(完整)初三二次函数常见题型及解题策略.doc

(完整)初三二次函数常见题型及解题策略.doc
(完整)初三二次函数常见题型及解题策略.doc

二次函数常见题型及解题策略

1、两点间的距离公式 : AB

y A y B

2

x A x B

2

2、中点坐标 :线段 AB 的中点 C 的坐标为:

x A x B y A y B

2

2

3、一元二次方程有整数根问题 ,解题步骤如下:

① 用 和参数的其他要求确定参数的取值范围;

② 解方程,求出方程的根; (两种形式:分式、二次根式)

③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于 x 的一元二次方程 x 2-2 m 1 x m 2

=0 有两个整数根,

m <5 且 m 为整数,求 m 的值。

4、二次函数与 x 轴的交点为整数点问题

。(方法同上)

例:若抛物线 y mx 2

3m 1 x 3 与 x 轴交于两个不同的整数点,且 m 为正整数,试确定此抛物

线的解析式。

5、方程总有固定根问题 ,可以通过解方程的方法求出该固定根。举例如下:

已知关于 x 的方程 mx 2

3( m 1)x 2m 3 0 ( m 为实数),求证:无论 m 为何值,方程总有一个

固定的根。

解:当 m

0 时, x 1;

当 m

0 时,

m 3

2

0 3 m 1

, x 1 2 3

1 ;

, x

、 x 2

2m

m

综上所述:无论 m 为何值,方程总有一个固定的根是

1。

第 1 页 共 7 页

6、函数过固定点问题,举例如下:

已知抛物线y x 2 mx m 2

( m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的

点,并求出固定点的坐标。

解:把原解析式变形为关于m 的方程 y x2 2 m 1 x ;

∴y x 2 2 0

,解得:y 1 ;

1 x 0 x 1

∴ 抛物线总经过一个固定的点(1,- 1)。

(题目要求等价于:关于m 的方程 y x2 2 m 1 x 不论 m 为何值,方程恒成立)

..ax b

有无数解a 0

小结:关于 x 的方程 b 0

7、路径最值问题(待定的点所在的直线就是对称轴)

( 1)如图,直线l1、 l 2,点A在 l 2上,分别在 l1、 l 2上确定两点M 、 N ,使得AM MN 之和最

小。

( 2 )如图,直线l1、 l 2相交,两个固定点 A 、 B ,分别在l1、 l2上确定两点M 、 N ,使得BM MN AN 之和最小。

(3)如图,A、B是直线l同旁的两个定点,线段a,在直线l上确定两点E、F(E在F的左侧),使

得四边形 AEFB 的周长最小。

第 2 页共7 页

8、在平面直角坐标系中求面积的方法:

直接用公式、割补法

9、函数的交点问题:

二次函数( y = ax 2+ bx + c )与一次函数( y = kx + h )

( 1)解方程组

= ax 2+ + c 可求出两个图象交点的坐标。

y bx

= kx + h

y

( 2)解方程组 y = ax 2+ + c ,即 ax 2+ b - k x + c - h =0 ,通过 可判断两个图象的交点的个数 bx

y = + h kx

有两个交点 >0 仅有一个交点 0 没有交点 <0

10、方程法

( 1)设:设主动点的坐标或基本线段的长度

( 2)表示:用含同一未知数的式子表示其他相关的数量

( 3)列方程或关系式

11、几何分析法

特别是构造“平行四边形” 、“梯形”、“相似三角形” 、“直角三角形” 、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。

几何要求

几何分析

跟平行有关的 平移

图形

勾股定理逆定理

跟直角有关的

利用相似、全等、平

图形

行、对顶角、互余、互补等

跟线段有关的

利用几何中的全等、

图形

中垂线的性质等。

利用相似、全等、平 跟角有关的图

行、对顶角、互余、 形

互补等

涉及公式

l 1 ∥ l 2

k 1= k 2 y 1 y 2 、 k

x 2

x 1 AB

y A y B 2

x A x B 2

AB

y A y B 2

x A x B 2

应用图形

平行四边形

矩形 梯形

直角三角形

直角梯形 矩形

等腰三角形

全等

等腰梯形

第 3 页 共 7 页

1、( 2012 西城一模第25 题)平面直角坐标系xOy 中,抛物线y ax24ax 4a c 与x轴交于点A、点B,

与y 轴的正半轴交于点 C,点 A 的坐标为 (1, 0),OB =OC,抛物线的顶点为 D。

(1)求此抛物线的解析式;

(2)若此抛物线的对称轴上的点P 满足∠ APB=∠ ACB,求点P的坐标;

(3) Q 为线段 BD 上一点,点 A 关于∠ AQB 的平分线的对称点为A,若QA QB 2,求点 Q 的坐标和此时△ QAA

的面积。

第 4 页共7 页

2、( 2012 东城二模第 25 题)如图,在平面直角坐标系xOy中,已知二次函数y ax2+2ax c 的图像与y

轴交于点 C 0 ,3 ,与x轴交于A、B两点,点B的坐标为3,0 。

( 1)求二次函数的解析式及顶点 D 的坐标;

( 2)点 M 是第二象限内抛物线上的一动点,若直线 OM 把四边形 ACDB 分成面积为 1 :2 的两部分,求出此时点 M 的坐标;

( 3)点 P 是第二象限内抛物线上的一动点,问:点P在何处时△CPB的面积最大?最大面积是多少?

并求出此时点P 的坐标。

第 5 页共7 页

3、( 2012 海淀二模第 24 题)如图,在平面直角坐标系xOy 中,抛物线y 2 x 22x与x轴负半轴交于

m

点 A ,顶点为 B ,且对称轴与x轴交于点 C 。

( 1)求点B的坐标(用含m 的代数式表示);

( 2)D为OB中点,直线AD 交 y 轴于 E ,若 E (0,2),求抛物线的解析式;

( 3)在( 2)的条件下,点M 在直线 OB 上,且使得AMC 的周长最小, P 在抛物线上,Q在直线 BC 上,若以 A、 M 、 P、 Q 为顶点的四边形是平行四边形,求点P 的坐标。

第 6 页共7 页

4、( 2012 东城二模第 23 题)已知关于x的方程(1 m) x2 (4 m) x 3 0 。

( 1)若方程有两个不相等的实数根,求m 的取值范围;

( 2)若正整数m满足8 2m 2,设二次函数y (1 m)x2 (4 m) x 3 的图象与 x 轴交于A、B两点,将此图象在 x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象;请

你结合这个新的图象回答:当直线 y kx 3与此图象恰好有三个公共点时,求出 k 的值(只需要

求出两个满足题意的 k 值即可)。

第7 页共7 页

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

二次函数综合题解题方法与技巧

. . C x x y y A O B E D A C B C D G 图1 图2 A P O B E C x y 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .

初中二次函数的解题方法

初中二次函数的解题方 法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

11.1班沈阳 14号 初中二次函数的解题方法 首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点坐 标为(-b/2a,4ac-b2/4a) ; 顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标 为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方 向与函数y=ax2的图像相同,有时题目会指出让你用配 方法把一般式化成顶点式。 交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0 有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] :由 一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴ y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x2;-(x1+x2)x+x1x2]=a(x- x1)(x-x2) 重要概念:。 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次 函数图像的顶点P。特别地,当h=0时,二次函数图像 的对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左 b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当 h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a k=(4ac-b2)/4a 3.二次项系数a决定二次函数图像的开口方向和大 小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。 有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。 常见问题 1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。 解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。 2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

二次函数的考试常见题型

二次函数的考试常见题型 题型一、二次函数图象的对称轴和顶点的求法- 1.已知二次函数y=x2+4x. (1)用配方法把函数化为y=a(x-h)2+k(其中a,h,k都是常数且a≠0)的形式, 并指出函数图象的对称轴和顶点坐标 (2)求函数图象与x轴的交点坐标. 2.二次函数y= 1 2 (x-4)2+5的图象的开口方向、对称轴、顶点坐标分别是? 3.已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 题型二、抛物线的平移 1.(甘肃兰州中考题)已知函数y=2x2的图象是抛物线,若抛物线不动,把x 轴、y轴分别向上、向右平移2个单位长度,那么在新坐标系下抛物线的 解析式是? 2.(上海中考题)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且 过点B(3,0) (1)求该二次函数的解析式. (2)将该二次函数图象向右平移几个单位长度,可使平移后所得图象经过 坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标. 3.抛物线y= 1 2 x2向左平移3个单位长度,再向下平移2个单位长度后,所 得的抛物线表达式是? 4.函数y=-2(x-1)2-1的图象可以由函数y=-2(x+2)2+3的图象先向____平移 _____个单位长度,再向____平移_____个单位长度而得到. 5.已知二次函数y=x2-bx+1(-1≤b≤1),当b从-1逐渐变化到1的过程中, 它所对应的抛物线位置也随之变动.下列关于抛物线移动方向的描述中, 正确的是( ) A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左 上方移动 C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右 上方移动 题型三、二次函数图象的画法 1.(广东梅州中考题)已知二次函数图象的顶点是(-1,2),且过点(0, 3 2 ) (1)求二次函数的表达式,并在图中画出它的图象; (2)求证:对任意实数m,点M(m,-m2)都不在这 个二次函数的图象上. 2. (安徽中考题)抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点, (1)求出m的值并画出这条抛物线.。 (2)求它与x轴的交点和顶点的坐标 (3)x取什么值时,抛物线在x轴上方? (4)x取什么值时,y随x的增大而增大? 3.(江苏南通中考题)已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时, (1)求抛物线的解析式,并写出抛物线的顶点坐标; (2)画出抛物线y=ax2+bx+c当x<0时的图象; (3)利用抛物线y=ax2+bx+c的图象,写出x为何值时,y>0 题型四、二次函数的图象和性质 1.已知二次函数y=ax2+bx+c(a≠0)的图象开口向上,并经过点(-1,2), (1,0).下列结论正确的是() A.当x>0时,函数值y随x的增大而增大、’ B.当x>0时,函数值y随x的增大而减小 C.存在一个负数x0,使得当x< x0时,函数值y随x的增大而减小;当 x>x0时,函数值y随x的增大而增大 D.存在一个正数x0,使得当x < x0时,函数值y随x的增大而减小;当 x> x0时,函数值y随x的增大而增大 2.已知二次函数y=- 1 2 x2-3x- 5 2 ,设自变量的值分别x1,x2,x3, 且-3o C. b+c-a0;②b0;④2c<3b;⑤a+b>m(am+b)(m 为不等于1的实数).其中正确的结论有() A2个B3个C4个 D 5个 2.(四川南充中考题)图是二次函数y=ax2+bx+c图象的一部分,图象过点 A(-3,0),对称轴为x=-1给出四个结论:①b2>4ac;②2a+b=0; ③a-b+c=0;④5a0,c>0 B. ab>0,c<0 C .ab<0,c>0 D. ab<0,c<0 5.二次函数y=ax2+bx+c的图象如图所示,则点M(b, c a )在( ) A第一象限B第二象限C第三象限D第四象限 6.(湖北武汉中考题)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示, 则下列结论:①a、b同号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=-2时,x的值只能取0.其中正确的有( ) A 1个 B 2个 C 3个 D 4个 7.(广东广州中考题)抛物线y=x2-2x+1与x轴的交点个数是( ) A 0 B l C 2 D 3 8.(云南双柏中考题)在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx 的图象可能为( ) A B C D 题型七、二次函数与一元二次方程 1.已知:二次函数y=x2+2ax-2b+l和y=-x2+(a-3)x+b2-1的图象都经过x轴上 两个不同的点M、N,求a,b的值. 2.(天津中考题)已知抛物线y= 1 2 x2+x- 5 2 (1)用配方法求它的顶点坐标和对称轴. (2)若该抛物线与x轴的两个交点为A、B,求线段AB的长. 3.(江西中考题)已知二次函数y=-x2+2x+m的部分图象如图 所示,则关于x的一元二次方程-x2+2x+m=0的解为____

二次函数综合题解题方法与技巧

图1 图 2 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 . 2

初三二次函数常见题型及解题策略

二次函数常见题型及解题策略 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物 线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下:

已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数常见题型(含问题详解)

中考二次函数常见题型 考点1:二次函数的数学应用题 1. (2011,16,3分)初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数。若某生的位置数为10,则当m+n 取最小值时,m·n的最大值为。 【答案】36 2.(2011,23,10分)在平面直角坐标系中,如图1,将n个边长为1的形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C. (1)当n=1时,如果a=-1,试求b的值; (2)当n=2时,如图2,在矩形OABC上方作一边长为1的形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式; (3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O, ①试求出当n=3时a的值; ②直接写出a关于n的关系式.

∴所求抛物线解析式为248 133 y x x =- ++;……4分 (3)①当n =3时,OC=1,BC =3, 设所求抛物线解析式为2 y ax bx =+, 过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13 OD OC CD BC ==, 设OD =t ,则CD =3t , ∵222 OD CD OC +=, ∴222 (3)1t t +=, ∴1101010 t = =, ∴C ( 1010,31010 ), 又 B (10,0), ∴把B 、C 坐标代入抛物线解析式,得 010********.10 1010a b a b ?=+? ?=+? ?, 解得:a =103-; ……2分 ②21 n a n +=-. ……2分 3. (2011日照,24,10分)如图,抛物线y=ax 2+bx (a 0)与双曲线y = x k 相交于点A ,B . 已知点B 的坐标为(-2,-2),点A 在第一象限,且tan ∠AOx =4. 过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; x y O A B C D

二次函数压轴题解题技巧

二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与 x 轴交于 (1,0)、(2,0)两点,且1>2,与 y轴交于点 (0,4), A x B x x x C 其中 x1、 x2是方程 x2-2x-8=0的两个根. (1)求这条抛物线的解析式; (2)点 P是线段 AB上的动点,过点 P 作 PE∥AC,交 BC于点 E,连接 CP,当△ CPE的面积最大时,求点 P 的坐标; (3) 探究:若点 Q 是抛物线对称轴上的点,是否存在这样的点,使△成为等腰三角 Q QBC 形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由. y C E B A 二、圆 OP 2.如图1,在平面直角坐标系xOy,二次函数 y= ax2+bx+ c( a>0)的图象顶点为D,与 轴交于点,与 x 轴交于点、,点在原点的左侧,点 B 的坐标为 (3 , 0) ,=, C A BA OB OC 1 tan ∠ACO=3.x y (1)求这个二次函数的解析式; (2)若平行于 x 轴的直线与该抛物线交于点 M、N,且以 MN为直径的圆与 x 轴相切,求该圆的半径长度; (3)如图 2,若点G(2 ,y) 是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点 P 运动到什么位置时,△AGP的面积最大?求此时点P 的坐标和△ AGP的最大面积. y y A B E O x AC B x C C G D D 图 1图 2

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

二次函数压轴题解题技巧

C x x y y A O B E D A C B C D G 图1 图 2 A P O B E C x y 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由. 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题 (一)用对称比较大小 例1、已知二次函数y=x2-3x-4,若x 2-3/2>3/2-x 1 >0,比较y 1 与y 2 的大小 解:抛物线的对称轴为x=3/2,且3/2-x 1>0,x 2 -3/2>0,所以x 1 在对称轴的左侧,x 2 在对称 轴的右侧, 由已知条件x 2-3/2>3/2-x 1 >0,得:x2到对称轴的距离大于x 1 到对称轴的距离,所以y 2 > y 1 (二)用对称求解析式 例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。 解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为: x 1=-1-3=-4,x 2 =-1+3=2 则两交点的坐标为(-4,0)、(2,0); 设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。 所以抛物线的解析式为y=-4/9(x+1)2+4 (三)用对称性解题 例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于() A. 2 B. 4 C. 3 D. 5 解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为() A.(2,3) B.(3,2) C.(3,3) D.(4,3)

二次函数压轴题解题技巧

图1 图 2 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2 -2x -8=0的两个根. (1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2 +bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

中考数学题型专项训练:二次函数与最值问题(含答案)

二次函数与最值问题 1.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于 A、B、C三点,其中A(3,0),抛物线的顶点为D. (Ⅰ)求m的值及顶点D的坐标; (Ⅱ)当a≤x≤b时,函数y的最小值为7 4 ,最大值为4,求a,b应 满足的条件; (Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由. 解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3, 得-9+6(m-2)+3=0, 解得m=3, 则二次函数为y=-x2+2x+3,

∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D的坐标为(1,4); (Ⅱ)把y=7 4 代入y=-x2+2x+3中, 得7 4 =-x2+2x+3, 解得x1=-1 2,x2= 2 5 , 又∵函数y的最大值为4,顶点D的坐标为(1,4), 结合图象知-1 2 ≤a≤1. 当a=-1 2时,1≤b≤ 2 5 , 当-1 2<a≤1时,b= 2 5 ; (Ⅲ)存在点P,使得△PDC是等腰三角形, 当x=0时,y=3,

∴点C坐标为(0,3). 当△PDC是等腰三角形时,分三种情况: ①如解图①,当DC=DP时, 由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称, ∴点P坐标为(2,3); ②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H, 过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N, ∵HD=HC=1,PC=PD, ∴HP是线段CD的垂直平分线. ∵HD=HC,HP⊥CD, ∴HP平分∠MHN,

二次函数解题方法与技巧例题练习题

【解读二次函数的系数】 1、a 的正负决定抛物线的开口方向 a >0时,抛物线开口向上,a <0时,抛物线开口向下。 2、︳a ︳决定抛物线张开角度 ︳a ︳越大,张开角度越小;︳a ︳越小,张开角度越大;︳a ︳相等,张开角度相同。 3、a 和b 共同决定抛物线对称轴的位置 (1)a ,b 同号(ab >0),则对称轴x= - b 2a o,对称轴在y 轴的右侧; (3)若b =0,则对称轴x= - b 2a =o,对称轴与y 轴重合; 4、C 与图像和y 轴的交点位置 (1)C >0时,抛物线与y 轴的交点在y 轴的正半轴上; (2)C <0时,抛物线与y 轴的交点在y 轴的负半轴上; (3)C=0时,抛物线过原点; 5、b 2 —4ac 决定抛物线与x 轴交点个数 (1)b 2 -4ac >0时,抛物线与x 轴相交(有两个交点); (2)b 2-4ac =0时,抛物线与x 轴相切(有一个交点); (3)b 2-4ac <0时,抛物线与x 轴相离(没有交点); 6、若抛物线过点(1,0),则a+b+c = 0 若抛物线与过点(1,0)且平行于y 轴的直线相关交于x 轴上方,则a+b+c > 0;反之,则a+b+c < 0. 7、若抛物线过点(-1,0),则a -b+c = 0 若抛物线与过点(-1,0)且平行于y 轴的直线相关交于x 轴上方,则a -b+c > 0;反之,则a -b+c < 0. ◆练一练 1、如图,若a <0,b >0,c <0,则抛物线y=ax 2 +bx +c 的大致图象为( ) 2、函数y=ax 2 +bx +c 和y=ax +b 在同一坐标系中,如图所示,则正确的是( ) 3、在同一坐标系中,函数y=ax 2 +bx 与y=b x 的图象大致是图中的( )

二次函数的翻折规律和题目

翻折规律 1 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是 ()2 y a x h k =-+-; 4. 关于顶点对称 2 y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+- ; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+. 5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 操练: 5.(2014?娄底27.(10分))如图甲,在△ABC 中,∠ACB=90°,AC=4cm ,BC=3cm .如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm/s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题: (1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值?S 的最大值是多少? (2)如图乙,连接PC ,将△PQC 沿QC 翻折,得到四边形PQP ′C ,当四边形PQP ′C 为菱形时,求t 的值;′ (3)当t 为何值时,△APQ 是等腰三角形?

相关文档
最新文档