正弦波放大电路与移相电路设计

正弦波放大电路与移相电路设计
正弦波放大电路与移相电路设计

正弦波放大电路与移相电路设计

一、性能指标:

输入为双极性信号,幅值不大于200mV的正弦波;

频率分别为10KHz-50KHz、100KHz-3MHz;

增益20db-40db可调,输出电压为幅值0-5V;

输入输出电阻:50欧姆

对10k、30k和50k信号可进行相位调整。

二、器件选型

集成运放:THS3091、OPA300、VCA810

场效应管:2N3686

三、电路模块

1.正弦波放大电路

2.实现增益步进可调

3.0~360°可调移相电路设计

四、电路设计

1.正弦波放大电路:

由于题目要求电路既能在低频(10KHz-50KHz)进行信号放大、又要在高频(100KHz-3MHz)可以进行信号放大,可选用增益带宽积较大的两类常用高速运放——THS3091、OPA300。通过multisim模拟放大波形输出,发现OPA300在低频段的波形失真严重、高频段表现很好;而THS3091无论在低频还是高频,放大性能都较好,所以本文选用运放THS3091。

(1)下图为OPA300在输入频率为50kHz和50MHz下的放大性能

(50kHz)

(50MHz)

(21)下图为THS3091在输入频率为50kHz和50MHz下的放大性能

(50kHz)

(50MHz)

2.实现增益步进可调电路

1中的电路用滑动变阻器实现增益可调,效果比较粗糙,方法比较老旧,不能做到精确调控。

为实现增益步进可调,最笨的方法是采用多个上述的电流反馈放大器级联,用电阻网络选通的方式来实现增益可调,但此法麻烦不说,还不稳定。

这里,我们选用压控增益放大器:TI 的VCA810在±40dB 的增益可调范围内拥有35MHz 的带宽,满足题目的指标要求。 电压控制增益可变放大器:

该放大器的3dB 带宽

为25MHz ,满足本题要求。C V 从-2V 调整到0V 可实现对输入信号的(-40dB )到(40dB )可调,其增益表达式为:

)1(40)(+-=C dB V G

3.移相电路设计

(1)0~360°可调移相电路设计

利用两级移相放大器可以组成0~360°可调移相电路。0~360°可调移相电路如图所示。图中Q1和Q2是0~180°相移放大器,两级移相放大器可以完成0~360°。Q3是缓冲放大器。调节电位器RP1和RP2,可以使输入信号产生移相。

此电路虽说可以实现0~360°移相,但在移相过程中不可避免地降低了幅度值,对于本题不能使用,下面介绍一种等幅移相电路,其可调相范围为0~-150°,虽说降低了相位调节范围,但保证了幅度的恒定,符合本题相位微调同时不改变幅度的要求。

(2)等幅移相电路设计

令121fC X π=,则输出输入的相位差为)2arctan(

2

233X

R X

R -=θ,下面是用multisim 仿真等幅移相器的波形(信号频率假定为kHz f 50=,固定电容值为uF C 7.41=,改变3R 的阻值):

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

可程控移相电路设计

可程控移相电路设计 根据下图所示的电路原理框图,自行设计一可程控移相电路,要求最小移相角度不大于1o。(输入信号:正弦波,1kHz,V P-P=2V) (一)查阅A/D转换芯片TLC5510、随机存贮器6264、D/A转换芯片DAC0832的应用资料。 (二)查阅有关模拟信号移相电路的相关资料。 (三)自行设计实现本实验项目要求的实验电路图。 (四)自拟实验步骤和实验表格,测试所设计电路是否达到实验要求。 控制信号时序图(大概)

8位高速A/D转换器TLC5510的应用 摘要:TLC5510是美国德州仪器(TI)公司生产的8位半闪速结构模数转换器,它采用CMOS 工艺制造,可提供最小20Msps的采样率。可广泛用于数字TV、医学图像、视频会议、高速数据转换以及QAM解调器等方面。文中介绍了TLC5510的性能指标、引脚功能、内部结构和操作时序,给出了TLC5510的应用线路设计和参考电压的配置方法。 关键词:高速AD转换;数据采集;TLC5510 1概述 TLC5510是美国TI公司生产的新型模数转换器件(ADC),它是一种采用CMOS工艺制造的8位高阻抗并行A/D芯片,能提供的最小采样率为20MSPS。由于TLC5510采用了半闪速结构及CMOS工艺,因而大大减少了器件中比较器的数量,而且在高速转换的同时能够保持较低的功耗。在推荐工作条件下,TLC5510的功耗仅为130mW。由于TLC5510不仅具有高速的A/D转换功能,而且还带有内部采样保持电路,从而大大简化了外围电路的设计;同时,由于其内部带有了标准分压电阻,因而可以

从+5V的电源获得2V满刻度的基准电压。TLC5510可应用于数字TV、医学图像、视频会议、高速数据转换以及QAM解调器等方面。 2内部结构、引脚说明及工作原理 2.1TLC5510的引脚说明 TLC5510为24引脚、PSOP表贴封装形式(NS)。其引脚排列如图1所示。各引脚功能如下: AGND:模拟信号地; ANALOGIN:模拟信号输入端; CLK:时钟输入端; DGND:数字信号地; D1~D8:数据输出端口。D1为数据最低位,D8为最高位; OE:输出使能端。当OE为低时,D1~D8数据有效,当OE为高时,D1~D8为高阻抗; VDDA:模拟电路工作电源; VDDD:数字电路工作电源; REFTS:内部参考电压引出端之一,当使用内部电压分压器产生额定的2V基准电压时,此端短路至REFT端; REFT:参考电压引出端之二; REFB:参考电压引出端之三; REFBS:内部参考电压引出端之四,当使用内部电压基准器产生额定的2V基准电压时,此端短路至REFB端。

换能器前置放大电路设计

项目支持:北京市科技攻关项目,农业节水灌溉监测与控制设备研制与开发(D0706007040191)国家“十一五”科技支撑计划农产品流通过程信息化关键技术与系统研发(2006BAD10A04) 国家“十一五”科技支撑计划灌区地下水开发利用关键技术(2006BAD11B05) 微弱信号检测的前置放大电路设计 张石锐1,2,郑文刚2*,黄丹枫1,赵春江2 (1.上海交通大学农业与生物学院上海市 200240 2.国家农业信息化工程技术研究中心北京市 100097) 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 关键字:精准农业、微弱信号检测、仪表放大器、前置放大电路 中图分类号:TN721.5 文献标识码:A The design of preamplifier circuit based on weak signal detection ZHANG Shi-rui1,2,ZHENG Wen-gang2,HUANG Dan-feng1,ZHAO Chun-jiang2 (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2. National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China) Abstract:Combined with the demand of the detection of weak signal in precision agriculture, the article introduced the circuit principle of deigning preamplifier circuit whit I/V Conversion level, instrumentation amplifier level and low-pass filter level. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of choosing elements and noise reduction. Finally, gave the design of the weak signal detection pre-amplifier using the program-controlled integrated instrumentation amplifier PGA202. Key words: precision agriculture ,weak signal detection, instrumentation amplifier, preamplifier 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

模拟移相电路的设计 通信类

模拟移相电路的设计 摘要 目前,随着航空、航天技术的发展以及军事上的需要,对相位的测量提出了一些新的要求,如更高的测量精度及更高的分辨能力。测量相位中最重要的部件之一就是移相器。另外,移相器是相控阵雷达中的关键部件,其性能的优劣直接影响相控雷达系统的性能。本次课题源于航空、航天技术的发展以及军事上的需要及地面雷达接收系统的需要,设计了一个模拟移相网络。 本文设计的模拟移相网络的基本要求是:一路输入信号经过模拟移相电路输出两路信号:一路是原信号经过电压跟随器输出的信号,另外一路是经过移相网络输出的信号(要求是在不同频率下输出相位连续可调的信号)。 按任务要求,在输入信号频率为5kHz、50kHz、、100kHz上,设计相移范围从–60度到+60度连续变化,并且输出电压幅度为5V。我们总体讨论了设计方案,使用RC阻容移相网络以及集成运放、电压跟随器等元器件设计模拟移相网络。并且提出了改进移相器性能的措施,对移相器部件进行仿真测试。 关键词:模拟移相器RC阻容移相网络集成运放电压跟随器

目录第一章引言 1.1课题研究背景 1.2模拟移相器的发展状况 1.3本课题的主要内容 第二章移相网络的基本原理 2.1基本移相原理 2.2移相网络的方案选取 2.3移相网络的性能指标 2.4移相网络的参数设计 第三章模拟移相网络的仿真优化 3.1Multisim仿真软件的介绍 3.2在Multisim环境下的仿真结果 第四章结论 第五章附图

第一章引言 1.1课题研究背景 电磁波在传输时,不仅幅度会发生变化,同时相位也要发生变化。衰减和 相移是代表同一复参数的幅度和相角的变化。但是由于历史发展的原因,衰减 测量的重要性较早的被人们认识并解决,所以常把衰减作为一个单项指标和测 量任务来看待。从上个世纪六十年代开始,随着对人造卫星、洲际导弹、航天 飞机等各种飞行器及对其他的目标进行监控的需求日益增强,并且为了在复杂 的环境中提取更多的信息,出现了控阵天线及加速器等较新技术,相移的测量(即相位测量)则迟至了这些新技术出现时才被重视。 移相器一般用于雷达系统、通讯系统、微波仪器和测量系统等方面,其中,最主要的是用于相控阵雷达和智能天线系统中。目前,随着航空、航天技术的 发展以及军事上的需要,对相位的测量提出了一些新要求如更高的测量精度及 更高的分辨能力。本次课题源于航空、航天技术的发展以及军事上的需要及地 面雷达接收系统需要存在相位差的两个同频信号,我们设计了一个移相网络。 一般地说,依据不同的定义方法移相器可分为不同的种类。根据控制方式的不同,移相器可分为模拟式移相器和数字式移相器。数字移相器相移量只能在一定范围内取某些特定值,数字移相器虽然可以用数字控制电路,与外电路的接口比较容易,但是模拟移相器可以实现360度范围内的无极扫描,有更高的移相精度,它多用在系统相位自动调整的场合和移相精度要求特别高的场合。而模拟式移相器是一种电压控制连续线性移相的微波器件移相器,它可以实现相位线性连续的变化。所以我们这里只设计模拟式移相器。它的技术指标主要有:工作频带、相移量、相移精度、插入损耗、插入损耗波动、电压驻波比、功率容量、移相器开关时间等。 当前微波移相器广泛应用,微波电控器件利用参数可电调的材料和器件组成的控制微波信号幅度或相位的器件。可电调的材料和器件主要有半导体二极管(如PIN管﹑变容管和肖特基管等)和铁氧体材料。控制信号幅度的器件有衰减器﹑调幅器﹑开关器和限幅器等﹔控制信号相位的有移相器和调相器等。PIN管具有不同的正反向特性﹐当它被反向偏置时可等效为小电容而近似开路﹐而在正向偏置时则可等效为可变电阻﹐若偏压增大﹐其阻值则减小。PIN管衰减器就是

三极管10倍放大电路实验报告

三极管放大电路实验报告 一、实验目的: 掌握三极管的工作模式,三极管输入输出特性曲线,静态工作点,以及常用的放大电路分析,估算(计算/图解) 二、准备工具材料: 工具材料:面包板,面包线,电阻若干,三极管NPN C1815 PNP A1015 ,电容若干 仪器仪表:万用表,双踪显示示波器,函数信号发生器,开关稳压电源 三、电路功能要求: ①.电源为12V单电源 ②.输入信号正弦波1KHz 峰值:50mV ③.电压放大倍数Au=10; ④.波形不失真,误差+-10%,不考虑频率响应范围 四、电路设计(NPN共发射极分压偏置放大电路): 根据资料:三极管C1815 参数: 硅管,b值为200----400 UCE=0.7 设计:计算静态工作点:IB,IC,UCE Q点应工作在输出特性曲线的中央 根据三极管输出特性曲线图,要使Q点在中央,数值IB在50—150uA范围 数值UCE在6—8V范围;设Ub点电位为电源电压一半,即:UB=1/2VCC,IC=IE在b(50—150uA)mA范围,这里取IB为50uA,b为300,电压放大倍数为10,电路不带负载 计算过程:理论值 UE=UB--UBE=5.3V; IE=IC=IB*b; IE=IC=50uA*b=15mA RE=UE/IE=5.3V/0.015A=353R; UB=(Rb1/Rb1+Rb2)*VCC=5; Rb1= Rb2=50K Au=10=-b(RL’/rBE) rBE=300+(1+b)*(26/IE)=821R RL’=RC//RL RC=(rBE/b)*Au=27.4R; UCE=VCC-IC(RC+RE)=6.294V 五、实验过程: 按照设计好的电路,在面包板上实验,输入正弦1KHz信号,峰值50mA 用示波器观察输入波形;给放大电路接上电源,用示波器观察输出波形,两路信号相比较,发现放大倍数没有10倍,理论值跟实际值有差别,调节电阻RC使得放大倍数为10倍,且不失真的情况下RC=50R 时,电压放大倍数刚好10倍, 温度变化时,对放大电路的影响比较小,说明分压偏置放大是可靠的 测试频率响应范围,在不失真,放大倍数不改变的情况下为500Hz-------500KHz

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

信号放大滤波电路设计

中北大学 课程设计说明书 学生姓名:罗再兵学号: 0906044151 学院: 电子与计算机科学技术学院 专业: 电子科学与技术 题目: 信号放大滤波电路设计 指导教师:孟令军职称: 副教授 2011 年 12 月 30日

目录 1、设计任务 (2) 2、设计目的 (2) 3、设计方案 (2) 4、参考电路设计与分析 (3) 4.1、同相比例放大器 (3) 4.2、二阶压控电压源低通滤波器 (3) 4.3、二阶压控电压源高通滤波器 (4) 5、信号放大滤波电路 (5) 5.1信号放大滤波电路设计 (5) 5.2信号放大滤波电路仿真 (6) 5.3信号放大滤波电路性能评估 (8) 5.4信号放大滤波电路PCB板图 (8) 6、设计仪器设备 (9) 7、设计心得 (9)

一. 设计任务 1、查阅熟悉相关芯片资料; 2、选择合适的运算放大器,实现信号的3级放大;总放大倍数为12; 3、并通过高通、低通滤波电路滤波; 4、利用PROTEL 绘制电路原理图和印刷板图,并利用multisim 软件仿真。 二. 设计目的 1、掌握电子电路的一般设计方法和设计流程。 2、学习使用PROTEL 软件绘制电路原理图和印刷版图。 3、掌握应用multisim 对设计的电路进行仿真,通过仿真结果验证设计的 正确性。 三.设计方案 由设计题目和设计要求可知,设计此电路需要用到集成运算放大器和高 低通滤波电路,首先信号放大12倍,我们选用同相比例放大器放大,该电路结构简单,性能良好;滤波电路部分我们选用典型的二阶压控电压源低通滤波器和二 阶压控电压源高通滤波器,该电路具有电路元件少,增益稳定,频率范围宽等优点。设计框架图如下: 信号输入 信号输出 图1 信号放大滤波电路设计方案 图1为信号放大滤波电路设计方案。在这一方案中,系统主要由同相比例放大器、二阶压控电压源低通滤波器、二阶压控电压源高通滤波器组成。 由于要求实现信号的3级放大,总放大倍数为12,信号经过同相比例放大器 后放大12倍,再经过二阶压控电压源低通滤波器(在通频带内增益等于1)过滤掉高频信号而留下所需频率信号,然后再经二阶高通滤波器(在通频带内增益等于1)后就可以得到我们所需频段的信号。 同相比例放大器 二阶压控电压源低通滤波器 二阶压控电压源高通滤波器

增益自动切换的放大电路设计

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第二次实验 实验名称:增益自动切换电压放大电路的设计院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师:

实验二增益自动切换电压放大电路的设计 一、实验内容及要求 设计一个电压放大电路,能够根据输入信号幅值自动切换调整增益。设输入信号频率为0~20KHz,其幅值范围为0.1~10V(峰峰值Upp)。电路应实现的功能与技术指标如下:1.基本要求 当输入为直流信号时,要求设计的电路达到以下要求: U<0.5V时,电路的增益约为10倍。 (1)当i U<3V时,电路的增益约为1倍。 (2)当0.5

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

移相电路

【摘要】:正移相电路的应用很广,如闸流管控制点火时间;相敏整流或相敏放大电路中要求栅极和板极电压在初始时具有一定的相位关系;以及在自动控制或测量放大等电路中都需要移相电路.一般对移相电路的要求有四:第一,具有大的移相幅度;第二,输出电压相移变化时幅度不变或变化很小;第三,能给出一定的功率;第四,效率高.这四要求的主次视具体情况而定,如要求大功率输出时,以后两项要求为主;但在小功率输出时 以前两项要求为主.下面来介绍一种常见的移相电路(图1)的设计法,这电路的特点是在移相幅度很大时,输 出电压变化很小,且能输出一定的功率. 摘要:介绍了一种具有单脉冲和双脉冲模式,并具有缺相保护功能和三相全数字移相触发电路的设计方案,该移相触发电路的相移由输入直流电平连续调节,而输出脉冲则使用100~125kHz方波调制。文中阐述了电路的工作原理,并给出了部分模拟结果。 关键词:移相触发电路;A/D转换;缺相保护 1移相触发电路工作原理 整个电路按功能可分为A/D转换模块(9bit-A/D)、移相模块(phase_shift)、脉冲产生模块(pulse_gen)、缺相保护模块(portect)、时钟模块(clock)、输出模块(out)等六个模块。其电路原理框图如图1所示。 该电路在工作时,首先使正弦交流电压经过过零比较器以产生工频方波A并进入移相模块,同时将外部控制电压经过A/D转换的数字量也送入移相模块,然后由移相电路根据A /D转换的结果和相对于工频方波的正负半周移动相应的角度后产生一窄脉冲PA(PA1、PA2);再在PA的上升沿来触发脉 冲产生电路以在相同的位置产生要求的脉宽的脉冲GA(GA1、GA2);此脉冲经过时钟电路调制后产生要求的输出OUT(OA1,OA2)。其工作波形如图2所示(移相150°,双窄脉冲模式)。

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、

调谐小信号放大器分析设计方案与仿真

实验室 时间段 座位号 实验报告 实验课程 实验名称 班级 姓名 学号 指导老师

小信号调谐放大器预习报告 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。 二.实验内容 调谐放大器的频率特性如图所示。 图1-1 调谐放大器的频率特性 调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而且还有选频作用。本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。 二.单调谐放大器 共发射极单调谐放大器原理电路如图1-2所示。 放大倍数f o f 1f K 0.7o K o K 2o f ?通频带f ?2o f ?2o f ?

图1-2 图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。 三.双调谐回路放大器 图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。 本次实验需做内容

正弦波放大电路与移相电路设计

正弦波放大电路与移相电路设计 一、性能指标: 输入为双极性信号,幅值不大于200mV的正弦波; 频率分别为10KHz-50KHz、100KHz-3MHz; 增益20db-40db可调,输出电压为幅值0-5V; 输入输出电阻:50欧姆 对10k、30k和50k信号可进行相位调整。 二、器件选型 集成运放:THS3091、OPA300、VCA810 场效应管:2N3686 三、电路模块 1.正弦波放大电路 2.实现增益步进可调 3.0~360°可调移相电路设计 四、电路设计 1.正弦波放大电路: 由于题目要求电路既能在低频(10KHz-50KHz)进行信号放大、又要在高频(100KHz-3MHz)可以进行信号放大,可选用增益带宽积较大的两类常用高速运放——THS3091、OPA300。通过multisim 模拟放大波形输出,发现OPA300在低频段的波形失真严重、高频段表现很好;而THS3091无论在低频还是高频,放大性能都较好,所以本文选用运放THS3091。

(1)下图为OPA300在输入频率为50kHz和50MHz下的放大性能 (50kHz) (50MHz) (21)下图为THS3091在输入频率为50kHz和50MHz下的放大性能 (50kHz) (50MHz) 2.实现增益步进可调电路 1中的电路用滑动变阻器实现增益可调,效果比较粗糙,方法比较老旧,不能做到精确调控。 为实现增益步进可调,最笨的方法是采用多个上述的电流反馈放大器级联,用电阻网络选通的方式来实现增益可调,但此法麻烦不说,还不稳定。

这里,我们选用压控增益放大器:TI 的VCA810在±40dB 的增益可调范围内拥有35MHz 的带宽,满足题目的指标要求。 电压控制增益可变放大器: 该放大器的3dB 带宽 为25MHz ,满足本题要求。C V 从-2V 调整到0V 可实现对输入信号的(-40dB )到(40dB )可调,其增益表达式为: )1(40)(+-=C dB V G 3.移相电路设计 (1)0~360°可调移相电路设计 利用两级移相放大器可以组成0~360°可调移相电路。0~360°可调移相电路如图所示。图中Q1和Q2是0~180°相移放大器,两级移相放大器可以完成0~360°。Q3是缓冲放大器。调节电位器RP1和RP2,可以使输入信号产生移相。

多级放大电路的设计报告报告

电工电子技术课程设计报告 题目:多级放大电路的设计 二级学院机械工程学院 年级专业 14 动力本 学号 1401250029 学生姓名周俊 指导教师张云莉 教师职称讲师 报告时间:2015.12.28

目录 第一章.基本要求和放电电路的性能指标 (1) 第二章.概述和任务分析 (5) 第三章.电路原理图和电路参数 (6) 第四章.主要的计算过程 (9) 第五章.电路调试运算结果 (11) 第六章.总结 (12) 制作调试步骤及结果 (12) 收获和体会 (13) 第七章.误差和分析 (14) 第八章.参考文献 (15)

第一章.基本要求和放电电路的性能指标 1. 基本要求: 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC =+12V, -V EE =-12V ,要求设计差分放大器恒流源的射极电流I EQ3=1~1.5mA ,第二 级放大射极电流I EQ4=2~3mA ;差分放大器的单端输入单端输出不是真电压增益至 少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10k Ω,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。 2. 放电电路的性能指标: 第一种是对应于一个幅值已定、频率已定的信号输入时的性能,这是放大电路的基本性能。第二种是对于幅值不变而频率改变的信号输出时的性能。第三种是对应于频率不变而幅值改变的信号输入时的性能。 1.1第一种类型的指标: 1.放大倍数 放大倍数是衡量放大电路放大能力的指标。它定义为输出变化量的幅值与输入变化量的幅值之比,有时也称为增益。虽然放大电路能实现功率的放大,然而在很多场合,人们常常只关心某一单项指标的放大的倍数,比如电压或者电流的放大倍数。由于输出和输入信号都有电压和电流量,所以存在以下四中比值: (1-1) 1.

相关文档
最新文档