油水分离工艺的方法简介

油水分离工艺的方法简介
油水分离工艺的方法简介

油水分离工艺的方法简介

1、离心分离法

离心分离法是使装有含油废水的容器高速旋转,形成离心力场,因固体颗粒、油珠与废水的密度不同,受到的离心力也不同,达到从废水中去除固体颗粒、油珠的方法。常用的设备是水力旋流分离器。

2、浮选法

浮选法,又称气浮法,是国内外正在深入研究与不断推广的一种水处理技术。该法是在水中通入空气或其他气体产生微细气泡,使水中的一些细小悬浮油珠及固体颗粒附着在气泡上,随气泡一起上浮到水面形成浮渣(含油泡沫层) ,然后使用适当的撇油器将油撇去。该法主要用于处理隔油池处理后残留于水中粒经为10~60μm的分散油、乳化油及细小的悬浮固体物,出水的含油质量浓度可降至20~30mg/L 。根据产生气泡的方式不同,气浮法又分为加压气浮、鼓气气浮、电解气浮等,其中应用最多的是加压溶气气浮法。

3、生物氧化法

生物氧化法是利用微生物的生物化学作用使废水得到净化的一种方法。油类是一种烃类有机物,可以利用微生物的新陈代谢等生命活动将其分解为二氧化碳和水。含油废水中的有机物多以溶解态和乳化态,BOD5 较高,利于生物的氧化作用。对于含油质量浓度在30~50mg/L以下、同时还含有其他可生物降解的有害物质的废水,常用生化法处理,主要用于去除废水中的溶解油。含油废水常见的生化处理法有活性污泥法、生物过滤法、生物转盘法等。活性污泥法处理效果好,主要用于处理要求高而水质稳定的废水。生物膜法与活性污泥法相比,生物膜附着于填料载体表面,使繁殖速度慢的微生物也能存在,从而构成了稳定的生态系统。但是,由于附着在载体表面的微生物量较难控制,因而在运转操作

上灵活性差,而且容积负荷有限。

4、重力分离法

重力分离法是典型的初级处理方法,是利用油和水的密度差及油和水的不相溶性,在静止或流动状态下实现油珠、悬浮物与水分离。分散在水中的油珠在浮力作用下缓慢上浮、分层,油珠上浮速度取决于油珠颗粒的大小,油与水的密度差,流动状态及流体的粘度。

5、过滤法

过滤法是将废水通过设有孔眼的装置或通过由某种颗粒介质组成的滤层,利用其截留、筛分、惯性碰撞等作用使废水中的悬浮物和油分等有害物质得以去除。常用的过滤方法有3 种:分层过滤、隔膜过滤和纤维介质过滤。膜过滤法又称为膜分离法[5] ,是利用微孔膜将油珠和表面活性剂截留,主要用于除去乳化油和某些溶解油。滤膜包括超滤膜、反渗透膜和混合滤膜等。膜材料包括有机膜和无机膜两种,常见的有机膜有醋酸纤维膜、聚砜膜、聚丙烯膜等,常用的无机膜有陶瓷膜、氧化铝、氧化钴、氧化钛等。乳化油处于稳定状态,用物理方法或者化学方法很难将其分离。随着膜科学的飞速发展,膜过程处理乳化油污水已逐步被人们接受并在工业中应用。

6、化学法

化学法又称药剂法,是投加药剂由化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的一种方法。常用的化学方法有中和、沉淀、混凝、氧化还原等。对含油废水主要用混凝法。混凝法是向含油废水中加入一定比例的絮凝剂,在水中水解后形成带正电荷的胶团与带负电荷的乳化油产生电中和,油粒聚集,粒径变大,同时生成絮状物吸附细小油滴,然后通过沉降或气浮的方法实现油水分离。常见的絮凝剂有聚合氯化铝(PAC) 、三氯化铁、硫酸铝、硫

酸亚铁等无机絮凝剂和丙烯酰胺、聚丙烯酰胺( PAM) 等有机高分子絮凝剂,不同的絮凝剂的投加量和pH 值适用范围不同。此法适合于靠重力沉降不能分离的乳化状态的油滴和其他细小悬浮物。

7、吸附法

吸附法是利用亲油性材料,吸附废水中的溶解油及其他溶解性有机物。最常用的吸油材料是活性炭,可吸附废水中的分散油、乳化油和溶解油。由于活性炭的吸附容量有限(对油一般为30~80mg/g) ,成本高,再生困,一般只用作含油废水多级处理的最后一级处理,出水含油质量浓度可降至0.1~0.2 mg/L。1976年湖南长岭炼油厂在废水处理中就采用了活性碳吸附进行深度处理。国内外对于新型吸附剂的研制也取得了一些有益的成果。研究发现,片状石墨能吸附由海上油轮漏油事件释放的重油并易于与水分离。吸附树脂是近年来发展起来的一种新型有机吸附材料,吸附性能好,再生容易,有逐步取代活性炭的趋势。

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

油水分离器使用说明

油水分离器使用方法 油水分离器就是串联在机组进油管路中,将油和水分离开来的仪器,原理主要是根据水和燃油的密度差,利用重力沉降原理去除杂质和水份的分离器,内部还有扩散锥,滤网等分离元件。 Lees power 可针对不同地区油品以及客户要求在发电机组加装此装置,且确保机组出厂前每一个此装置都经过严格测试。下面为大家讲诉如何使用油水分离器。分两部分: 一、初次使用 二、排放完积水杯内的水或者杂质后的使用方法 首先,我们先来了解下油水分离器是如何串联在机组进油管路中的:(进油油路) 图一图二图三 使用方法: 一、初次使用(工具13#开口扳手,抹布适量) 用户在初次使用发电机组时,首先将底部油箱加满柴油后。 然后使用13#的开口扳手(图1),将(图2)红色圈内的柴油滤清器总成上的螺栓逆时针方向松开后(图4),在将(图5)中红色圈内手压油泵,向下压10-15下,将柴油滤清器内部的空气排出(伴随有少量柴油)。同时会发现(图6)油水分离器的积水杯中已经吸有油箱中的柴油。 图1图2 图3 图4 图5图6 图7 图8 持续按压图五圈内手压油泵,直至油水分离器积水杯中注满油,如图7;然后将图8柴油滤清器总成上的螺栓顺时针拧紧。图七图八此时方可开启机组 二、排放完积水杯内的水或去除杂质后的使用方法 (工具13#开口扳手,抹布适量) 机组长时间使用或者油品不纯净的情况下,油水分离器积水杯内积存大量水或者杂质。此时需要对油水分离器进行清理工作。操作如下: 先用13#的开可扳手将图9红色圈内的积水杯底的白色放水栓顺时针方向松开如图11,将水

排出后(如是杂质直接卸下放水栓)再逆时针将白色放水栓拧上(放水栓为塑料易损件,故而确保不漏油即可),至图12状。然后重复图1-图8动作将油水分离器积水杯内吸满油。方可再开启机组。注:无论在何时开启机组都请确认油水分离器积水杯内柴油是满的,方可开启机组。否则机组开启后会立刻报警。 图9图10图11图12

油水分离器操作说明

油水分离器操作说明书 Operation Instruction to Oil-Water Separator 一、概述Summarize YSF型油水分离组合装置是由中国船舶工业总公司第九设计研究院针对陆域含油废水特性设计的一种新颖油水分离装置,采用了多项油水分离的最新成果,可以适用于不含表面活性剂的各类机油、柴油、润滑油、动植物油等油品的含油废水处理,具有结构紧凑,操作管理维修简便,能耗低,分离效率高等特点。处理后出水的含油量能有效地控制在5mg/L以下,可直接排放或适当回用,分离出的废油也可回收利用,因此在节能、节水、保护环境等方面均显示出良好的技术经济效益。YSF type oil-water separator combiner, one of latest oil-water separating device, which has been designed in the light of oiled wastewater’s characteristic by No. 9Design and Research Institute of Ship Industry Parent Company of China and has adopted many latest oil-water separating research results, is suit for many kinds of oiled wastewater treatment such as machine oil, diesel oil, lubricating oil and tallow, vegetable tallow. And it has the advantage of compact structure, easy operation and maintenance, low consumption, high separating effect etc. So, the oil percentage of effluent by treatment can be up to down 5mg/L effectively and may directly discharge or reuse properly, also, the removal oil can reuse. Thereby above, it is indicative that it has upstanding technical economical benefits at aspects of energy and water saving, environment protection. 本装置采用简便、低运行耗费的全物理法处理工艺。It had adopted true physical treatment process, which is easy, and low energy consumption.

油水分离器使用说明书

油水分离器使用说明书 1 .概述 舱底水分离器是在积累多年研制经验及吸取国外先进技术的基础上采用真空及微滤原理研制成功的新产品。可用于处理船舶舱底油污水,也适用于工矿企业、油库等含油污水处理,并能处理含乳化油浓度较高的油污水,性能符合国际海事组织规定的船舶含油污水排放标准及我国政府规定的船舶、工矿企业油污水排放标准,并符合国际海上环境保护委员会 IMO-MEPC107 ( 49 )决议规范要求。本产品己获得中国船级社颁发的国际通用的型式认可证书。 本装置有下列特点: ( l ) 配套泵不直接吸入含油污水,因此避免了原含油污水的乳化,保证分离装置有较高的分离效果。 ( 2 )分离器中的第一级聚结分离元件能自动反冲洗,不会堵塞,长期使用不需要更换。 ( 3 ) 有良好的排油自动控制及配套泵的安全保护措施,根据油污水性质能自动控制一级处理排放或转入二级处理排放,以及处理不合格时自动关闭排出口不合格处理水返回机舱功能。操作简便,可靠性高,符合无人值班机舱要求。 ( 4)装置由一级分离器、二级分离器、螺杆泵(柱塞泵)、电气控制箱、油份浓度报警记录仪、粗/精滤器、三通转换阀(电磁转换阀)等组装在公共基座上,必要时也可以根据机舱位置将一级油水分离器和电气控制箱及二级乳化油分离器和油份浓度报警记录仪分开独立安装。 3 .基本工作原理(型舱底水分离器系统原理图) 配套螺杆泵(柱塞泵)在一级分离装置排出口处抽吸处理后的排水过程中,使一级分离装置内产生真空,舱底水经粗过滤器和上部吸水/排油阀进入分离器内部扩散喷口,进行初步油水分离,大油滴浮至顶部,含有小颗粒油滴的污水向下进入特制的聚结器,在内部进行聚结分离,形成较大油滴,上浮至顶部集油室。一级处理后的污水则向下经分离器底部排出,流向底部进水三通阀(电磁阀),进入单螺杆泵(柱塞泵)吸入口,从泵的排出口流出再经过排水三通阀,一、二级转换三通阀(常开、常闭电磁阀)和一级排水截止止回阀排向舷外。 当一级分离器排出的水不合格时,油份报警记录仪发出信号,转换三通阀(常开、常闭电磁阀)动作,一级排放水进入二级乳化油分离器继续进行微滤分离处理。合格的排放水经二级排水三通阀(二级排水截止止回阀)排向舷外,每隔三十分钟再回复至一级分离器处理,恢复上述处理工况。当二级乳化油分离器处理性能失效,二级排放不合格时,油份报警记录仪再次发出信号,回舱气动阀(回舱电磁阀)打开,处理水经此阀回舱底。 当处理工况为二级微滤分离时,二级分离器中上部的排污调节阀为常开式,一部分带有细小固体悬浮物的油污水通过此阀回舱底以减少微滤器堵塞阻力,排污调节阀的开启量,通过观察流量计调节至额定的l / 2排出水量。 分离后的污油在一级分离器的顶部集聚到一定程度时,油位检测器触发信号,气控型分离装置使一级处理电磁阀开启,压缩空气同时进入三只三通阀的顶部气缸,推动活塞向下,关闭常通口,打开常闭口,舱底水暂停进入分离器,分离后的水暂停排出。海水(清水)由进水三通阀的常闭口进入泵吸入口,从泵的出口再通过排水三通阀的常闭口进入分离器底部,逆向经过聚结器进行反冲洗,并使分离器内部由真空变成压力状态。集聚在顶部的污油通过上部吸水/排油三通阀的常闭口排向污油柜。 4 .装置的主要配套件 4 .1 .电气控制箱 4 .1 .1 专用泵的启动,停止及一、二级自动转换原理(见图2电气原理接线图) 舱底水分离器专用泵组由三相交流电动机带动单螺杆泵(柱塞泵)将含油污水吸入舱底水分离器。 当舱底油污水被处理完或吸入过滤器被堵塞时,均能使专用泵停止工作,其电器工作原理为: 当污水舱内液位过低出现吸空现象时,真空度下降至大气压力,或当吸入滤器被堵塞时,分离器上部的真空度将急剧上升,在出现这二种情况时,真空度有明显变化,通过电接点真空表转换成电信号,当真空度过高时,实际真空度指针(黑色针)与高真空度接触指针(绿色指针调整至一0 . 05MPa )接通,当真空度过低时,真空度指针与低真空度接触指针(红色指针调整至一0 . 01MPa )接通,切断安装在电器控制箱内的交流接触器电源,使电动机停止工作。 4 .1 .2 污油温度自控原理 为使集油室中高粘度的油通畅地排出,并防止污油粘结在油位检测器上造成控制失灵,在油位检测器附近设置了电加热自控系统。 其工作原理为:利用装在集油室中的温度检测元件接收信号,通过电接点温度表的一根实际温度指针和另二根高、低温度调节指针转换成电信号,对电加热器加热温度实行自控。一般调整至35℃~45℃。 4 .1 .3 自动排油原理 油位是通过电阻式油位检测器检测,其工作原理如下: 在一级油水分离器顶部的集油室中装有高位、低位两根油位检测器,利用油位检测器在水和油中的导电率不同,从而在油位检测器与油水分离器壳体之间产生不同的电信号去控制一级处理电磁阀(排油电磁阀)通过压缩空气打开吸水/排油三通阀排油通道,达到自动排油的目的。 本控制箱还备有手动排油控制。(此时应将排油转换开关拨置手动位置,手动排油动作则自动排油不起作用)。 4 .1 .4 控制箱其它功能说明 (1)本控制箱设有至机舱集中控制台的控制触头,以提供集控台上的灯光,显示 舱底水分离器在工作状态。 (2)控制箱通过两个安装在精滤器和乳化油分离器上的电接点压力表提供超压报警灯以提醒操作员更换失效的滤芯或乳化油

旋风分离器设计计算的研究.

文章编号:1OO8-7524C 2OO3D O8-OO21-O3 IMS P 旋风分离器设计计算的研究 蔡安江 C 西安建筑科技大学机电工程学院, 陕西西安 摘要:在理论研究和设计实践的基础上, 提出了旋风分离器的设计计算方法O 关键词:旋风分离器9压力损失9分级粒径9计算中图分类号:TD 922+-5 文献标识码:A 71OO55D O 引言 旋风分离器在工业上的应用已有百余年历 离器性能的关键指标压力损失AP 作为设计其筒体直径D O 的基础, 用表征旋风分离器使用性能的关键指标分级粒径dc 作为其筒体直径D O 的修正依据, 来高效~准确~低成本地完成旋风分离器的设计工作O 1 压力损失AP 的计算方法 压力损失AP 是设计旋风分离器时需考虑的关键因素, 对低压操作的旋风分离器尤其重要O 旋风分离器压力损失的计算式多是用实验数据关联成的经验公式, 实用范围较窄O 由于产生压力损失的因素很多, 要详尽计算旋风分离器各部分的压力损失, 我们认为没有必要O 通常, 压力损失的表达式用进口速度头N H 表示较为方便O 进口速度头N H 的数值对任何旋风分离器将是常数O 目前, 使用的旋风分离器为减少压

力损失和入口气流对筒体内气流的撞击~干扰以及其内旋转气流的涡流, 进口形式大多从切向进口直入式改为18O ~36O 的蜗壳式, 但现有文献上的压力损失计算式均只适用于切向进口, 不具有通用性, 因此, 在参考大量实验数据的基础上, 我们提出了压力损失计算的修正公式, 即考虑入口阻力系数, 使其能适用于各种入口型式下的压力损失计算O 修正的压力损失计算式是: 史O 由于它具有价格低廉~结构简单~无相对运动部件~操作方便~性能稳定~压力损耗小~分离效率高~维护方便~占地面积小, 且可满足不同生产特殊要求的特点, 至今仍被广泛应用于化工~矿山~机械~食品~纺织~建材等各种工业部门, 成为最常用的一种分离~除尘装置O 旋风分离器的分离是一种极为复杂的三维~二相湍流运动, 涉及许多现代流体力学中尚未解决的难题, 理论研究还很不完善O 各种旋风分离器的设计工作不得不依赖于经验设计和大量的工业试验, 因此, 进行提高旋风分离器设计计算精度~提高设计效率, 降低设计成本的研究工作就显得十分重要O 科学合理地设计旋风分离器的关键是在设计过程中充分考虑其所分离颗粒的特性~流场参数和运行参数等因素O 一般旋风分离器常规设计的关键是确定旋风分离器的筒体直径D O , 只要准确设计计算出筒体直径D O , 就可以依据设计手册完成其它结构参数的标准化设计O 鉴于此, 我们在理论研究和设计实践的基础上, 提出了分级用旋风分离器筒体直径D O 的计算方法O 即用表征旋风分 收稿日期:2OO3-O3-O3 -21- AP = CjPV j 7N H 2

10t油水分离器使用说明书

10t/h 油水分离器 使 用 说 明 书

目录 一:油水分离系统简介--------------------------------3 1:油水分离系统组成----------------------------3 2:油水分离系统工作原理------------------------3 ①固液分离器工作原理----------------------3 ②油水分离器工作原理----------------------4二:油水分离系统工作参数----------------------------5 1:固液分离器工作参数-------------------------5 2: 油水分离器工作参数--------------------------5 3:地坑排水泵工作参数---------------------------5三; 外配套设备清单--------------------------5四:油水分离系统竣工图及设备合格证-------------------6 一:油水分离系统简介

1:油水分离系统组成 该油水分离系统由油水分离器固液分离器排水泵1电控系统组成。 2:油水分离系统工作原理 来自厨房的含油废水经排水地沟及排水管进入固液分离器,固体废物留于分离器内,废液排出固液分离器(每星期清掏一次固液分离器)。废水进入油水分离器,保证废水上升速度部大于0.005m/s( 实际上升速度为0。0037m/s)。此时油水分离(即油水分层,油浮于上面),经刮油机将浮油刮入储油池,分离后的水经水位调节器进入清水池,经污水泵提升外排。刮油的液面根据液位调节器来调节。刮油机构工作10分钟,停110分钟。清水池污水泵于高液位时泵工作,低位时停泵。油水分离器安装于地坑内,当地坑内集水水时,经地坑内排水泵排入油水分离器,水位高时地坑内安装排水泵开启,水位低时停泵。 ①固液分离器工作原理 固液分离器由进水阀门分离器壳体(PVC)及过滤筒组成。 开启阀门,厨房的含油废水进入固液分离器,固体废物留于过滤筒内,液体经过滤筒排出。每星期关闭一次阀门,开启固液分离器上盖,取出过滤筒,将过滤筒中的固体废物倒掉,清洗过滤筒,而后将过滤筒安装于过滤器中,封好过滤器上盖,再开启阀门。 固液分离器示意图

重力式油水分离器说明书

ZKYS高效油水分离器 说明书 东莞方成环保科技有限公司

ZKYS高效油水分离器说明书 针对工厂、小区、机关等场所中含油污水特殊的水质状况,按照斯托克斯定律,结合流体动力学,利用重力分离技术,通过精心计算、设计、研制的一种重力式高效油水分离器专利技术产品。 该设备经过多年的实际使用,证明对于处理聚合分离石油化工、炼油、油田、码头油库,生产中产生的含油污水中的细小油粒,具有特殊的效能,对于生活、食堂、机关等场所的动植物油都具有高效才处理能力。。 该设备可以将废水中的与水互不相溶、且粒径在十几微米以上的细小油珠经过聚合后从水中分离出来,将废水中的含油浓度降至20-50mg/L以下,从而达到石油化工、炼油厂工艺含油污水处理的排放要求及国家有关的污水排放标准。 一.产品简介 ZKYS系列高效油水分离器是采用最新技术生产的新一代环保产品。它根据水和油脂的密度差,采用了独特的工艺原理和设备结构,使用重力式分离技术,自动将废水中的油脂分离出来,是目前国内先进的理想的环保新产品。 二.技术特点 1、利用油水的密度差采用流体动力学原理,结合重力分离法对含油污水进行处理而设计的三相分离器,其处理效果非常明显。 2、将液体射流技术有机的应用于设备中,利用液体传质技术推动并加速细小油粒的上浮速度。经过有机组合,不受进水含油量的浓度变化影响,出水水质稳定。 3、采用特殊工艺压制而成的不锈钢容器。具有均匀布水、增长污水流动距离、缩短油粒上浮距离、增大油滴的聚合机率、加速油水聚合分离的时间,可确保后续分离效果的稳定。 4、为了保证液流在设备内能均匀布水、层流,不形成液流死区,在设备内还配备了一套完整的液体层流布水系统,以确保废水在设备内始终形成层流状态。 5、投资省,设备体积小、占地面积小,为设备配套的土建工程和附属设备特别少,从而大大减少了污水处理的投资费用。

旋风分离器计算结果

旋风除尘器性能的模拟计算 一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L 及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。 图1 旋风分离器几何形状及尺寸(正视图)

旋风分离器的空间视图如图2所示。 图2 旋风分离器空间视图 二、旋风分离器数值仿真中的网格划分 仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。 图3 数值仿真时旋风分离器的网格划分(空间)

图4为从空间不同角度所观测到的旋风分离器空间网格。 图4 旋风分离器空间网格空间视图 本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。 三、对旋风分离器的数值模拟仿真 采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。 以下是计算结果的后处理显示结果。由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。 图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面)

粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

油水分离器的使用方法

油水分离器的使用方法 油水分离器顾名思义就是油水分离的一种机器。有工业用的,也有像餐饮业用来处理污水用的。 油水分离器的使用方法: 1.作业时的环境温度应在-20~45℃范围内。但在低温条件时0℃以下时开机时应保证冷却水箱的水是液态的。 2.使用场地的海拔高度的高低会直接影响本机的真空度,海拔越高真空度越低负值。 3.待处理的油液不能太脏,即油中的杂质颗粒太多。否则必须先用其它过滤设备进行先期过滤以免影响滤油机脱气效率或堵塞过滤元件。 4.引入本机的电源线应有过载保护装置电源线接入本机时应注意油泵、真空泵旋转方向正确应将整机进行可靠的保护接零。运行操作步骤: a.接好滤油机的进出油管进油口指向待处理油品进油管口不要接触到油箱的底部。防止底部的机械杂质对油路的损坏出油口与存放处理过后的油品的容器相连接并确保各连接处不漏油。正确接入三相四线电源。 b.启动电源开关电源指示灯亮证明整机已处于准备工作状态关阀进油口阀门、出油口阀门、旁通阀、放水阀、气液平衡阀、放油阀等按下真空泵启动按钮。 c.待真空罐内的真空度达到时从真空表上可观测到开启进油

口阀门油液会被迅速吸进真空罐内。 d.当真空罐内的油位达到浮球式液位控制器设定值时电磁阀会自动关闭停止进油。这时可将出油口阀门打开。 e.启动油泵电机按钮。提醒用户特别注意启动油泵时一定要先打开出油阀门否则会打坏过滤器。滤油机开始连续工作。 5.进、出油口油液流量平衡的调节:当真空塔上的真空度显示不正常时可适当调节气液平衡阀调节真空度保持进、出口油流量的平衡。当电磁阀工作可能因堵塞等因素不正常工作时可以开启旁通阀保证滤油机能正常工作。 6.当油液循环正常后按下电加热启动按钮对油液进行加热温控仪已预先设定好为40℃—80℃的范围。这时当油液温度升高到设定温度后滤油机会自动关闭加热器当油温低于设定温度时加热器又会自动启动因而该滤油机具有自动加热均匀、恒温的功能。 9.滤油机正常运行一定时间后油液经循环过滤一定次数后就可以从取样口取样化验。 10.如果用户对过滤的精度要求不高时可以从二级过滤器出油精度要求高时可以经过三级精滤器后出油。 11.当压力值≥时在压力保护装置的作用下滤油机将自动停止工作这时就应清洗过滤器或更换过滤元件。然后再启动滤油机工作。 12.当三维立体真空闪蒸塔内油泡沫过多导致进入排水装置

DYF-60A型油水分离器使用说明书教学提纲

目录 一、用途 二、结构简述和工作原理 三、主要技术参数 四、安装要求 五、使用和维护 六、附图及配套件技术资料 1、DYF-60A型油水分离器设备安装基础图 2、DYF-60A型油水分离器设备外形尺寸图(完工图) 3、DYF-60A型油水分离器安装系统图 4、DYF型油水分离器PLC防爆自动控制柜操作说明及附图 5、UDE型射频导纳液位控制器使用说明书 6、SMP立式多级离心泵安装运转说明书 7、NA系列角行程电动球阀执行器使用说明书 8、DYF-60A型油水分离器操作规程

一、用途 本DYF-60A型油水分离器,是一种新型高效旋液、粗粒化聚结油水分离器,是在原旋液、射流、粗粒化油水分离器基础上,为满足中石化扬子石油化工股份有限公司炼油厂酸性水汽提装置改造配套使用要求而专门改进设计生产制造完成。经该设备处理后的排出水中含油量完全符合装置的使用要求。 本设备具有效率高、结构紧凑、处理原理独特先进、使用可靠、操作维修方便,可广泛使用于炼油、石化等行业同类各种含油污水的除油处理。 二、结构简述和工作原理 本油水分离器由壳体、旋流器、浮油收集器、不锈钢波纹板聚结器、不锈钢粗粒化滤芯元件、不锈钢螺旋网聚结器、回水射流泵、PLC 控制箱以及各种阀门、仪表等组装成一个整体。 壳体由碳钢制作,内壁除锈后涂有耐油、耐高温的防腐蚀涂层。 旋流器由不锈钢材料经特殊加工制成,用于初级分离油水中的大部分含油成份和各种机械杂质、焦粉、泥沙等固体悬浮物,起到油污水的预处理作用。因为利用了水力旋流聚结原理,所以其分离效率是斜板沉淀的几十倍。 不锈钢波纹板聚结器是采用不锈钢板,经特殊压制组装而成,具有均匀布水、增长污水流动距离,缩短油粒上浮距离,增大油珠聚合机会、加速油水聚合分离的时间。 粗粒化滤芯元件,是采用不同规格不锈钢螺旋网复合制作而成,完全可捕捉大于15微米以上的油珠,使其逐步聚合后变成大油珠,而加速油水的分层,其粗粒化原理独特而先进,属国内首创,达到国内同类产品较先进水平。 本油水分离器的污水输送可采用重力式(水位高于0.08MPa)或者污水泵输送,具体由总体设计确定。建议采用容积式电动单螺杆泵,可降低污水中的油份产生二次乳化作用,根高分离效果。 本油水分离器是一种单缸四腔卧式的含油污水处理装置,装置上的管路和配套管道均为钢制。为了装置的可靠性,在局部重要地方还采用了不锈钢材料制作。

旋风分离器的工艺计算

旋风分离器的工艺计算

目录 一.前言 (3) 1.1应用范围及特点 (3) 1.2分离原理 (3) 1.3分离方法 (4) 1.4性能指标 (4) 二.旋风分离器的工艺计算 (4) 2.1旋风分离器直径的计算 (5) 2.2由已知求出的直径做验算 (5) 2.2.1计算气体流速 (5) 2.2.2计算旋风分离器的压力损失 (5) 2.2.3旋风分离器的工作范围 (6) 2.3进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 3.1分离性能 (6) 3.1.1临界粒径d pc (7) 3.1.2分离效率 (8) 3.2旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 7.1工作原理 (11) 7.2基本计算公式 (12) 7.3算例 (13) 八.影响旋风分离器效率的因素 (15) 8.1气体进口速度 (15) 8.2气液密度差 (15) 8.3旋转半径 (15) 参考文献 (15)

旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 1.1应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风分离器在净化设备中应用得最为广泛。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。 1.2分离原理 旋风分离器的分离原理有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。

油水分离设备的清洗方法

油水分离设备清洗的必要性 餐厨含油废水的含油废水除含有漂浮油、乳化油以及溶解性油等形式存在的油脂类物质外,还会有大量的悬浮物质进入排水管道后,易堵塞排水管道,造成巨大的损失。这种废水排入水体后,油类物质漂浮于水体表面,影响水体的复氧及其自然净化过程,危害水体生态系统,严重污染周围环境。面对现在餐饮业的兴盛,餐饮废水的大量增加,环境等方面受到大的威胁,通过曝气法分解油脂,从根本上解决这样的问题。 餐厨排水中的油脂主要是饱和脂肪酸、不饱和脂肪酸和酯等组成。离子发生器能够放出大量的电子,电子被空气中的氧分子捕捉,形成氧负离子。当负离子通入水中,会形成大量活性氧物质。这些物质活性高,氧化能力强,使油脂氧化断链成为可溶于水小分子无害的酸、醇、醛等物质,在曝气的作用下,最终被矿化去除。初始油污废水中含有的大量颗粒物沉淀于反应器底部,由于曝气的搅拌作用,使沉淀于反应器底部的颗粒物悬浮于水中,同时一部分有机物质被氧化分解,最终生成可溶于水的简单的有机物并最终矿化。同时由于气浮作用,使水中的无机颗粒物以及不能被降解的固态有机物质与水得到分离,浊度降低,水的透明度提高。这种情况是油水分离设备正常使用的情况下达到的。但是油水分离设备是需要在平时不断维护和清洗的。清晰地目的主要就在于延长油水分离设备的使用寿命,实现更多

的价值。 油水分离设备中的油脂分解装置里配套的小曝气泵上的空气滤网需要定期清洗,最好1~3月清洁、洗涤一次。通过我们的调查发现,现场实际使用的差别比较大,清理时间1~3个月不等,需要注意的是:为了设备的高效运转,一定要及时清洗小空气泵上口的过滤网。用高压空气正反方向清吹。或者用清水加洗涤剂洗,甩干或晾干后安装即可。安装过滤网时最好在原来的位置转动,错开老位置。这样才能确保滤网不被堵塞,确保油水能够正常的排出,这样才能保证下面的操作顺利进行。同时就避免了污水外溢,时间一长发出恶臭,不便于清理,还损坏设备。所以清洗很重要。当然不仅滤网需要不断的清洗,油水分离器的其他设备同样需要定期的维护,定期维护会减少以后损坏的风险,并且避免堆积,时间长了很难清理,看似频繁地工作,其实是减少了后期的清理工作,以及因损坏需换设备的费用。潜在的效益是很大的。 油水分离器需要平时的维护,这样才能够确保使用的时间更长。设备应有专人管理和使用,并定期、定时检查设备的电流值及绝缘是否正常。应定期检查设备个部位是否有渗漏。应定期清理杂物提篮中的杂物过更换杂物桶。如带自动格栅机的设备,需每天检查自动格栅机上是否有杂物淤积或坚硬物卡别。应定期清理箱体底部淤泥。定期检查箱体内部曝气管路是否曝气均匀,如曝气不均匀应检查曝气管是否有泄露或堵塞。 油水分离器根据使用场所的不同,设计不同的设备,餐饮业和

油水分离设备操作说明

水力旋流器 使 用 手 册 深圳科力迩科技有限公司

1、原理 水力旋流器是一种高效的油水分离设备,深圳科力迩采用的水力旋流器技术是在原有切向流水力旋流器技术上的改进,除油效果进一步提高,进水的压力能够尽可能的转化成离心力,提高油水分离效果。含油污水通过水入口进入水力旋流器,分配到容器内每个旋流管上,形成旋流,在离心力作用下,实现油水分离。密度大的水随着外旋流从水出口排出,密度小的油随着内旋流从油出口排出。 二、设计参数 1、系统工艺参数 2、水力旋流器设计技术参数 3、机械数据

1、按照吊装程序和图纸要求进行吊装。 2、吊装到位后,应仔细检查有无损坏,并拆除吊具。 3、如有仪表附件没有安装,请按规定安装仪表和附件。 4、连接橇外的管线,保证所有的接口均已安装就位。 四、操作方法 (以DPP‐HC‐3001E 为例) 1、检查橇内所有阀门,要求所有阀门应处于关闭状态。确保橇外水出口阀门BV‐30182,处于 关闭状态。 2、开启PI‐3024,PI‐3025,PI‐3026 压力表手阀;开启阀门BV‐30176 和放空阀 BV‐X001。 3、缓慢开启污水进口阀BV‐30170,观察压力表PI‐3024,PI‐3025,PI‐3026,压力逐渐上 升,并注意观察放空阀BV‐X001,待见到放空阀BV‐X001 出水后,关闭放空阀BV‐X001。 并开启安全阀后手阀BV‐30175 . 4、立即打开橇外出水阀门BV‐30186 和橇内油出口(BV‐30173,BV‐30172). 5、打开PDIT‐3001E 和PDIT‐3002E 的手阀,观察PDI‐3001E 和PDI‐3002E 的显示数值,其中 PDI‐3001E 为 647kPa 左右,PDI‐3002E 为371kPa 左右; 6、观察PDFIC‐3001E 的差压比显示,初始设定值为1.74. 7、继续观察,待各项显示数值稳定后;对进出口污水开始取样测试。 五、关停设备 按照要求或出现异常状况时,应关停设备。 1、先关闭污水进口阀 BV‐30170,然后关闭橇外的污水出口阀 BV‐30182 和 BV‐30185;关闭油出 口阀门 BV‐30172 和BV‐30173;开启容器底部的放空阀BV‐30179 和GLV‐30180 进行排空; 2、观察压力表 PI‐3024,PI‐3025,PI‐3026 的指针,确认压力降低为0 后,关闭 GLV‐30180;开 启 BV‐30181 进行外排,确认容器内污水排尽后,关闭 BV‐30181 和BV‐30179。 3、关闭压力表和差压计手阀。 六、日常操作和调整 1、巡检时,观察橇内管线和容器有无异常振动和异常的噪音;如发现此状况,应及时报告,并按照要 求关闭设备。 2、按照规定对污水进口和出口进行取样化验,如出口含油量出现超标,中控操作工可以调整 PDFIC‐3001E 的设置值,建议范围为1.7‐2.0 之间;并及时取样分析,如出口含油指标仍然超标,请通知供货厂家进行分析调整。 七、水力旋流器的维护 1、冲洗旋流管 旋流器内的旋流管应最少每周进行冲洗,预防堵塞;如污水出口油含量超标,通过调节差压比依然效果不大时,也建议对旋流管进行冲洗。 在设备正常运行时进行冲洗的步骤如下: 1)关闭油出口压力表PI‐3025 手阀,关闭差压计PDIT‐3001E手阀,避免损坏。

CYF0.25油水分离器说明书

CYF-0.1 CYF-0.25 ━━━━━━━━━━━━━━━船用舱底油污水 分离装置 使 用 说 明 书 镇江美佳环保设备有限公司━━━━━━━━━━━━━━━

一、概述 本油污水分离装置是专为小型机动船设计的,油污水分离装置性能满足我国政府规定的含油污水排放标准小于15PPm的要求, 符合国际海事协商组织的规定。本装置由油水分离器、专用泵、电气控制箱和其它组件构成。其结构紧凑,操作简单,安装维护方便。既能防止水域污染,又能回收废油、节约能源。 二、主要技术性能 1、处理能力:CYF0.1:0.1m3/h CYF0.25:0.25m3/h 2、进口处污水含油浓度250000PPm以下; 3、排放标准15PPm以下; 4、工作压力<2×105P a 5、分离器级间内压力损失<5×104P a 6、配套水泵CYF0.1:DZ-100 CYF0.25:DZ-250 7、水泵电机电源 A.C.380V,可根据用户要求设置。 8、排油控制方式自动和手动; 9、电气控制箱电源 A.C.380V,可根据用户要求设置。 10、外型尺寸CYF0.1:937×466×830 CYF0.25:1070×482×1010 11、进出水管直径Dg15 12、重量CYF0.1:净重125Kg CYF0.25:净重170Kg 三、工作原理 CYF系列舱底油水分离装置是根据重力分离和聚结原理设计而成,图一为装置的工作原理图。 由图一可见,舱底油污水经泵打入左室,大颗粒油滴上浮至集油腔,污水下流过程中,较小颗粒的油滴相互碰撞结合成大油滴也上浮至集油腔,污水经丝网滤器时,将更小的油滴捕捉集聚变大而上浮;同时污水中的固体杂质被丝网滤去。经左室过滤后的污水依次进入中、右室粗粒化装置。由于粗粒化元件特殊的聚集功能,使残留的细微油滴在其中聚成较大油滴,上浮到顶部园筒型集油腔室,符合标准的清水则由排放口排至舷外。 聚集于左集油室的污油由油位检测器、电气控制箱和排油电磁阀装置实现污油的自动排放。在正常运行状态下,中、右集油室的污油数量甚少,采用人工定期排放即可。 四、污油自动排放装置 经油污水分离器分离上浮到左集油室的污油,根据油位检测器和电气控制箱指令自动向污油柜排油,以保证油水分离器正常运行。图二是该装置的系统图。油位讯号是利用油和水的电导率的差异而取得的。布置在集油室的油位检测器,将感受的这个差异讯号送至控制单元——电气控制箱,实现电磁阀的启、闭动作。 --1--

旋风分离器英文文献翻译.

旋风分离器的经向入口结构的气固流场数值模拟 Jie Cui, Xueli Chen,* Xin Gong, and Guangsuo Yu ——上海华东理工大学国家煤气化重点实验室,2002.3.7 对应用在多喷嘴对置气化系统中的一个简单的气体与颗粒离分装置——旋风分离器径向入口结构改进的研究现状进行了回顾。在高效率的前提下径向入口旋流器更适合高压工业运行环境。应用计算流体动力学(CFD)技术为基础的模型来研究一种新型旋风分离器的性能。用这一方法,用雷诺应力模型来描述湍流,然后由拉格朗日随机模型来描述粒子流。该方法很好的验证了测量与预测结果之间联系的有效性。结果表明,即使速度流场不是几何对称和三维非稳态,但它是准周期的。此外,还有存在一个涡核现象在旋风分离器中。因为离心力,颗粒浓度分布是不均匀的。根据粒子的运动特征,分布区域可分为三个部分。较大的颗粒比较小的更容易分开。但超过某一临界值的大小时颗粒将不会在旋风分离器的锥形墙底部被收集,然后发生凝滞。这将导致在旋风分离器的锥形部分发生严重侵蚀。此外,分离效率与粒径的增大、径向进气旋风分离器切点的直径是小于相同的入口条件下的传统旋风分离器的。 简介 多喷嘴对置气化系统是由煤处理、煤气发生炉、煤气净化和黑色的水处理工艺组成。煤气净化在整个运行在较高的温度和压力系统中起着重要的作用。它是消除在气化炉生产的合成气才到达旋风分离器下出口之前的颗粒。多喷嘴对置气化系统净化过程是采用搅拌机、旋风器和洗涤器组合的,它与在GE气化合成气净化技术是不同的。旋风分离器的存在提高了净化效果和系统操作的稳定。旋风分离器被广泛应用于工业应用,在空气污染控制及气固分离和气溶胶采样等。随着结构简单、制造成本低和适应极其恶劣的条件下运行,旋风分离器成为在科学与工程除尘应用设备领域中最重要的装备之一。在一般情况下,传统的旋风分离器通常采用切向进气道结构。霍夫曼和Louis纷纷推出关于分离器上锥与切向入口气旋的一些设计要点。但切向进气道结构不能 适用于一些特殊的条件,如高温度下的高压等。因此,经过过去的几十年里的多次尝试,通过引入一个新的入口设计来性能提高。切向入口旋风分离器也是不适用的在多喷嘴对置气化系统。由于切向焊接阻碍了大额投资的投入、使得技术含量需求更高和存在大的风险。在本文中,采用新型旋风分离器介绍一个特殊的径向进气结构如图1所示。在高效率的前提下径向进气旋风分离器能适应产业化经营环境。不正确的分离设备的设计将是具有破坏性的,所以更好地学习设计的基础是至关重要的。因此,有必要了解气体粒子流和径向进气旋风分离的特点。然而,由于复杂的三维强的旋流流旋风,传统的研究方法无法提供的预测准确。随着现代计算流体动力学(CFD)技术的发展,现在是可以充分模拟气旋的气体流量和粒子动力学。在本文中,我们集中在与商业CFD软件FLUENT径向进气旋风气体粒子流场模拟。由模拟获得的信息通过分析和比较,与传统的旋风分离器气体粒子的径向进气旋风流场比,都可以得到验证。

相关文档
最新文档