泥的初凝时间不宜少于2.5h,水泥的强度等级不宜低于42.5。

2、粗集料宜优先选用卵石,如采用碎石宜适当增加砼配合比的含砂率。

集料的最大粒径不应大于导管内径的1/6~1/8和钢筋最小净距的1/4,同时不应大于40mm。

3、细集料宜采用级配良好的中砂。

4、砼配合比的含砂率宜采用0.4~0.5,水灰比宜采用0.5~0.6 。有试验依据时含砂率和水灰比可酌情增大或减小。

5、砼拌和物应有良好的和易性,在运输和灌注过程中应无显著离析、泌水现象。

灌注时应保持足够的流动性,其塌落度宜为190~220mm。

砼拌和物中宜掺用外加剂、粉煤灰等材料,其技术条件及掺用量可参照本规范第11章有关规定办理。

6、每立方米水下砼的水泥用量不宜少于350kg,当掺有适宜数量的减水缓凝剂或粉煤灰时,可不少于300kg。

7、水下砼技术指标:

强度等级(MPa) 均方差(MPa) 配制强度(MPa) 砂细度模数砂含泥量泥块含量云母含

量碎石压碎值碎石针片状碎石含泥量碎石泥块含量小于2.5mm的颗粒含量

20 4 26.6 2.3

~

3.0 ≤5%≤2%<2% ≤16%≤25%≤2%≤0.5%≤5%

25 5 33.2

30 5 38.2 ≤3%≤1%≤15%≤1%≤0.7%

摘自《JTJ 041-2000 公路桥涵施工技术规范》P44

二、C50~C80高强砼

1、砼抗压强度的试件以边长为150mm的标准尺寸立方体。

2、家选择高强度水泥,可采用硅酸盐水泥、普通硅酸盐水泥。立窖生产的水泥须经仔细检验其化学成分后方可使用。

3、细集料宜采用级配良好的中砂,细度模数不小于2.6,含泥量应小于2%。

4、粗集料应采用质地坚硬、级配良好的碎石,骨料的抗压强度应比所配制的砼强度高50%以上,含泥量应小于1%,针片状颗粒含量应小于5%,骨料的最大粒径宜小于25mm。

5、配制高强度砼必须使用高效减水剂,并根据不同的要求辅以助剂配制,其掺量应根据试验确定,外加剂的性能必须符合本规范第11.2.5条的规定。

6、配制时宜外掺的混合料为磨细的粉煤灰、沸石粉、硅粉。混合料的技术条件应符合本规范第11.2.6条的规定,其掺量应根据试验确定。

7、高强度砼中的氯离子含量,对位于温暖或寒冷地区、无侵蚀物质影响、与土直接接触的桥梁,不应超过水泥重量的0.2%;

对于位于严寒和海水区域,受侵蚀环境,使用除冰盐的桥涵,不应超过水泥重量的0。1%;砼的含碱总量的限制要求同本规范第11.3.6.条。

8、水灰比宜控制在0.24~0.38的范围内。

9、所用水泥重量不宜超过500kg/m3,水泥与混合材料的总量不超过550~600 kg/m3。粉煤灰掺量不宜超过胶结料重量的30%,沸石粉不超过10%,硅粉不宜超过8~10%。

掺用混合材料的种类和数量,必须经试验报监理工程师批准后确定。

10、高强砼的砂率宜控制在28%~34%的范围内。

11、高效减水剂的掺量宜为胶结料的0.5%~1.8%。

12、高强砼技术指标:

强度等级(MPa) 配制系数配制强度(MPa) 砂细度模数砂含

泥量碎石

针片状

含量碎石

含泥量碎石最大粒径

C50 1.15倍 57.5 不小于2.6 应小于2% 应小于5%

1% 宜

小于25mm

C60 69.0

C70 1.12倍 78.4

C80 89.6

摘自《JTJ 041-2000 公路桥涵施工技术规范》P109

三、小碎石砼

1小碎石砼的粗骨料可采用细卵石或碎石,最大粒径不宜大于20mm。

2、塌落度:片石砌体为50~70mm,块石砌体为70~100mm。

3、为改善砼拌和物的和易性,可通过试验,在拌和物中掺入一定数量的减水剂或粉煤灰。摘自《JTJ 041-2000 公路桥涵施工技术规范》P142

四、喷射砼

1、○1喷射砼的设计强度等级不应低于C15;

○2竖井、重要隧道和斜井工程,喷射砼的设计强度等级不应低于C20;

○3喷射砼1d龄期的抗压强度不应低于1 Mpa;

○4钢纤维喷射砼的设计强度等级不应低于C20,其抗拉强度不应低于2 Mpa抗弯强度不应低于6 Mpa。

2、喷射砼的体积密度可取2200 kg/m3。

3、应优先选用硅酸盐水泥或普通硅酸盐水泥,也可采用矿渣硅酸盐水泥或火山灰水泥,必要时,可采用特种水泥。水泥强度等级不应低于32.5Mpa。

4、应采用坚硬耐久的中砂或粗砂,细度模数宜大于2.5,干法喷射时,砂的含水率宜控制在5%~7%;当采用防粘料喷射机时,砂的含水率可为7%~10%中。

应采用坚硬耐久的卵石或碎石,粒径不宜大于15mm;当使用碱性速凝剂时,不得使用含有活性二氧化硅的石材。

5、在使用速凝剂之前,应做水泥与速凝剂的相容性试验,做水泥净浆凝结效果试验,初凝不得大于5min,终凝不得大于min;在采用其它类型的的外加剂或几种外加剂复合使用时,也应做相应的性能试验和使用效果试验。当工程需要采用外掺料时,掺量应通过试验确定,加外掺料后喷射砼必须满足设计要求。

6、混合水中,不应含有影响水泥正常凝结与硬化的有害物质,不得使用污水及P值小于4的酸性水,和含硫酸盐按SO4计算超过混合用水量重量的1%的水。

7、干法喷射水泥与砂、石之重量比,宜为1.0:4.0~1.0:4.5;

湿送喷射水泥与砂、石之重量比,宜为1.0:3.5~1.0:4.0;

水灰比宜为0.42~0.50;

砂率宜为50%~60%。

8、干混合料宜随拌随用,无速凝剂掺入的混合料,存放时间不应超过2h,干混合料掺速凝剂后,存放时间不应超过20min。

9、用于湿法喷射的混合料拌制后,应进行塌落度试验,其塌落度宜为8~12cm。

12、喷射砼技术指标:

强度等级(MPa) 1d的抗压强度水泥强度等级砂细度模数水泥净浆凝结效果碎石最大粒径

初凝终凝

不应低于C15 不应低于1MPa 不应低于32.5 MPa 宜大于2.5 不应大于5min 不应大于

10min 15mm的通过率为100%

13、喷射砼抗压强度标准试块制作方法:

○1标准试块应采用从现场施工的喷射砼板件上切割成要求尺寸的方法制作。模具尺寸为长450X宽350X高120(cm),其尺寸最小的一个边为敞开状。

○2标准试块制作应符合下列步骤:

A在喷射作业面

摘自《GB50086-2001 锚杆喷射砼支护技术规范》P44

五、泵送砼

1、泵送砼应选用硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥和火山灰水泥,并不宜采用火山灰质硅酸盐水泥。

2、粗集料的最大粒径:

分类 m 碎石不宜大于管径卵石不宜大于管径

泵送高度小于5 1/3 1/2.5

50~100 1/4 1/3

100以上 1/5 1/4

粗骨料应采用连续级配。

针片状颗粒含量不宜大于10%。

3、泵送砼宜采用中砂,其通过0.315筛孔的颗粒含量不应小于15%,通过0.160筛孔的含量不应小于15%。

中华人民共和国交通部《公路工程国内招标文件范本》(2003年版)下册P208公路混凝土路面配合比设计

一、对原材料的要求:

3.1 水泥:特重、重交通路面宜采用旋窑道路硅酸盐水泥,也可采用旋窑硅酸盐水泥或普通硅酸盐水泥;中、轻交通的道路可采用矿渣硅酸盐水泥;低温天气施工或有快通要求的路段可采用R型水泥,此外宜采用普通型水泥。各交通等级路面水泥抗折强度、抗压强度应符合表3.1.1的规定:

表3.1.1 各交通等级路面水泥各龄期抗折强度、抗压强度

交通等级特重交通重交通中、轻交通

龄期(d) 3 28 3 28 3 28

抗压强度(Mpa),≥ 25.3 57.5 22.0 52.5 16 42.5

抗折强度(Mpa),≥ 4.5 7.5 4.0 7.0 3.5 6.5

3.3 粗集料:粗集料应使用质地坚硬、耐久、洁净的碎石、碎卵石和卵石,并应符合表3.3.1的规定。高速公路、一级公路、二级公路及有抗盐(冻)要求的三、四级公路混凝土路面使用的粗集料等级不低于Ⅱ级,无抗盐(冻)要求的三、四级公路混凝土路面、碾压混凝土路面及贫混凝土基层可使用使用Ⅲ级粗集料。有抗盐(冻)要求时,Ⅰ级集料吸水率不应大于1.0%,Ⅱ级集料吸水率不应大于2.0%。

表3.3.1 碎石、碎卵石和卵石技术要求

项目技术要求

Ⅰ级Ⅱ级Ⅲ级

碎石压碎指标(%)<10 <15 <20①

卵石压碎指标(%)<12 <14 <16

坚固性(按质量损失计%)<5 <8 <12

针片状颗粒含量(按质量计%)<5 <15 <20②

含泥量(按质量计%)<0.5 <1.0 <1.5

泥块含量(按质量计%)<0 <0.2 <0.5

有机物含量(比色法)合格合格合格

硫化物及硫酸盐(按SO3质量计%)<0.5 <1.0 <1.0

岩石抗压强度火成岩不应小于100Mpa;变质岩不应小于80 Mpa;水成岩不应小于60 Mpa 表观密度>2500kg/m3

松散堆积密度>1350kg/m3

空隙率<47%

碱集料反应经碱集料反应试验后,试验无裂缝、酥裂、胶体外溢等现象,在规定试验龄期的膨胀率应小于0.10%

注:①Ⅲ级碎石的压碎指标,用做路面时,应小于20%;用做下面层或基层时,可小于25%。

②Ⅲ级粗集料的针片状颗粒含量,用做路面时,应小于20%;用做下面层或基层时,可小于25%。

3.3.2 用做路面和桥面混凝土的粗集料不得使用不分级的统料,应按最大公称粒径的不同采用2~4个粒级的集料进行掺配,并应符合表3.3.2合成级配的要求。卵石最大公称粒径不宜大于19.0mm;碎卵石最大公称粒径不宜大于26.5mm;碎石最大公称粒径不宜大于31.5mm;贫混凝土基层粗集料最大公称粒径不宜大于31.5mm;钢纤维混凝土与碾压混凝土最大公称粒径不宜大于19.0mm。碎卵石或碎石中粒径小于75μm的石粉含量不宜大于1%。表3.3.2 粗集料级配范围

粒径

类型级配方孔筛尺寸(mm)

2.36 4.75 9.50 16.0 19.0 26.5 31.5 37.5

累计筛余(以质量计)(%)

合成级配 4.75~16 95~100 85~100 40~60 0~10

4.75~19 95~100 85~100 60~75 30~45 0~5

4.75~26.5 95~100 90~100 70~90 50~70 25~40 0~5 0

4.75~31.5 95~100 90~100 75~90 60~75 40~60 20~35 0~5 0

粒径 4.75~9.5 95~100 80~100 0~15 0

9.5~16 95~100 80~100 0~15 0

9.5~19 95~100 85~100 40~60 0~15 0

16~26.5 95~100 55~70 25~40 0~10 0

16~31.5 95~100 85~100 55~70 25~40 0~10 0

3.4.1 细集料:细集料应采用质地坚硬、耐久、洁净的天然砂、机制砂或混合砂,并应符合表3.4.1的规定。高速公路、一级公路、二级公路及有抗盐(冻)要求的三、四级公路混凝土路面使用的砂应不低于Ⅱ级,无抗盐(冻)要求的三、四级公路混凝土路面、碾压混凝土路面及贫混凝土基层可使用使用Ⅲ级砂。特重、重交通混凝土路面宜使用河砂,砂的硅质含量不应低于25%。

表3.4.1 细集料技术指标

项目技术要求

Ⅰ级Ⅱ级Ⅲ级

机制砂单粒级最大压碎指标(%)<20 <25 <30

氧化物(氯离子质量计%)<0.01 <0.02 <0.0

坚固性(按质量损失计%)<6 <8 <10

云母(按质量计%)<1.0 <2.0 <2.0

天然砂、机制砂含泥量(按质量计%)<1.0 <2.0 <3.0②

天然砂、机制砂泥块含量(按质量计%) 0 <1.0 <2.0

机制砂MB值<1.4或合格石粉含量②(按质量计%)<3.0 <5.0 <7.0

机制砂MB值<1.4或不合格石粉含量(按质量计%)<1.0 <3.0 <5.0

有机物含量(比色法)合格合格合格

硫化物及硫酸盐(按SO3质量计%)<0.5 <0.5 <0.5

轻物质(按质量计%)<1.0 <1.0 <1.0

机制砂母岩抗压强度火成岩不应小于100Mpa;变质岩不应小于80 Mpa;水成岩不应小于60 Mpa

表观密度>2500kg/m3

松散堆积密度>1350kg/m3

空隙率<47%

碱集料反应经碱集料反应试验后,试验无裂缝、酥裂、胶体外溢等现象,在规定试验龄期的膨胀率应小于0.10%

表3.4.2 细集料级配范围

砂分级方筛孔尺寸(mm)

0.15 0.30 0.60 1.18 2.36 4.75

累计筛余(以质量计)(%)

粗砂 90~100 80~95 71~85 35~65 5~35 0~10

中砂 90~100 70~92 41~70 10~50 0~25 0~10

细砂 90~100 55~85 16~40 0~25 0~15 0~10

二、混凝土配合比:

4.1.1普通混凝土配合比设计适用于滑模摊铺机、轨道摊铺机、石辊轴机组及小型机具四种施工方式。

4.12(2)应按式(4.1.2)计算配制28d弯拉强度的均值。

式中:fc —配制28天弯拉强度的均值(MPA);Fr —设计弯拉的强度标准值(MPA)

S —弯拉强度试验样本的标准差(MPA);t —保证率系数,按表4.1.2—1确定

表4.1.2—1 保证率系数

公路技术等级判别概率P 样本数N(组)

3 6 9 15 20

高速公路 0.05 1.36 0.79 0.61 0.45 0.39

一级公路 0.10 0.95 0.59 0.46 0.35 0.30

二级公路 0.15 0.72 0.46 0.37 0.28 0.24

三、四级公路 0.20 0.56 0.37 0.29 0.22 0.19

CV —弯拉强度变异系数,应按统计数据在表4.1.2—2的规定值范围内取值;在无统计数值时,弯拉强度变异系数应按设计取值;如果施工配制弯拉强度超出设计给定的弯拉强度变异系数上限,则必须改进机械设备和提高施工控制水平。

表4.1.2—2 各级公路混凝土路面弯拉强度变异系数

公路技术等级高速公路一级公路二级公路三、四级公路

混凝土弯拉强度变异系数水平等级低低中中高

弯拉强度变异系数CV允许变化范围 0.05~0.10 0.05~0.10 0.10~0.15 0.10~

0.15 0.15~0.20

2、工作性:

(1)滑模摊铺机前拌合物最佳工作性及允许范围应符合表4.1.2—3的规定。

混凝土路面滑模摊铺机最佳工作性及允许范围 4.1.2—3

指标

界限坍落度SL(mm)振动粘度系数η(ns/m2)

卵石混凝土碎石混凝土

最佳工作性 20~40 25~50 200~500

允许波动范围 5~55 10~65 100~600

注:(1)滑模摊铺机适宜的摊铺速度应控制在0.5~2.0m/min之间;

(2)本表适用于设超铺角的滑模摊铺机;对不设超铺角的滑模摊铺机,最佳振动粘度系数为25~600 ns/m2;最佳坍落度卵石为10~40mm;碎石为10~50mm。

(3)滑模摊铺机的最大单位用水量卵石混凝土不宜大于155kg/m3;碎石混凝土不宜大于160kg/m3。

(2)轨道摊铺机、三辊轴机组、小型机具摊铺的路面混凝土坍落度及最大单位用水量,应满足表4.1.2—4的规定。

表4.1.2—4 不同路面施工方式混凝土坍落度及最大单位用水量

摊铺方式轨道摊铺机摊铺三辊轴机组摊铺小型机具摊铺

出机坍落度(mm) 40~60 30~50 10~40

摊铺坍落度(mm) 20~40 10~30 0~20

最大单位用水量

(kg/m3)碎石卵石碎石卵石碎石卵石

156 153 153 148 150 145

注:(1)表中的最大单位用水量系采用中砂、粗集料为风干状态的取值,采用细砂时,应使用减水率较大的(高效)减水剂。

(2)使用碎卵石时,最大单位用水量可取中值。

3耐久性

(2)各交通等级路面混凝土满足耐久性要求的最大水灰(胶)比和最小单位水泥用量应符合表4.1.2—6的规定。最大单位水泥用量不宜大于400kg/m3;掺粉煤灰时,最大单位胶村总量不宜大于420kg/m3。

表4.1.2—6 混凝土满足耐久性要求的最大水灰(胶)比和最小单位水泥用量

公路技术等级高速公路、

一级公路二级公路三、四级公路

最大水灰(胶)比 0.44 0.46 0.48

抗冰冻要求最大水灰(胶)比 0.42 0.44 0.46

抗盐冻要求最大水灰(胶)比 0.40 0.42 0.44

最小单位水泥用量

(g/m3) 42.5级 300 300 300

32.5级 310 310 310

抗冰(盐)冻时最小单位水泥用量(g/m3) 42.5级 320 320 320

32.5级 330 330 330

掺粉煤灰时最小单位水泥用量(g/m3) 42.5级 260 260 255

32.5级 280 270 265

抗冰(盐)冻掺粉煤灰时最小单位水泥用量

(42.5级水泥)(g/m3) 280 270 265

注:(1)掺粉煤灰,并有抗冰(盐)冻性要求时,不得使用32.5级水泥;

(2)水灰(胶)比计算砂石料的自然风干状态计(砂含水量≤1.0%,石子含水量≤0.5%);

(3)处在除冰盐、海风、酸雨或硫酸盐等腐蚀性环境中,或在大纵坡等加减速车道上的混凝土,最大水灰(胶)比可比表中数值降低0.01~0.02。

(4)在海风、酸雨或硫酸盐等腐蚀性环境影响范围内的混凝土路面和桥面,在使用硅酸盐水泥时,应参加粉煤灰、磨细矿渣或硅灰掺合料,不宜单独使用硅酸盐水泥,可使用矿渣或普通水泥。

4.1.3外加剂的使用应符合下列要求:

1、高温施工时,混凝土拌合物的初凝时间不得大于3H,否则应采取缓凝或保塑措施;低温施工时,终凝时间不得大于10H,否则应采取必要的促凝或早强措施。

2、外加剂的掺量应由试配试验确定。引气剂的适宜掺量可由搅拌机口的拌合物含气量进行控制。实际路面和桥面引气混凝土的抗冰冻、抗盐冻耐久性,宜采用本规范附录F.1、F2规定的钻芯法测定,测定位置:路面为表面和表面下50MM;桥面为表面和表面下30MM;测得的两个表面的最大平均气泡间距系数不宜超过表4.1.3的规定。

4.1.4配合比参数的计算应符合下列要求:

(1)根据粗集料的类型,水灰比可分别按下列统计公式计算:

碎石或碎卵石混凝土:

(4.1.4.1)卵石混凝土:

(4.0.4.2)

式中:W/C—水灰比;

Fc—水泥实测28d抗折强度(Mpa)

(2)掺用粉煤灰时,应计入超量取代法中代替水泥的那一部分粉煤灰用量(代替砂的超量部分不计入),用水胶比W/C+F代替水灰比W/C。

(3)应在满足弯拉强度计算值和耐久性(表4.1.1—6)两者要求的水灰(胶)比中取小值。

2 、砂率应根据砂的细度模数和粗集料种类,查表4.1.4取值。在软做抗滑槽时,砂率在表4.1.4基础上可增大1%~2%。

表4.1.4 砂细度模数最优砂率关系

砂细度模数 2.2~2.5 2.5~2.8 2.8~3.1 3.1~3.4 3.4~3.7

砂率Sp(%)碎石 30~34 32~36 34~38 36~40 37~42

卵石 28~32 30~34 32~36 34~38 36~40注:碎卵石可在碎石和卵石混凝土之间内插取值。

3、根据粗集料种类和表4.1.2—3、4.1.2—4中适宜的坍落度,分别按下列经验式计算单位用水量(砂石料以自然风干状态计):

碎石:WO=104.97+0.309SL+11.27C/W+0.61SP (4.1.4—3)

卵石:WO=86.89+0.370SL+11.24C/W+1.00SP (4.1.4—4)式中:

WO—不掺外加剂与掺合料混凝土的单位用水量(g/m3); SL—坍落度(MM);

SP—砂率(%); C/W—灰水比,水灰比之倒数。掺外加剂的混凝土单位用水量应按式(4.1.4—5)计算: Wow=Wo(1—β/100)式中:

Wow—掺外加剂的混凝土单位用水量;β—所用外加剂剂量的单位用水量。

单位用水量应取计算值和表4.1.2—3、4.1.2—4的规定值两者中的小值。若实际单位用水量仅掺引气剂不满足所取数值,则应掺用引气(高效)减水剂,三、四级公路也可采用真

空脱水工艺。

4、单位水泥用量应由式(4.1.4—6)计算,并取计算值与表4.1.2—6规定值两者中的大值。 Co=(C/W)Wo 式中:Co—单位水泥用量。

5、砂石料用量可按密度法或体积法计算。按密度法计算时,混凝土单位质量可取2400~2450KG/M 3;按体积法计算时,应计入设计含气量。采用超量取代法掺用粉煤灰时,超量部分应代替砂,并折减用砂量。经计算得到的配合比,应验算单位粗集料填充体积率,且不宜小于70%。

6、重要路面、桥面工程应采用正交试验法进行配合比优选。

4.1.5 采用真空脱水工艺时,可采用比经验式(4.1.4—3、4.1.4—4)计算值略大的单位用水量,但在真空脱水后,扣除每立方米混凝土实际吸除的水量,剩余单位用水量和剩余水灰(胶)比分别不宜超过表4.1.2—4最大单位用水量和表4.1.2—6最大水灰(胶)比的规定。真空脱水混凝土抗压强度试件成型方法可参考附录E.1。

4.1.6 路面混凝土掺用粉煤灰时,其配合比计算应按超量取代法进行,粉煤灰掺量应根据水泥中原有的掺合料数量和混凝土弯拉强度、耐磨性等要求由试验确定。Ⅰ、Ⅱ级粉煤灰的超量系数可按表4.1.6初选。代替水泥的粉煤灰掺量:Ⅰ型硅酸盐水泥宜≤30%;Ⅱ型硅酸盐水泥宜≤25%;普通水泥宜15%;矿渣水泥不得掺粉煤灰。

表4.1.6 各级粉煤灰的超量取代系数

粉煤灰等级ⅠⅡⅢ

超量取代系数K 1.1~1.4 1.3~1.7 1.5~2.0

摘自JTG F30—2003 《公路水泥混凝土路面施工技术规范》P6~P22

六、4.2 钢纤维混凝土配合比设计

4.2.1 本配合比设计适用于采用滑模摊铺机、轨道摊铺机、三辊轴机组及小型机具铺筑的钢纤维混凝土路面。

4.2.2 钢纤维混凝土的配合比设计在兼顾经济性的同时应满足下列三项技术要求:

1 弯拉强度

(1)钢纤维混凝土路面28d设计弯拉强度标准值frf应符合设计规范的规定。

(2)钢纤维混凝土配制28d弯拉强度的均值应按式(4.1.2)计算,以fcf和frf代fc和fr0。

2 工作性

(1)钢纤维混凝土的坍落度可比表4.1.2—3的规定值小20mm。

(2)钢纤维混凝土掺高效减水剂的单位用水量可按表4.2.2—1初选,再由拌合物实测坍落度确定。表4.2.2—1 钢纤维混凝土单位用水量选用表

拌合物条件粗集料种类粗集料最大公称粒径Dm(mm)单位用水量(kg/m3)

长径比LF/DF=50

PF=0.6%

坍落度20MM

中砂,细度模数2.5

水灰比0.42~0.50 碎石 9.5、16.0 215

19.0、26.5 200

卵石 9.5、16.0 208

19.0、26.5 190

注:(1)钢纤维长径比每增减10,单位用水量相应增减10 kg/m3;

(2)钢纤维体积率每增减0.5%,单位用水量相应增减8kg/m3;

(3)坍落度为10~50MM变化范围内,相对于坍落度20MM每增减10MM,单位用水量相应增减7

kg/m3;

(4)细度模数在2.0~3.5范围内,砂的细度模数每增减0.1,单位用水量相应增减1kg/m3。

3 耐久性

(1)钢纤维混凝土满足耐久性要求最大水灰(胶)比和最小水泥用量应符合表4.2.2—2的规定。

(2)钢纤维混凝土严禁采用海水、海砂,不得掺用氯盐及氯盐类早强剂、防冻剂等外加剂。

(3)处在海风、酸雨、硅酸盐及除冰盐等环境中的钢纤维混凝土路面宜掺用表3.2.1中Ⅰ、Ⅱ级粉煤灰,桥面宜掺用硅灰与S95级和S105级磨细矿渣。

表4.2.2—2 钢纤维混凝土满足耐久性要求最大水灰(胶)比和最小水泥用量

公路等级一级公路二级公路三、四级公路

最大水灰(胶)比 0.47 0.49 0.50

抗冰冻要求最大水灰(胶)比 0.45 0.46 0.48

抗盐冻最大水灰(胶)比 0.42 0.43 0.46

最小单位水泥用量

(kg/m3) 42.5级 360 360 350

32.5级 370 370 365

抗冰(盐)冻要求最小单位

水泥用量(kg/m3) 42.5级 380 380 375

32.5级 390 390 385

掺粉煤灰时要求最小单位

水泥用量(kg/m3) 42.5级 320 320 315

32.5级 340 340 335

抗冰(盐)冻掺粉煤灰最小单位

水泥用量(kg/m3) 330 330 325

4.2.3 钢纤维混凝土配合比设计应按以正步骤进行:

1 计算和确定配合比

(1)以钢纤维混凝土配制28D弯拉强度以Fcf替换fc,按式(4.1.4—1)或(4.1.4—2)计算出基准混凝土的配合比。

(2)取钢纤维混凝土基准的水灰比计算值与表4.2.2—2规定值两者中的小值。

2 钢纤维掺量体积率宜在0.60%~1.0%范围内初选,当板厚折减系数小时,体积率宜取上限;当长径比大时,宜取较小值;有锚固端者宜取较小值。

3 查表4.2.2—1,初选单位用水量Wof。

4 掺用粉煤灰时应符合4.1.6条的规定。

5 钢纤维混凝土的单位水泥用量应按式(4.2.3—1)计算。

Cof=(C/W)Wof (4.2.3—1)

式中:

Cof —钢纤维混凝土的单位水泥用量;

Wof—钢纤维混凝土的单位用水量。

取计算值与表4.2.2—2规定值两者中的大值。但不宜大于500kg/m3。

6 砂率可按式(4.2.3—2)计算,也可按表4.2.3—1初选。钢纤维混凝土砂率宜在38%~50%之间。

Spf=Sp+10Pf

式中:

Spf—钢纤维混凝土砂率(%);

Pf—钢纤维掺量体积率(%)。

表4.2.3—1 钢纤维混凝土砂率选用值(%)

拌合物条件最大公称粒径19mm碎石最大公称粒径19mm卵石

lf/df=50;pf=1.0%;

w/c=0.5;细度模数mx=3.0 45 40lf/df增减10 pf增减0.10% W/C增减0.1

细度模数mx增减0.1 ±5 ±2 ±2±1 ±3 ±2 ±2 ±1

7、灰石料用量可采用密度法或体积法计算。按密度法计算时,钢纤维混凝土单位质量可取2450~2 580KG/M3;按体积法计算时,应计入设计含气量。

8、重要路面、桥面工程应采用正交试验法进行钢纤维混凝土配合比优选。

摘自JTG F30—2003 《公路水泥混凝土路面施工技术规范》P22~P25

七、4.3 碾压混凝土配合比设计

4.3.1 碾压混凝土的配合比设计在兼顾经济性的同时应满足下列三项技术要求:

1 弯拉强度

(1)碾压混凝土设计弯拉强度fr应符合表4.1.2—1的规定。

(2)碾压混凝土配制28d弯拉强度的均值fCC可按式(4.3.1—1)计算。

(4.3.1—1)

式中:

Fcc—碾压混凝土配制28d弯拉强度的均值(MPA);

fcr—碾压混凝土压实安全弯拉强度,可按式(4.3.1—2)计算。

fcr=a/2(yc1+yc2)(4.3.1—2)

式中:

yc1—弯拉强度试件标准压实度(95%);

yc2 —路面芯样压实度下限值(由芯样压实度统计得出);

a—相应于压实度变化1%的弯拉强度波动值(通过试验得出)。

2 工作性

碾压混凝土出搅拌机口的改进VC值宜为5~10s;碾压时改进vc值宜控制在(30±5)s。试验中的试样表面出浆评分应为4~5分。

3 耐久性

(1)处于严寒和寒冷地区的碾压混凝土面层或基层,应掺引气剂,其含气量宜符合表4.1.2—5的规定。

(2)面层碾压混凝土满足耐久性要求的最大水灰(胶)比和最小单位用水量应符合表4.3.1——1的规定。

表4.3.1——1 面层碾压混凝土满足耐久性要求的最大水灰(胶)比和最小单位用水量

公路等级二级公路三、四级公路

最大水灰(胶)比 0.40 0.42 抗冰冻要求最大水灰(胶)比 0.38 0.40

抗盐冻最大水灰(胶)比 0.36 0.38 最小单位水泥用量(kg/m3) 42.5级 290 280

32.5级 305 300 抗冰(盐)冻要求最小单位水泥用量(kg/m3) 42.5级 315 310

32.5级 325 320 掺粉煤灰时要求最小单位水泥用量(kg/m3) 42.5级 255 250

32.5级 265 260 抗冰(盐)冻掺粉煤灰最小单位水泥用量(kg/m3) 260 265

4.3.2 面层碾压混凝土粗、细集料合成级配宜符合表4.3.2的要求,基层应符合《公路路面基层施工技术规范(JTJ034)水泥稳定粒料的级配规定。

表4.3.2 面层碾压混凝土粗细集料合成级配范围

筛孔尺寸(mm) 19.0 9.50 4.75 2.36 1.18 0.60 0.30 0.15

通过百分率(%) 90~100 50~70 35~47 25~38 18~30 10~23 5~15 3~10

4.3.3 碾压混凝土中所掺外加剂的使用要求应符合3.2.1条的规定。代替水泥的粉煤灰掺量应符合

4.1.6条的规定。粉煤灰超量取代系数K:Ⅰ级可取1.4~1.8;Ⅱ级灰可取1.6~2.0;Ⅲ级灰可取1.6~2.0;碾压混凝土基层和复合式路面下面层用Ⅲ级灰宜取1.8~2.2。

4.3.4 碾压混凝土中外加剂的使用要求除满足4.1.3条的规定外,应预先通过碾压混凝土性能试验优选品种和掺量,确认满足各项性能要求后方可使用。

4.3.5 重要工程碾压混凝土的配合比确定应使用正交试验法,一般工程可采用简捷法。

1 正交试验法

(1)不掺粉煤灰的碾压混凝土正交试验可选用水量、水泥用量、粗集料填充体积率3个因(参)素;掺粉煤灰的碾压混凝土可选用水量、基准胶材总量、粉煤灰掺量、粗集料填充体积率4个因(参)素。每个因素选定三个水平,选用L9(34)正交表安排试验方案。

(2)对正交试验结果进行直观及回归分析,回归分析的考察指标:VC值及抗离析性、弯拉强度或抗压强度、抗冻性或耐磨性。根据直观分析结果并依据所建立的单位用水量及弯拉强度推定经验公式,综合考虑拌合物工作性,确定满足28D弯拉强度或抗压强度、抗冻性或耐磨性等设计要求的正交初步配合比。

2 简捷法

(1)不掺粉煤灰的碾压混凝土配合比计算宜按下述步骤进行:

①按式(4.3.5—1)计算单位用水量。

Woc=137.7—20.55lg VC (4.3.5—1)式中:

Woc—碾压混凝土的单位用水量(kg/m3);

VC—碾压混凝土拌合物改进VC值(S)。

②按式(4.3.5—2)计算灰水比,并取计算值与表4.3.1—1规定值两者中的大值。

(4.3.5—2)

③按式(4.3.5—3)计算单位水泥用量,并取计算值与表4.3.1—1规定值两者中的大值。

Coc = Wcv X c/w (4.3.5—3)

④按表4.3.5选定粗集料填充体积率。

表4.3.5 粗集料填充体积率表

砂细度模数Mx 2.40 2.60 2.80 3.00

粗集料填充体积率Vg(%) 75 73 71 69

⑤按式(4.3.5—4)计算粗集料用量。

式中:

Goc—碾压混凝土粗集料单位体积(kg/m3);

λcc—碾压混凝土单位质量(kg/m3);

Vg—粗集料填充体积率(%)。

⑥根据Goc、Coc、Woc及相应原材料密度,按体积法计算用砂量SOC,计算时应计入外加剂设计含气量。

⑦按式(4.3.5—5)计算单位外加剂用量(kg/m3)。

Yoc=y X Coc (4.3.5—5)

式中:

Yoc—碾压混凝土中单位外加剂用量(kg/m3);

Y —外加剂掺量。

(2)掺粉煤灰的碾压混凝土配合比计算宜按下述步骤计算:

①按表4.3.5选定粗集料填充体积率Vg,由式(4.3.5—4)计算单位体积粗集料用量Goc。

②按4.3.3条初选粉煤灰超量取代系数K,并按经验或正交试验分析结果选定代替水泥的粉煤灰掺量Fco。

③按式(4.3.5—6)计算单位用水量。

Wofc= 135.5 — 21.1 lg Vc +0.32 Fc (4.3.5—6)

式中:

Wofc—掺粉煤灰的碾压混凝土单位用水量(kg/m3);

Fc—代替水泥的粉煤灰掺量(%)。

④按式(4.3.5—7)计算基准胶材总量。

J=200(Fcc—7.22+0.025Fc+0.023Vg)(4.3.5—7)

式中:

J—碾压混凝土单位体积基准胶材总量(kg/m3)。

⑤按式(4.3.5—8)计算单位水泥用量,并应取计算值与表4.3.1—1的规定值两者中大值。

Cofc=J(1—Fc/100)(4.3.5—8)

⑥按式(4.3.5—9)计算单位粉煤灰总用量。

Fcc=Cofc X Fc X k (4.3.5—9)

式中:

Cofc —掺粉煤灰的碾压混凝土单位水泥用量(kg/m3);

Fc—单位粉煤灰总重量(kg/m3);

k—粉煤灰超量取代系数。

⑦按式(4.3.5—10)计算总水胶比,并应取计算值与表4.3.1—1的规定值两者中小值。

Jz=Wofc/(Cofc+Fcc)(4.3.5—10)

式中:

Jz—碾压混凝土总水胶比。

⑧根据Goc、Cofc、Fcc、Wofc及相应原材料密度,按体积法计算单位用砂量Soc,计算时应计入设计含气量。

⑨按式(4.3.5—11)计算单位外加剂用量。

Yofc=yf(Cofc+Foo)(4.3.5—11)

式中:

Yofc—掺粉煤灰的碾压混凝土单位外加剂用量(kg/m3);

yf—掺粉煤灰的碾压混凝土外加剂掺量。

摘自JTG F30—2003 《公路水泥混凝土路面施工技术规范》P25~P30

八、4.4 贫混凝土配合比设计

4.4.1 基层贫混凝土配合比设计应符合下列三项技术要求:

1 强度

基层贫混凝土设计强度应符合表4.1.1—1的规定。

4.1.1—1 贫混凝土基层设计强度标准值(Mpa)

交通等级特重重中等

7d施工质检抗压强度Fcu7 10.0 7.0 5.0

28d设计抗压强度标准值Fcu,k 15.0 10.0 7.0

28d设计弯拉强度标准值Fc,k 3.0 2.0 1.5

2 工作性

贫混凝土的坍落度应满足表4.1.2—3或表4.1.2—4的要求。基层贫混凝土应掺粉煤灰,粉煤灰的品质、掺量和超量取代系数应符合4.3.3条的规定。

3 耐久性

(1)满足耐久性要求的贫混凝土最大水灰(胶)比宜符合表4.4.1—2的规定。

表4.4.1—2 满足耐久性要求的贫混凝土最大水灰(胶)比

交通等级特重重中等

最大水灰(胶)比 0.65 0.68 0.70

有抗冻要求的最大水灰(胶)比 0.60 0.63 0.65

(2)在基层受冻地区,贫混凝土中应掺引气剂,并控制贫混凝土含气量为4%±1%。当水灰(胶)比不能满足抗冻耐久性要求时,宜使用引气减水剂。当高温摊铺坍落度损失较大时,可使用引气缓凝减水剂。

4.4.2 贫混凝土配合比可按下述步骤进行计算:

1 配制28D抗压强度Fcu,o可按式(4.4.2—1)计算。

Fcu,o=Fcu,k+Tj Sj (4.4.2—1)

式中:

Fcu,o—贫混凝土配制28d抗压强度(Mpa);

Fcu,k—混凝土28d设计抗压强度标准值(Mpa);

Tj—抗压强度保证率系数。高速公路应取1.645;一级公路应取1.28;二级公路应取1.04;

Sj—抗压强度标准差,宜按不小于6组统计资料取值;无统计资料或试件组小于6组时,可取1. 5(Mpa)。

2 水灰比应按式(4.4.2—2)计算,并取计算值与表4.4.1—2规定值两者中的小值。

(4.4.2—2)

式中:

Fce—水泥实测28d抗压强度(Mpa);无实测值时,也可按式(4.4.2—3)计算;

A、B—回归系数,碎石及碎(卵)石A=0.46,B=0.07;卵石A=0.48,B=0.33

Fce =λ*Fcek (4.4.2—3)

式中:

Fcek—水泥抗压强度等级(Mpa);

λ—水泥抗压强度富余系数,应按统计资料取值;无统计资料时可在1.08~1.13范围内取值。

3 贫混凝土的单位用水量可按式(4.4.2—4)计算。

Cp=0.5ζCo (4.4.2—4)

式中:

Cp—贫混凝土的单位用水量(kg/m3);

ζ—工作性及平整度放大系数,可取1.1~1.3;

Co—路面混凝土单位用水泥用量(kg/m3)。

4 掺用粉煤灰时,单位胶材总量可按式(4.4.2—5)计算。

Jz=0.5Co(1+Fpk)(4.4.2—5)

式中:

Jz—单位胶材总量(kg/m3);

Co—代替水泥的粉煤灰掺量,可取0.15~0.30;

Fpk—粉煤灰超量取代系数,可按4.3.3条取值。

5 不掺粉煤灰贫混凝土的单位水泥用量宜控制在160~230kg/m3之间;在基层受冻地区最小单位水泥用量不宜低于180kg/m3;掺粉煤灰时,单位水泥用量宜在130~175kg/m3之间;单位胶材总量宜在220~270kg/m3之间;受冻地区最小单位水泥用量不宜低于150kg/m3。

6 根据水灰(胶)比和单位水泥(胶材)用量,计算单位用水量。

7 砂率可按表4.4.2初选。

表4.4.2 基层贫混凝土的砂率

砂细度模数 2.2~2.5 2.5~2.8 2.8~3.1 3.1~3.4 3.4~3.7

砂率Sp(%)碎石混凝土 24~28 26~30 28~32 30~34 32~36

卵石混凝土 22~26 24~28 26~30 28~32 30~34

注:碎卵石可在碎石和卵石之间内插取值。

8 砂、石料用量可用密度法或体积法计算。在采用体积法时,应计入含气量。

摘自JTG F30—2003 《公路水泥混凝土路面施工技术规范》P30~P32

4.5 配合比确定与调整

4.5.1 由上述各经验公式推算得出的混凝土、钢纤维混凝土、碾压混凝土和贫混凝土配合比,应在试验室内按下述步骤和《公路工程水泥混凝土试验规程》(JTJ053)规定方法进行试配检验和调整。

1 首先检验各种混凝土拌合物是否满足不同摊铺方式的最佳工作性要求。检验项目包括含气量、坍落度及其损失、振动粘度系数、改进VC值、外加剂品种及最佳掺量。在工作性和含气量不满足相应摊铺方式要求时,可在保持水灰(胶)比不变的前提下调整单位用水量、外加剂掺量或砂率,不得减少满足计算弯拉强度及耐久性要求的单位水泥用量、钢纤维体积率。

2 对于采用密度法计算的配合比,应实测拌合物视密度,并应按视密度调整配合比,调整时水灰比不得增大,单位水泥用量、钢纤维掺量不得减小,调整兵的拌合物视密度允许偏差为±0.2%。实测拌合物含气量A(%)及其偏差应满足表4.1.2—5的规定,不满足要求时,应调整引气剂掺量直至规定含气量。

3 以初选水灰(胶)比为中心,按0.02增减幅度选定2~4个水灰(胶)比,制作试件,检验各种混凝土7d和28d配制弯拉强度、抗压强度、耐久性等指标(有抗冻性要求的地区,抗冻性为必测项目,耐磨性及干缩为选测项目)。也可保持计算水灰(胶)比不变,以初选单位水泥用量为中心,按15~20kg/m3增减幅度选定2~4个单位水泥用量;钢纤维混凝土还应以选定的钢纤维掺量为中心,按0.1%增减幅度选定2~4个钢纤维掺量,制作试件并做上述各项检验。

4 施工单位通过上述各项指标检验提出的配合比,在经监理或建设方中心实验室验证合格后,方可确定为实验室基准配合比。

4.5.2 实验室的基准配合比应通过搅拌楼实际拌和检验和不少于200M试验路段的验证,并应根据料场砂石料含水率、拌合物实测视密度、含气量、坍落度及其损失、调整单位用水量、砂率或外加剂掺量。调整时,水灰(胶)比、单位水泥用量、钢纤维掺量不得减小。考虑施工中原材料含泥量、泥块含量、含水量变化和施工变异性等因素,单位水泥用量应适当增加5~10 kg。满足试拌试铺的工作性,28d(至少7d)配制弯拉强度、抗压强度和耐久性要求的配合比,在经监理或建设方批准后方可确定为施工配合比。

4.5.3 施工期间配合比的微调与控制应符合下列要求:

1 根据施工季节、气温和运距等的变化,可微调缓凝(高效)减水剂、引气剂或保塑剂的掺量,保持摊铺现场的坍落度始终适宜于铺筑,且波动最小。

2 降雨后,应根据每天不同的气温及砂石料实际含水量变化,微调加水量,同时微调砂石料称量,其它配合比参数不得变更,维持施工配合比基本不变。雨天或砂石料变化时应加强控制,保持现场掺合料工作性始终适宜摊铺和稳定。

《混凝土结构设计规范》GB50010-2002

《混凝土结构设计规范》 GB50010-2002 3 基本设计和规定 1.1.8 未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.2..1 根据建筑结构破坏后果的严重程度,建筑结构划分为 三个安全等级 。设计 时应根据具体情况,按照表 3.2.1 的规定选用相应的安全等级。 表 3.2.1 建筑结构的安全等级 安全等级 破坏后果 建筑物类型 一级 很严重 重要的建筑物 二级 严重 一般的建筑物 三级 不严重 次要的建筑物 注:对有特殊要求的建筑,其安全等级应根据具体情况另行确定。 1.1.3 混凝土轴心抗压、轴心抗拉强度标准值? ck 、?tk 应按表 4.1.3 采用。 表 4.1.3 混凝土强度标准值( N/mm 2 ) 强 混凝土强度等级 度 种 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 类 ? 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 ck ? 1.27 1.54 1.78 2.01 2.20 2.39 2.51 2.64 2.74 2.85 2.93 2.99 3.05 3.11 tk 、?应按表 4.1.4 1.1.4 混凝土轴心抗压、轴心抗拉强度设计值? c 采用。 t 表 4.1.4 混凝土强度设计值( N/mm 2 ) 强 混凝土强度等级 度 种 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 类 ?c 7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9 ? 0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.22 t 注: 1.计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的长边或直径小于 300mm ,则表中混凝土 的强度设计值应乘以系数 0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不 受此限制; 2.离心混凝土的强度设计值应按专门标准取用。 1.2.2 钢筋的强度标准值应具有不小于 95%的保证率。热轧钢筋的强度标准值系 根据屈服强度确定,用? yk 表示。预应力钢绞线、钢丝和热处理钢筋的强度标 准值系根据极限抗拉强度确定,用? ptk 表示。 普通钢筋的强度标准值应按表 4.2.2 -1 采用;预应力钢筋的强度标准值应按

公路水泥混凝土施工技术规范

公路水泥混凝土施工技术规范 1 适用范围 1.1 本标准适用于高速公路收费广场现场浇筑混凝土路面施工,其他公路、城市道路等可参照执行。 2 规范引用文件 2.1 《城镇道路工程施工与质量验收规范》(CJJ1-2008) 2.2 《混凝土结构工程施工工艺标准》 10.3 术语 3.1 水泥混凝土面层cement concrete surface course 用水泥混凝土铺筑的道路面层 3.2 主控项目dominant item 城镇道路工程中的对质量、安全、卫生、环境保护和公众利益起决定性作用的检验项目。 3.3 一般项目general item 除主控项目以外的检验项目。 3.4 抽样检验sampling inspection 按照规定的抽样方案,从进场的材料、构配件、设备或城镇道路工程检验项目中抽取一定数量的样本所进行的检验。 4 施工准备 Ⅰ技术准备 4.1 熟悉图纸 认真审核设计图纸和设计说明书,编制详细的施工方案。 4.2 技术交底 1 施工前,项目技术负责人对技术员、材料员、施工员进行详细交底,落实各环节应注意的

施工要点。 2 混凝土原材料已进行试验,并确定混凝土配合比。混凝土配合比满足混凝土的设计强度、耐磨、耐久和混凝土拌合物和易性的要求。 Ⅱ物资准备 4.3 水泥应符合下列规定 1 水泥宜采用硅酸盐水泥或普通硅酸盐水泥,水泥强度等级不应低于32.5MPa。 2 水泥进场应有产品合格证和出场检验报告,进场后应对强度、安定性及其他必要的性能指标进行取样复试。其质量必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175等的规定。 3 不同等级、厂牌、品种、出厂日期的水泥不得混存、混用。出厂期超过三个月或受潮的水泥,必须经过试验,按其实验结果决定正常使用或降级使用。已经结块变质的水泥不得使用。不同品种的水泥不得混合使用。 4.4 粗集料应符合下列规定: 1 粗集料应使用质地坚硬、耐久、洁净的碎石、碎卵石和卵石。卵石最大公称粒径不宜大于19.0mm,碎卵石最大公称粒径不宜大于26.5mm,碎石最大公称粒径不应大于31.5mm。 2 粗集料的含泥量小于1.5%,泥块含量小于0.5%。进场后应取样复试,其质量应符合国家现行标准的有关规定。 4.5 细集料应符合下列规定: 1 应采用质地坚硬、耐久、洁净的天然砂、机制砂或混合砂。 2 砂宜采用符合规定级配、细度模数在2.0~3.5之间的粗、中砂,不宜使用细砂。 3 含泥量小于3%,泥块含量小于2%,进场应取样复试,其质量应符合国家现行标准的规定。 4.6 外加剂应符合下列规定: 1 外加剂的质量和应用技术应符合现行国家标准《混凝土外加剂》GB 8076和《混凝土外加剂应用技术规定》GB 50119的有关规定。 2 外加剂应有产品说明书、出厂检验报告及合格证性能检测报告,进场后应取样复试,并应检查外加剂与水泥的适应性。有害物含量检测报告应由相应资质检测部门出具。 4.7 粉煤灰及其他掺合料:粉煤灰宜采用散装灰,质量应符合一、二级标准。也可使用硅灰

混凝土配合比设计——试算法

混凝土配合比设计的试算法 傅坚明戚勇军贾丽杰 [摘要]根据“每种骨料均有在某个粒径围颗粒含量较多,能在混合料中起决定性作用”的原理,应用富勒理想级配曲线公式方法来确定混凝土“相对密实而易于流动的悬浮密实结构骨料组合比例”,从而确立可操作性强、工作量小、对经验依赖性小的混凝土配合比设计方法——试算法 关键词混凝土配合比富勒级配试算法 引言 迄今为止,混凝土仍然是最有效和最适合于大宗使用的结构材料,同其他用于结构的建筑材料相比,混凝土最廉价、生产工艺最简单,具有不可替代的优势。但同时因为混凝土组成材料多样化,其原材料具有很强的地方性,现代建筑工程对混凝土性能的要求越来越多和越来越高,以及混凝土微结构对环境和时间的依赖性和不确知性,注定了混凝土材料结构体系的复杂性。因此对其配合比的设计极为关键。目前,国外有很多关于配合比设计可行方法的报道,如简易计算法、最大密实度法、最小浆骨比法、计算机法、正填法、逆填法、分步优化法、全计算法等,但都需要对其重要参数“用水量与砂率”根据经验进行假设,然后再进行试配验证。 无论哪种混凝土配合比的设计方法,从本质上来说都是建立一组独立方程式对所需要的未知数求解。但传统的混凝土是由水泥、骨料和水组成的,要求解的未知数为水泥用量、水用量、砂用量、石用量,当代混凝土由于普遍掺入矿物掺和料和高效减水剂,配合比中需要求出的未知数由传统的4个变成5个甚至6个(采用三元复合胶凝材已经是非常普遍的事情)。而所能够建立的独立方程式的数量却还是只有bolomy公式、砂率、全部体积之和等于1立方米这两个半,因为砂率是要从经验数据表格中选取的,充其量算半个(全计算法因创立了干砂浆的概念,增加一个独立方程,但仍少于未知数的量)。如果方程式数量少于未知数的量,从数学求解的结果只能够是无穷多。目前,常见的设计方法是依赖选择几个经验数据的方法来弥补。但是依赖的经验数据多了,就造成工作量巨大、对经验依赖性高、实际结果与设计目标偏差大的问题。 当绞尽脑汁仍然无法建立更多的独立方程式时,是否可以改变思路,采用分步解决、减少未知数数量的方法来解决或者改善呢?根据我们十余年的使用效果来看,是完全可行的。 1 参数的确定 待求参数:用水量、胶凝材用量、骨料用量

C25喷射混凝土配合比设计计算书

设计说明 1、试验目的: 云南省都香高速公路守望至红山段A7合同段C25喷射混凝土配合比设计,主要使用于洞口坡面防护、喷锚支护等。 2、试验依据: 1、《公路工程水泥及水泥混凝土试验规程》(JTG E30-2005) 2、《普通混凝土配合比设计规程》(JGJ 55—2011) 3、《公路工程集料试验规程》(JTG E42-2005) 4、《普通混凝土力学性能试验方法标准》(GB/T 50081-2002) 5、《普通混凝土拌和物性能试验方法标准》(GB/T 50080-2002) 6、《公路隧道施工技术细则》(JTG/T F60-2009) 7、《公路隧道施工技术规范》(JTG F60-2009) 8、《公路桥涵施工技术规范》(JTG/T F50-2011) 试验的原材料: 1、水泥:采用华新水泥(昭通)有限公司生产的堡垒牌普通硅酸盐水泥。 2、粗集料:粗集料采用昭通市鲁甸县水磨镇圣源石材场生产的5mm-10mm 的连续级配碎石; 3、细集料采用昭通市鲁甸县水磨镇圣元砂石料场生产的II类机制砂。 4、外加剂:采用北京路智恒信科技有限公司聚羧酸LZ-Y1型,掺量采用%。 5、速凝剂:采用北京路智恒信科技有限公司LZ-AP2液体无碱速凝剂掺量采 用% 6、水:昭通市鲁甸县都香A7标地下水。 C25喷射混凝土配合比设计计算书 1.确定混凝土配制强度(f cu,o)

在已知混凝土设计强度(f cu,k)和混凝土强度标准差(σ)时,则可由下式计算求得混凝土的配制强度(f cu,o),即 f cu,o= f cu,k+σ 根据《普通混凝土配合比设计规程》(JGJ55-2011)的规定,σ=5 f cu,o= f cu,k+σ =25+×5 = 2-2、计算混凝土水胶比 已知混凝土配置强度f cu,o=(Mpa),水泥实际强度f ce=(Mpa) 采用回归系数按《普通混凝土配合比设计规程》(JGJ55-2011)表得 a a=,a b= W/B=a a×f b÷(f cu,O+a a×a b×f b)=×÷+××= 注:f b=γf×γs×f ce= ××=(Mpa) 2-3、确定水胶比 混凝土所处潮湿环境,无冻害地区,根据图纸设计及《岩土锚杆与喷射混凝土支护工程技术规范》(GB 50086-2015)的规定,允许最大水胶比为,计算水胶比为,不符合耐久性要求,采用经验水胶比 3、确定用水量(W0),掺量采用%,减水率为:20% 代入公式计算m wo=m′wo×(1-)=246×(1-20%)=197( kg/m3) 4.计算水泥用量(C0) C O=W O/W/C=197/=470kg/m3 5.确定砂率(S p) 根据《岩土锚杆与喷射混凝土支护工程技术规范》(GB 50086-2015)的规定,砂率选用50%,符合规范中混凝土骨料通过各筛经的累计质量百分率要求。 6.计算砂、石用量(S0、G0) 用容重法计算,根据《岩土锚杆与喷射混凝土支护工程技术规范》(GB 50086 -2015)的规定,喷射混凝土的体积密度可取2200~2300 kg/m3,取容重为2300 kg/m3已知:水泥用量C O=470 kg/m3,水用量W0=197 kg/m3

混凝土施工技术标准

混凝土施工技术标准 1.编制目的 本标准文件的编制目的是为了满足结构安全性和耐久性,规范混凝土工程施工技术标准,特制定本技术标准作为现场施工作业文件。 2.适用范围 适用于武汉光谷联合股份有限公司及其关联公司在建的所有项目。 3.混凝土工程施工管理标准 本标准为现场施工必须执行的文本(与设计或其它文件有冲突时,按本文件执行),投标人投标时必须认真考虑,竣工结算时一律不再增加任何费用。 混凝土工程实行原材料、产品全过程监控,验收流程中的所有工序必须有监理部和发包人工程师签字认可的验收合格文件,否则,视为不合格工程,不予以支付工程款,也不进入结算; 4.混凝土施工技术标准 4.1.施工准备 4.1.1.材料 光谷联合股份有限公司各项目混凝土材料一律采用商品混凝土。 4.1.2.对商品砼的质量检查要求 (1)泵送混凝土,每工作班供应超过100m3的工程,应派出质量检查员驻场。 (2)混凝土搅拌车出站前,每部车都必须经质量检查员检查,和易性合格才能签证放行。坍落度抽检每车一次,混凝土整车容重检查每一配合比每天不小于一次。 (3)现场取样时,应以搅拌车卸料1/4后至3/4前的混凝土为代表。混凝土取样、试件制作、养护,均由供需双方共同签证认可。 (4)搅拌车卸料前不得出现离析和初凝现象。 4.2.混凝土浇筑和捣实 4.2.1.混凝土浇筑原则 保证混凝土的均匀性和密实性,结构的整体性、尺寸准确和钢筋预埋件的位置正确,拆

模后混凝土表面要平整、密实。 4.2.2.混凝土浇筑应注意的问题 1) 防止离析:混凝土自高处倾落的自由高度不应超过2m,在钢筋混凝土柱和墙中自由倾落高度不宜超过3m,否则应设置串筒、溜槽、溜管或振动溜管等下料。 2) 正确留置施工缝:柱子施工缝应留在基础顶面、梁或吊车梁牛腿的下面、吊车梁的顶面、无梁楼盖柱帽的下面。和板连成整体的大断面梁(梁截面高大于等于1m),梁板分别浇筑时,施工缝应留在板底面以下20—30mm处,当板下有梁托时,施工缝留置在梁托下面。单向板施工缝应留在平行于板短边的任何位置。有主次梁的楼盖宜顺着次梁方向浇筑,施工缝应留在次梁跨度的中间1/3跨度范围内。楼梯施工缝应留在楼梯长度中间1/3长度范围内。墙施工缝可留在门洞口过梁跨中1/3范围内,也可留在纵横墙的交界处。双向受力的楼板、大体积混凝土结构、拱、薄壳、多层框架等及其他结构复杂的结构,应按设计要求留置施工缝。 施工缝用木板、钢丝网挡牢。施工缝处须待已浇混凝土的抗压强度不少于1.2Mpa时,才允许继续浇筑;在施工缝处继续浇筑混凝土前,混凝土施工缝表面应凿毛,清除水泥薄膜和松石子,并用水冲洗干净。排除积水后,先浇一层水泥浆或混凝土成分相同的水泥砂浆然后继续浇筑混凝土。 3)浇筑混凝土时应分段分层进行,每层浇筑高度应根据结构特点、钢筋疏密决定。一般分层高度为插入式振动器作用部分长度的1.25倍,最大不超过500mm。平板振动器的分层厚度为200mm。 4)使用插入式振动器应快插慢拨,插点要均匀排列,逐点移动,按顺序进行,不得遗漏,做到均匀振实。移动间距不大于振动棒作用半径的1.5倍(一般为300~400mm)。振捣上一层时应插入下层混凝土面50mm,以消除两层间的接缝。平板振动器的移动间距应能保证振动器的平板覆盖已振实部分边缘。 5)浇筑混凝土应连续进行。如必须间歇,时间应尽量缩短,并应在前层混凝土初凝之前,将次层混凝土浇筑完毕。间歇的最长时间应按所有水泥品种及混凝土初凝条件确定,一般超过2小时应按施工缝处理。 6)浇筑混凝土时应派专人经常观察模板钢筋、预留孔洞、预埋件、插筋等有无位移变形或堵塞情况,发现问题应立即浇灌并应在已浇筑的混凝土初凝前修整完毕。 4.2.3.混凝土浇筑与振捣方法 (1) 多层、高层钢筋混凝土框架结构的浇筑: 分层分段施工,合理划分施工段,考虑工序数量、技术要求、结构特点等,尽可能组织分层分段流水施工。 断面在400x400mm以内的柱子,浇筑时如果箍筋相交,应在柱子侧面开孔以斜溜槽分段

C30混凝土配比计算书

混凝土配合比试验计算单 第 1 页共 5 页 C30混凝土配合比计算书 一、设计依据 TB 10425-94 《铁路混凝土强度检验评定标准》 TB 10415-2003《铁路桥涵工程施工质量验收标准》 JGJ 55-2011《普通混凝土配合比设计规程》 TB 10005-2010《铁路混凝土结构耐久性设计规范》 TB 10424-2010《铁路混凝土工程施工质量验收标准》 GB/T 50080-2002《普通混凝土拌合物性能试验方法标准》 GB/T 50081-2002《普通混凝土力学性能试验方法标准》 GB/T 50082-2009《普通混凝土长期性能和耐久性能试验方法标准》设计图纸要求 二、技术条件及参数限值 设计使用年限:100年; 设计强度等级:C30; 要求坍落度:100~140mm; 胶凝材料最小用量340 kg/m3; 最大水胶比限值:0.50; 耐久性指标:56d电通量<1200C;

第 2 页共 5 页 三、原材料情况 1、水泥:徐州丰都物资贸易有限公司,P·O 42.5(试验报告附后) 2、粉煤灰:中铁十五局集团物资有限公司,F类Ⅱ级(试验报告附后) 3、砂子:(试验报告附后) 4、碎石: 5~31.5mm连续级配碎石,5~10mm由石场生产;10~20mm 由石场生产;16~31.5mm由石场生产;掺配比例5~10mm 为30%;10~20mm 为50%;10~31.5mm为20%(试验报告附后) 5、外加剂:山西桑穆斯建材化工有限公司,聚羧酸高性能减水剂(试验报告附后) 6、水:混凝土拌和用水(饮用水)(试验报告附后) 四、设计步骤 (1)确定配制强度 根据《普通混凝土配合比设计规程》JGJ55—2011、《铁路桥涵工程施工质量验收标准》TB 10415-2003,混凝土的配制强度采用下式确定: ) (a 2. 38 0.5 645 .1 30 645 .1 , 0, cu MP k fcu f= ? + = + ≥σ (2)按照《铁路混凝土结构耐久性设计设计规范》TB10005-2010规定,根据现场情况: 1、成型方式:混凝土采用罐车运输,混凝土泵送施工工艺。 2、环境作用等级:L1、L2、H1、H2、T2、M1。 3、粉煤灰掺量要求:水胶比≤0.50,粉煤灰掺量要求为≤30%。 4、含气量要求:混凝土含气量在2.0%~4.0%范围内。 5、水胶比要求:胶凝材料最小用量340Kg/m3, 最大水胶比限值:0.50。 (3)初步选定配合比 1、确定水胶比 (1)水泥强度 f ce =r c f ce , g =1.16×42.5=49.3(MPa) (2)胶凝材料强度

混凝土配合比设计计算实例JGJ55-2011

混凝土配合比设计计算实例(JGJ/T55-2011) 一、已知:某现浇钢筋混凝土梁,混凝土设计强度等级C30,施工要求坍落度为75~90mm, 使用环境为室内正常环境使用。施工单位混凝土强度标准差σ取5.0MPa。所用的原材料情况如下: 1.水泥:4 2.5级普通水泥,实测28d抗压强度f ce为46.0MPa,密度ρc=3100kg/m3; 2.砂:级配合格,μf=2.7的中砂,表观密度ρs=2650kg/m3;砂率βs取33%; 3.石子:5~20mm的卵石,表观密度ρg=2720 kg/m3;回归系数αa取0.49、αb取0.13; 4. 拌合及养护用水:饮用水; 试求:(一)该混凝土的设计配合比(试验室配合比)。 (二)如果此砼采用泵送施工,施工要求坍落度为120~150mm,砂率βs取36%,外加剂选用UNF-FK高效减水剂,掺量0.8%,实测减水率20%,试确定该混凝土的设计配合比(假定砼容重2400 kg/m3)。

解:(一) 1、确定砼配制强度 f cu , 0 =f cuk+1.645σ=30+1.645×5 = 38.2MPa 2.计算水胶比: f b = γf γs f ce =1×1×46=46 MPa W/B = 0.49×46/(38.2+0.49×0.13×46)= 0.55 求出水胶比以后复核耐久性(为了使混凝土耐久性符合要求,按强度要求计的水灰比值不得超过规定的最大水灰比值,否则混凝土耐久性不合格,此时取规定的最大水灰比值作为混凝土的水灰比值。) 0.55小于0.60,此配合比W/B 采用计算值0.55; 3、计算用水量(查表选用) 查表用水量取m w0 =195Kg /m 3 4.计算胶凝材料用量 m c0 = 195 / 0.55 =355Kg 5.选定砂率(查表或给定) 砂率 βs 取33; 6. 计算砂、石用量(据已知采用体积法) 355/3100+ m s0/2650+ m g0/2720+195/1000+0.11×1=1 a b cu,0a b b /f W B f f ααα= +

混凝土挡土墙施工技术规范

混凝土挡土墙工程施工技术 1、基槽挖土方:本工程挖基槽土方采用挖掘挖机及人工配合进行开挖。挖基配合墙体施工分段进行,先测量放线,定出开挖中线及边线,起点及终点,设立桩标,注明高程及开挖深度,用1m3反铲挖掘机开挖,多余的土方装车外运弃土。在施工过程中,应根据实际需要设置排水沟及集水抗进行施工排水,保证工作面干燥以及基底不被水浸。 2、地基处理:当挖基发现有淤泥层或软土层时,需进行换土处理,报请监理工程师及业主批准后,才进行施工。 3、碎石垫层施工:根据设计图纸现浇钢筋砼挡土墙。基底铺20公分厚碎石垫层,并用打夯机夯入地基土。以便增加基底摩擦系数。予制挡土墙的基础垫层为C10砼垫层10公分厚。 4、钢筋安装:现浇钢筋基础先安装基础钢筋,预理墙身竖向钢筋,待基础浇灌砼完后且砼达到2.5Mpa后,进行墙身钢筋安装。 预制钢筋砼挡土墙的基础钢筋分二次安装,第一次安装最底层的钢筋,基础达到一定强度,安装好预制墙身后,再安装第二阶的基础钢筋。 5、现浇砼基础:按挡土墙分段长,整段进行一次性浇灌,在清理好的垫层表面测量放线,立模浇灌。 6、现浇墙身砼:现浇钢筋砼挡土墙与基础的结合面,应按施工缝处理,即先进行凿毛,将松散部分的砼及浮浆凿除,并用水清洗干净,然后架立墙身模板,砼开始浇灌时,先在结合面上刷一层水泥浆或垫一层2—3公分厚的1:2水泥砂浆再浇灌墙身砼。 墙身模板采用光面七夹板拼装,竖枋用8×10cm枋间距为40cm,用钢管作围楞,用8×10cm的木枋作斜撑进行支撑,侧模用ф16的螺栓对拉定位,螺栓间距为80cm(见附件挡墙模板示意图),螺栓穿孔可采用内径为20—25cm的硬塑料管,拆模时,将螺栓拔出,再用1:2水泥砂浆堵塞螺栓孔,墙身模板视高度情况分一次立模到顶和二次立模的办法,一般4米高之内为一次立模,超过4米高的可分二次立模,亦可一次立模。当砼落高大于2.0m时,要采用串筒输送砼入仓,或采用人工分灰,避免砼产生离析。砼由砼加工厂,用砼运输车运至现场,在墙顶搭设平台,用吊机吊送砼至平台进行浇灌,砼浇灌从低处开始分层均匀进行,分层厚度一般为30n,采用插入式振捣器振捣,振捣棒移动距离不应超过其作用半径的1.5倍,并与侧模保持5—10cm的距离,切勿漏振或过振。在砼浇灌过程中,如表面泌水过多,应及时将水排走或采取逐层减水措施,以免产生松顶,浇灌到顶面后,应及时抹面,定浆后再二次抹面,使表面平整。 砼浇灌过程中应派出木工、钢筋工、电工及试验工在现场值班,发现问题及时处理。 砼强度件制作应在现场拌和地点或浇灌地点随机制取,每工作班应制作不少于2组试件(每组3块)。 砼浇灌完进行收浆后,应及时洒水养护,养护时间最少不得小于7天,在常温下一般24小时即可拆除墙身侧模板,拆模时,必须特别小心,切莫损坏墙面。 7、伸缝缩、沉降缝及泄水孔的处理 现浇灌钢筋砼挡土墙的伸缩缝和沉降缝宽2cm(施工时缝内夹2公分厚的泡沫板或木板,施工完后抽出木板或泡沫板)从墙顶到基底沿墙的内、外、顶三侧填塞沥青麻丝,深15cm。 挡土墙泄水孔为ф10cm的硬质空心管,泄水孔进口周围铺设50×50×50cm碎古,碎古外包土工布,下排泄水孔进口的底部铺设30cm厚的粘土层并历夯实。 [此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]

高层建筑混凝土结构技术规范

《高层建筑混凝土结构技术规程》 修订简介 徐永基

中国建筑西北设计研究院二○一○年九月

《高层建筑混凝土结构技术规程》 修订简介 依照原建设部建标(2006)77号文《关于印发〈工程建设标准规范制定、修订打算(第一批)〉的通知》的要求,规程编制组经广泛调研、总结工作经验、地震震害经验和研究成果,参考有关国际标准和国外先进标准,在广泛征求意见的基础上,对本规程进行了修订。 本规程包括13章,6个附录,13章为: 1、总则; 2、术语和符号; 3、结构设计差不多规定; 4、荷载和地震作用; 5、结构计算分析; 6、框架结构设计; 7、剪力墙结构设计; 8、框架—剪力墙结构设计; 9、筒体结构设计;10、复杂高层建筑结构设计;11、混合结构设计;12、地下室和基础设计;13、高层建筑结构施工。 共有三十一条强制性条文,即:3.8.1条;3.9.1条;3.9.3条; 3.9.4条; 4.2.2条;4.3.1条;4.3.2条;4.3.12条;4.3.16条; 5.4.4条;5. 6.1条;5.6.2条;5.6.3条;5.6.4条;6.1.6条;6.3.2条;6.4.3条; 7.2.17条; 8.1.5条;8.2.1条; 9.2.3条;9.3.7条; 10.1.2条;10.2.7条;10.2.10条;10.2.19条;10.3.3条;10.4.4条;10.5.2条;10.5.6条;11.1.4条。 本规程要紧的修订内容为: 1、修改了适用范围。 2、修改、补充了结构平面和立面规则性有关规定。 3、调整了部分结构最大适用高度,增加了8度(0.3g)抗震设防区房屋最大适用高度规定。

建设项目混凝土工程施工技术规范要求

混凝土工程 本工程垫层、砼结构及室内地面砼均采用商品砼,未特别说明砼采用C30,垫层砼为C15,冷库内及冷库地面砼强度为C40F300。砼浇注采用汽车泵泵送浇筑方式。 1、砼施工管理制度 砼是形成浇筑产品结构最重要的材料之一,砼工程施工质量的好坏直接关系到工程最终能否达到验收规范的合格水平。所以应加强砼施工过程中的质量管理,确保砼产品合格。 (1)混凝土配合比的设计及审核 本工程所用混凝土施工配合比采用委托形式经由经大连市建委、质检站认可的有相关资质试验室预配后提供,试配结果报送业主和监理;混凝土使用的外加剂为建筑主管部门认证产品,外加剂的种类及性能报监理认可。 (2) 混凝土的拌制、运输 ①浇筑混凝土时项目部定期派专人去混凝土生产厂家监督混凝土的拌制。混凝土在原材料的计量、搅拌时间上严格按规范标准进行控制。 ②每次浇筑混凝土时,由专人作好混凝土运输车辆的疏导指挥工作,确保混凝土能够及时连续的供应,连续浇筑。 ③当相邻车次间隔时间超过正常间隔时间时,应取该罐车混凝土作坍落度实验。混凝土从罐车输出时,严禁任意加水,施工人员应服从现场管理人员的指挥。 (3) 混凝土浇筑值班制度 在每次浇筑混凝土前,由项目经理确定本次浇筑混凝土值班人员,以便于提前准备,做到岗位到位、责任到人。每次浇筑混凝土时,值班人员不少于五人(至少有一名为土建专业技术人员),其中有一人在现场值班,实行旁站式管理。混凝土浇筑时值班人员严格按施工方案、操作规程进行施工监督,做好值班人员记录。 (4) 混凝土的检查制度 混凝土的检查在混凝土拆模后、上一施工段施工完毕进行,此项工作由质量检查员及模板、混凝土施工班组长参加,及时评定、及时以书面形式反馈给监理和各专业施工班组,督促、改进工作。 2、砼浇筑前的准备 (1)制定施工方案并进行技术交底 浇筑砼前应编制详细的施工方案,并对施工人员进行技术交底,使整个浇筑过程有组织、有分工连续有序的进行。

混凝土配合比设计步骤

普通混凝土的配合比设计 普通混凝土的配合比是指混凝土的各组成材料数量之间的质量比例关系。确定比例关系的过程叫配合比设计。普通混凝土配合比,应根据原材料性能及对混凝土的技术要求进行计算,并经试验室试配、调整后确定。普通混凝土的组成材料主要包括水泥、粗集料、细集料和水,随着混凝土技术的发展,外加剂和掺和料的应用日益普遍,因此,其掺量也是配合比设计时需选定的。 混凝土配合比常用的表示方法有两种;一种以1m3混凝土中各项材料的质量表示,混凝土中的水泥、水、粗集料、细集料的实际用量按顺序表达,如水泥300Kg、水182 Kg、砂680 Kg、石子1310 Kg;另一种表示方法是以水泥、水、砂、石之间的相对质量比及水灰比表达,如前例可表示为1:2.26:4.37,W/C=0.61,我国目前采用的量质量比。 一、混凝土配合比设计的基本要求 配合比设计的任务,就是根据原材料的技术性能及施工条件,确定出能满足工程所要求的技术经济指标的各项组成材料的用量。其基本要求是; (1)达到混凝土结构设计要求的强度等级。 (2)满足混凝土施工所要求的和易性要求。 (3)满足工程所处环境和使用条件对混凝土耐久性的要求。 (4)符合经济原则,节约水泥,降低成本。 二、混凝土配合比设计的步骤 混凝土的配合比设计是一个计算、试配、调整的复杂过程,大致可分为初步计算配合比、基准配合比、实验室配合比、施工配合比设计4个设计阶段。首先按照已选择的原材料性能及对混凝土的技术要求进行初步计算,得出“初步计算配合比”。基准配合比是在初步计算配合比的基础上,通过试配、检测、进行工作性的调整、修正得到;实验室配合比是通过对水灰比的微量调整,在满足设计强度的前提下,进一步调整配合比以确定水泥用量最小的方案;而施工配合绋考虑砂、石的实际含水率对配合比的影响,对配合比做最后的修正,是实际应用的配合比,配合比设计的过程是逐一满足混凝土的强度、工作性、耐久性、节约水泥等要求的过程。 三、混凝土配合比设计的基本资料

公路水泥混凝土路面施工技术规范(JTGF30-2003)正文[1]_GD-22

公路水泥混凝土路面施工技术规范 (JTGF30-2003) 1总则 1.0.1 为适应公路建设和交通运输发展的需要,提高我国公路水泥混凝土路面(简称混凝土路面)工程的施工技术水平,保证其施工质量,制定本规范。 1.0.2 本规范适用于采用滑模摊铺机、轨道摊铺机、三辊轴机组、小型机具施工的各级新建或改建公路混凝土路面工程,也适用于采用沥青摊铺机摊铺的碾压混凝土路面工程。 1.0.3 混凝土路面的施工应根据合同及设计文件、施工现场所处的气候、水文、地形等环境条件,选择满足质量指标要求、性能稳定的原材料,确定配合比、设备种类和施工工艺,进行详细的施工组织设计,建立完备的施工质量保障体系。 1.0.4 混凝土路面施工应积极采用新材料、新装备、新工艺和新技术,不断提高混凝土路面工程质量和施工技术水平。 1.0.5 混凝土路面施工除应符合本规范外,尚应符合国家现行有关标准的规定。 2术语 2.0.1 路面水泥混凝土 满足路面摊铺工作性、弯拉强度、表面功能、耐久性及经济性等要求的水泥混凝土材料。 2.0.2 滑模铺筑 采用滑模摊铺机铺筑混凝土路面的施工工艺。其特征是不架设边缘固定模板,能够一次完成布料摊铺、振捣密实、挤压成形、抹面修饰等混凝土路面摊铺功能。 2.0.3 轨道铺筑 采用轨道摊铺机铺筑混凝土路面的施工工艺。 2.0.4三辊轴机组铺筑 采用振捣机、三辊轴整平机等机组铺筑混凝土路面的施工工艺。 2.0.5 小型机具铺筑 采用固定模板,人工布料,手持振捣棒、振动板或振捣梁振实,棍杠、修整尺、抹刀整平的混凝土路面施工工艺。 2.0.6 碾压混凝土路面铺筑 采用特干硬性水泥混凝土拌合物,使用沥青摊铺机摊铺、压路机械碾压密实成形的混凝土路面施工工艺。 2.0.7 真空脱水工艺 混凝土路面摊铺后,随即使用真空泵及真空垫等专用吸水装置,将新铺筑路面混凝土中多余水分吸除的一种面层施工工艺。 2.0.8 工作性 混凝土拌合物在浇筑、振捣、成形、抹平等过程中的可操作性。它是拌合物流动性、可塑性、稳定性和易密性的综合体现。 2.0.9 振动粘度系数 在特定振动能量作用下,混凝土拌合物内部阻碍水泥、粗细集料、气泡等质点相对运动的摩阻能力。它反映了振捣时混凝土拌合物中气体上升排除、集料下沉稳固的难易程度,用于测定混凝土拌合物的振捣易密性。 2.0.10 碾压混凝土压实度 干硬性混凝土拌合物现场压实后的湿密度与配合比设计时标准压实(空隙率为4%)下湿密度之比2.0.11 改进VC值 用于测定碾压混凝土拌合物稠度的一种改进的维勃工作度。 2.0.12 振捣棒的有效作用半径

混凝土配合比计算公式

举个例子说明: C35砼配合比设计计算书 工程名称:XX (一)原材情况: 水泥:北水P.O 42.5 砂:怀来澳鑫中砂粉煤灰:张家口新恒Ⅱ级 石:强尼特5~25mm碎石外加剂:北京方兴JA-2防冻剂 (二)砼设计强度等级C35,fcu,k取35Mpa,取标准差σ=5 砼配制强度fcu,o= fcu,k+1.645σ=35+1.645×5=43.2Mpa (三)计算水灰比: 水泥28d强度fce取44Mpa 根据本地碎石的质量情况,取a=0.46, b=0.07 W/C=0.46×44/(43.2+0.46×0.07×44)=0.45 (四)根据试配情况用水量取185kg/m3。 (五)确定水泥用量mc,mc=185/0.45=411kg 粉煤灰采用超量取代法,取代水泥13%,超量系数1.5,内掺膨胀剂6%,防冻剂掺量3.6%,经计算最终结果如下: 水泥用量为337kg/ m3粉煤灰用量为75kg/ m3膨胀剂用量为26kg/ m3 防冻剂用量为15.8kg/ m3 (六)假定砼容重为2400kg/m3,砂率为βs=43%,得 砂用量为757kg/ m3 石用量为1004kg/ m3 由此得每立方米的理论砼配比为: Kg/m3 水泥水砂子石子粉煤灰外加剂膨胀剂 337 185 757 1004 75 15.8 26 然后试配确定生产配合比 常规C10、C15、C20、C25、C30混凝土配合比是多少? 要看混凝土的强度等级啊,强度等级不同,量也不同 混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两 种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。 常用等级 C20

混凝土配比技术规范

严格按照技术规范的相关规定,进行砼配合比设计,是保证砼施工质量的重要环节。 砼有四项技术性质,即工艺性质,力学性质,砼的变形,和砼的耐久性。砼配合比设计,要按照这四项技术性质,分别满足设计强度的要求,满足施工和易性的要求,满足耐久性的要求,以及满足经济性的要求。 在公路工程监理实践中,发现部分工地试验室,设计砼配合比当中,存在不满足四项要求的现象。尤其突出的是低强度等级砼配合比设计,水灰比与单位水泥用量,低于相关规范的规定。水下砼配合比设计,砂率与单位用水量,低于相关规范的规定等等。 水灰比、砂率、单位用水量,是砼配合比设计的三大参数。正确运用这三大参数,决定砼配合比设计的成败。 有的工地试验室,在低强度等级砼配合比设计中,运用给定的计算公式,所求出的水灰比较大。水灰比越大,单位水泥用量则越小,没有对照相关规定就直接指导施工,是严重的设计错误。因为,砼结构所处环境不同,耐久性要求对其约束也有所不同。如设计强度等级C 15的砼配合比,坍落度30mm,水泥强度等级32.5,单位用水量189 kg/m3。按照公式计算,水灰比为0.66,水泥用量为286kg/m3,计算方法没有错误。经过监理审核,对照JTJ 041—2000《公路桥涵施工技术规范》表11.3.4的规定。 表11.3.4 混凝土的最大水灰比和最小水泥用量 混凝土结构所处环境无筋混凝土钢筋混凝土 最大水灰比最小水泥用量(kg/m3) 最大水灰比最小水泥用量 (kg/m3) 温暖地区或寒冷地区,无侵蚀物质影响,与土直接接触0.60 250 0.55 275 严寒地区或使用除冰盐的桥涵0.55 275 0.50 300 受侵蚀性物质影响0.45 300 0.40 325 注:①本表中的水灰比,系指水与水泥(包括外掺混合材料)用量的比值。 ②本表中的最小水泥用量,包括外掺混合材料。当采用人工捣实混凝土时,水泥用量应增加25kg/m3。当掺用外加剂且能有效地改善混凝土的和易性时,水泥用量可减少25kg/m3。 ③严寒地区系指最冷月份平均气温≤-10℃且日平均温度在≤5℃的天数≥145d的地区。 该结构物为无筋混凝土,所处环境,限制最大水灰比不能大于0.60,该配合比的水灰比为0.66,显然不能满足耐久性要求。 有的工地试验室,在水下砼配合比设计中,砂率仅仅给定38%。相对于高强度砼,砂率很高,然而对于水下砼而言砂率则太低。由于细集料少,粗集料多,砼流动性和粘聚性较差,泌水严重,砼在运输过程中易离析,不能满足施工和易性要求。从而在水下砼浇灌中,往往堵塞管道,造成断桩事故。砂率所以给定错误,在于设计者没有执行有关规范的规定。依据JTJ 041—2000《公路桥涵施工技术规范》6.5.3水下混凝土配制 4 混凝土配合比的含砂率宜采用,水灰比宜采用0.5—0.6。有试验依据时含砂率和水灰比可酌情增大或减小。经过监理审核,该水下砼配合比砂率在0.4~0.5范围之外,应重新试配。要避免砼配合比设计错误,必须熟悉施工技术规范的相关规定。因此,把分散于各技术规范中,有关砼配合比设计的条文,集中于本文中,与同行共勉。 一、水下砼 1、可采用火山灰水泥、粉煤灰水泥、普通硅酸盐水泥或硅酸盐水泥,使用矿渣水泥时应采取防离析措施。

混凝土配比设计计算

修改一混凝土配比设计计算《规程JGJ55-2000》 《第一篇计算原理》《第五章杆塔基础施工》之《第四节混凝土配比设计计算》按《中华人民共和国行业标准普通混凝土配比设计规程JGJ55-2000》进行修改: 一、概述 1)普通水泥(如:普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥)的“标号”(如“425号水泥”)在新的国家标准中改为水泥的“强度等级”(如“强度等级42.5的水泥”),其数值等于ISO法检验所得28天水泥胶砂抗压强度; 2)混凝土的强度等级(例如“C25”)一般由设计文件提供,其数值等于该混凝土标准试块在28天时的抗压强度,单位为Mpa。 二、确定所用水泥的强度等级 1、确定所用水泥的强度等级 水泥强度等级 1)比值: 混凝土强度等级 2 其比值一般为1.5~2.5,最佳为1.5~2.0 采用较高强度等级混凝土时为1.5 2)混凝土强度等级为≤C10时,水泥强度等级一般选22.5~27.5 混凝土强度等级为C15时,水泥强度等级一般选22.5~32.5 混凝土强度等级为C20时,水泥强度等级一般选32.5~42.5 混凝土强度等级为≥C30时,水泥强度等级一般选42.5~52.5 3)一般气温地区钢筋混凝土所用的水泥可选>27.5 寒冷地区(最寒冷月份里的月平均气温为-5℃~-15℃),水泥强度等级可选27.5~42.5 严寒地区(最寒冷月份里的月平均气温低于-15℃),水泥强度等级可选32.5~42.5 2.注意事项

1)若混凝土水灰比很小,且在浇注时能用振捣器振捣,可用较低强度等级的水泥; 2)当水泥强度等级大于上述最高强度等级,且工程性质及施工条件许可时,可加适量掺合料,但本程序所用计算方法已不适用; 3)厚大体积的混凝土,当不掺用活性的或填充的掺合料时,不宜使用大于42.5号普 通水泥或硅酸盐水泥。 三、确定混凝土配制强度 1.确定实配混凝土强度标准差σ 根据施工现场的管理水平、原材料质量的可信度以及其它具体情况(如拌合、运输、浇灌、振捣、天气、养护等),确定实际施工配置混凝土的强度标准差σ。 混凝土的强度标准差根据统计资料计算确定,但: 当混凝土的强度等级为C20~C25时,σ ≦2.5MPa 当混凝土的强度等级≥C30时, σ≦3.0MPa 当无统计资料时,根据《混凝土结构工程施工及验收规范》(GB50204): 当混凝土的强度等级<C30时, σ =4.0MPa 当混凝土的强度等级C30~ C45时, σ=5.0MPa 当混凝土的强度等级>C45时, σ =6.0MPa 2.计算混凝土配制强度 σ645.1+=设计配制C C 式中:C 配制 ——计算用混凝土配制强度,Mpa ; C 设计 ——混凝土设计强度(混凝土立方体抗压强度标准值),Mpa ; σ ——实配混凝土强度标准差σ,Mpa 。 四、计算砂、石用量 在算出了所用的水灰比(W /C )、用水量(W)、水泥用量(C)、砂率S (砂所占的体积为砂、石总体积的百分比)后,要进一步算出砂、石用量,这时有二种方法: 1.绝对体积法

混凝土路面施工技术要求

附件:水泥混凝土路面施工技术要求 1 设计依据 (1)《公路工程技术标准》( B01—2003) (2)《公路水泥混凝土路面设计规范》( D40—2002) (3)《公路水泥混凝土路面施工技术规范》( F30—2003) (4)《公路路面基层施工技术规范》 ( 034-2000) (5)《公路路基设计规范》( D30—2004) (6)《公路路基施工技术规范》 ( 033-95) (7)《公路工程质量检验评定标准》 ( F80/1-2004) 2 工程设计 2.1技术指标 一、二级公路水泥混凝土路面结构从上至下依次为:水泥混凝土面板厚26,基层为20厚5%水泥稳定碎石,底基层为30厚12%石灰稳定土,采用特重交通等级设计。水泥混凝土的强度以28d龄期的弯拉强度控制,要求混凝土弯拉强度标准值不得低于5.0,抗冻标号不小于F200。 三、四级公路水泥混凝土路面结构从上至下依次为:水泥混凝土面板厚20,基层为30厚12%石灰稳定土,采用中等交通等级设计。水泥混凝土的强度以28d龄期的弯拉强度控制,要求混凝土弯拉强度标准值不得低于4.5,抗冻标号不小于F200。 路基填筑维持原设计要求不变。 2.2路面接缝设计 2.2.1 纵向接缝 路面宽度大于6m的混凝土面板,在公路中心线处设一道纵向施工缝,采用平缝形式。其余部位纵缝均为缩缝,采用假缝形式,缩缝位置与行车道分幅一致,但不得大于4.5m。 路面宽度等于6m的混凝土面板,在公路中心线处设一道纵向缩缝,采用假缝形式。 路面宽度小于等于4.5m的混凝土面板,不设纵缝。 纵缝均与公路中心线平行。纵向接缝无论是施工缝还是缩缝,均在缝内

《混凝土结构设计规范》GB50010

《混凝土结构设计规范》GB50010-2002 3基本设计和规定 1.1.8未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.2..1根据建筑结构破坏后果的严重程度,建筑结构划分为三个安全等级。设计 时应根据具体情况,按照表3.2.1的规定选用相应的安全等级。 表3.2.1 建筑结构的安全等级 1.1.3混凝土轴心抗压、轴心抗拉强度标准值?ck、?tk应按表4.1.3采用。 表4.1.3 混凝土强度标准值(N/mm2) c t 表4.1.4 混凝土强度设计值(N/mm2) 的强度设计值应乘以系数0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制; 2.离心混凝土的强度设计值应按专门标准取用。 1.2.2钢筋的强度标准值应具有不小于95%的保证率。热轧钢筋的强度标准值系 表示。预应力钢绞线、钢丝和热处理钢筋的强度标根据屈服强度确定,用? yk 准值系根据极限抗拉强度确定,用? 表示。 ptk 普通钢筋的强度标准值应按表4.2.2-1采用;预应力钢筋的强度标准值应按

表4.2.2-2采用。 各种直径钢筋、钢绞线和钢丝的公称截面面积、计算截面面积及理论重量应按附录B 采用。 表4.2.2-1 普通钢筋强度标准值(N/mm 2) 2 当采用直径大于40mm 的钢筋时,应有可靠的工程经验。 表4.2.2-2 预应力钢筋强度标准值(N/mm 2) 称直径Dg ,钢丝和热处理钢筋的直径d 均指公称直径; 2 消除应力光面钢丝直径d 为4~9mm ,消除应力螺旋肋钢丝直径d 为4~8mm 。 4.2.3普通钢筋的抗拉强度设计值?y 及抗压强度设计值?′y 应按表4.2.3-1采用;预应力钢筋的抗拉强度设计值?py 及抗压强度设计值?′py 应按表4.2.3-2采用。 当构件中配有不同种类的钢筋时,每种钢筋应采用各自的强度设计值。 表4.2.3-1 普通钢筋强度设计值(N/mm 2) 300 N/mm 2取用。 表4.2.3-2 预应力钢筋强度设计值(N/mm 2)

相关文档
最新文档