细胞培养合成培养基

细胞培养合成培养基
细胞培养合成培养基

合成培养基是根据天然培养基的成分,用化学物质模拟合成、人工设计、配制的培养基。它有一定的配方,是一种理想的培养基。目前合成培养基多达10多余种,有的培养基仍在不断进行改良。早期组织培养是利用天然培养基,目前合成培养基已经成为一种标准化的商品,从最初的基本培养基发展到无血清培养基、无蛋白培养基,并且还在不断发展。合成培养基的出现极大的促进了组织培养技术的普及发展。

一、基本组分

基本培养基包括四大类物质:无机盐、氨基酸、维生素、碳水化合物。

●无机盐:CaCl2 KCl MgSO4 NaCl NaHCO3 NaH2PO4。对调节细胞渗透压、某些酶的活性及溶液的酸碱度都是必须的。

●氨基酸:缬氨酸、亮、异亮、苏、赖、色、苯丙、蛋、组、酪、精氨酸、胱氨酸(L型)。它们都是细胞用以合成蛋白质的必需原料,不能由其他氨基酸或糖类转化合成。除此之外,还需要谷氨酰胺(glutamine)。谷氨酰胺具有特殊的作用,对细胞的培养特别重要,能促进各种氨基酸进入细胞膜;它所含的氮是核酸中嘌呤和嘧啶的来源,还是合成—磷酸腺苷、二磷酸腺甘和三磷酸腺苷的原料。细胞需要谷氨酰胺合成核酸和蛋白质,谷氨酰胺缺乏可导致细胞生长不良甚至死亡。在配制各种培养液中都应补加一定量的谷氨酰胺。值得注意的是:谷氨酰胺在溶液中很不稳定,故4℃下放置1周可分解50%,使用中最好单独配制,置-20℃冰箱中保存,用前加入培养液中。

●维生素:是维持细胞生长的一种生物活性物质,在细胞中大多形成酶的辅基或辅酶,对细胞代谢有重大影响。脂溶性维生素(A、

D、E、K)常从血清中得到补充。水溶性维生素包括牛物素、叶酸、烟酰胺、泛酸、吡哆醇、核黄素、硫胺素和B12。维生素C 也是不可缺少的,对具有合成胶原能力的细胞更为重要。

●碳水化合物:是细胞生命的能量来源,有的是合成蛋白质和核酸的成分。主要有葡萄糖、核糖、脱氧核糖和丙酮酸钠等。体外培养动物细胞时,几乎所有培养基或培养液中都以葡萄糖作为必含

的能源物质。

●葡萄糖和谷胺酰胺的合理使用:乳酸是葡萄糖不完全氧化的产物。研究表明,体外培养条件下95%的葡萄糖转变为乳酸,这降低了营养物质的代谢效率,降低培养基pH值,增加渗透压。在氧气供给不足的情况下,NADH转运系统苹果酸-天冬氨酸穿梭系统活性低而不能将糖酵解产生的NADH氧化磷酸化为NAD+,细胞只得以降低能量需求的方式如激活乳酸脱氢酶将糖酵解产生的丙酮酸与NADH反应生产乳酸和NAD+,从而保证了糖酵解的顺利进行。另一个可能的解释是连接糖酵解与TCA循环的特异性酶如丙酮酸脱氢酶复合物、磷酸丙酮酸羧化酶激酶和丙酮酸羧化酶活性低下,直接导致糖酵解与TCA循环的失衡。因此体外培养条件下,葡萄糖主要经糖酵解降解,产生过量的乳酸。减少乳酸生产最常用的方法是限制培养基中葡萄糖的含量,但葡萄糖含量过低可造成细胞营养供应不足,细胞生长抑制。该方法需要对葡萄糖的消耗与需求、乳酸的生产速率以及目的蛋白的表达量等参数进行综合考虑方可应用。

在目前常用的培养基中,葡萄糖和谷胺酰胺是体外培养动物细胞的主要能源,其能量代谢通路与体内完全不同,表现为葡萄糖主要经糖酵解途径为细胞提供能量,谷胺酰胺大部分通过不完全氧化途径,另一小部分通过完全氧化为细胞供能。因此,适当的调整细胞内的代谢途径,使之能促进细胞的快速生长和产物合成,同时减少代谢抑制物的生成是行之有效的一种策略。

许多动物细胞如CHO、BHK和杂交瘤细胞对营养物质葡萄糖和谷氨酰胺的消耗利用很快。然而对于细胞生长而言,二者的快速利用并非细胞必需;相反相当一部分转化为代谢废物乳酸和氨,以及一些非必需氨基酸如丙氨酸,脯氨酸。其中,乳酸和氨是两种主要代谢废物,其积累可影响细胞生长以及产品质量。减少这两种代谢产物的积累,是大规模细胞培养技术研究的重要方向。

氨是由谷氨酰胺和天冬酰胺产生的。限制培养基中谷氨酰胺的含量亦是减少氨生成的常用方法。

●除了以上与细胞生长有关的物质以外,培养基中一般还要加入酚红(当溶液酸性时pH小于6.8呈黄色;当溶液碱性时pH大于

8.4呈红色),一种pH指示剂。

●在较为复杂的培养液中还包括核酸降解物(如嘌呤和嘧啶两类)以及氧化还原剂(如谷胱甘肽)等。有的培养液还直接采用了三磷酸腺苷和辅酶A。

二、常用细胞培养基

(1).MEM细胞培养基系列

(2).DMEM细胞培养基系列

(3)RPMI-1640细胞培养基系列

(5).水解乳蛋白细胞培养基

(6)欧氏平衡盐

(7)F-10,F-12细胞培养基系列

(8)其它类型细胞培养基

三、干粉培养基的配制

配制培养基要注意以下问题:

●认真阅读说明书。说明书都注明干粉不包含的成分,常见的有NaHCO3、谷氨酰胺、丙酮酸钠、HEPES等。这些成分有些是必须添加的,如NaHCO3、谷氨酰胺,有些根据实验需要决定。

●配制是要保证充分溶解,NaHCO3、谷氨酰胺等物质都要等培养基完全溶解之后才能添加。

●配制所用的水应是三蒸水,离子浓度很低。

●所用器皿应严格消毒。

●配制好的培养基应马上过滤,无菌保存于4度。

●液体培养基主要是为了科研工作的方便而设计的培养基,它是一种灭菌后保证无菌的溶液,必要时可制成无内毒素等的溶液,可节省科研人员的工作量。

配制方法

●在一个尽可能接近总体积的容器中加入比预期培养基总体积少5%的双蒸水。

●在室温(20℃到30℃)的水中加入干粉培养基,轻轻搅拌,不要加热。

●水洗包装袋的内部,转移全部的痕量干粉到容器内。

●加NaHCO3到培养基中。

●用双蒸水稀释到想要的体积,搅拌溶解。注意不要过分搅拌。

●通过缓慢搅拌加入1N NaOH 或1N HCL调节pH值,由于pH值在过滤时会上升0.1到0.3,因而调节pH值使它比最终想要的pH值低0.2到0.3。培养基在过滤前要保持密封。

无血清技术及其培养基

经历了天然培养基、合成培养基后,无血清培养基和无血清培养成为当今细胞培养领域的一大趋势。采用无血清培养可降低生产成本,简化分离纯化步骤,避免病毒污染造成的危害。

无血清培养基(serum free medium,SFM):是不需要添加血清就可以维持细胞在体外较长时间生长繁殖的合成培养基。但是它们可能包含个别蛋白或大量蛋白组分。虽然基础培养基加少量血清所配制的完全培养基可以满足大部分细胞培养的要求,但对有些实验却不适合,如观察一种生长因子对某种细胞的作用,这时需要排除其他生长因子的干扰作用。而血清中可能含有各种生长因子;又如需要测定某种细胞在培养过程中分泌某种物质(抗体、生长因子)的能力;或者要大规模的培养某种细胞,以获得它们的分泌产物。因此研制出无血清培养基一直是生物科学工作者努力的目标。上海恒利安生物科技有限公司已成功开发了商业化的多种无血清培养基,可满足众多厂商的需求。

一、无血清培养基的基本配方:基本成分为基础培养基及添加组分两大部分。

用于生物制药和疫苗生产的细胞在体外培养时,多数呈贴壁生长或兼性贴壁生长;而当其在无血清、无蛋白培养基中生长时,由于缺乏血清中的各种粘附贴壁因子如纤粘连蛋白、层粘连蛋白、胶原、玻表粘连蛋白,细胞往往以悬浮形式生长。

添加组分包括以下几大类物质:

(1)促贴壁物质:许多细胞必须贴壁才能生长,这种情况下无血清培养基中一定要添加促贴壁和扩展因子,一般为细胞外基质,如纤连蛋白、层粘连蛋白等。它们还是重要的分裂素以及维持正常细胞功能的分化因子,对许多细胞的繁殖和分化,起着重要作用。纤连蛋白主要促进来自中胚层细胞的贴壁与分化,这些细胞包括成纤维细胞、肉瘤细胞、粒细胞、肾上皮细胞、肾上腺皮质细胞、CHO细胞、成肌细胞等。

(2)促生长因子及激素:针对不同细胞添加不同的生长因子。激素也是刺激细胞生长、维持细胞功能的重要物质,有些激素是许

多细胞必不可少的,如胰岛素。

(3)酶抑制剂:培养贴壁生长的细胞,需要用胰酶消化传代,在无血清培养基中必不可少须含酶抑制剂,以终止酶的消化作用,达到保护细胞的目的。最常用的是大豆胰酶;抑制剂。

(4)结合蛋白和转运蛋白:常见如转铁蛋白和牛血清白蛋白。牛血清白蛋白的添加比较大,可增加培养基的粘度,保护细胞免受机械损伤。许多旋转式培养的无血清培养基都含有牛血清白蛋白。

(5)微量元素:硒是最常见的。

二、使用方法:目前,血清仍是动物细胞培养中最基本的的添加物,尤其是在原代培养或者细胞生长状况不良时,常常会先使用有血清的培养液进行培养,待细胞生长旺盛以后,再换成无血清培养液。细胞转入无血清培养基培养要有一个适应过程,一般要逐步降低血清浓度,从10%减少到5%,3%,1%,直至无血清培养。在降低过程中要注意观察细胞形态是否发生变化,是否有部分细胞死亡,存活细胞是否还保持原有的功能和生物学特性等。在实验后这些细胞一般不再继续保留,很少有细胞能够长期培养于无血清培养基而不发生改变的。细胞转入无血清培养之前,要留有种子细胞,种子细胞按常规培养于含血清的培养基中,以保证细胞的特性不发生变化。

为了使细胞适应无血清培养,关键的是使所培养细胞:

●处于对数生长中期

●>90%活细胞率

●适应时以较高的起始细胞接种

有两种方法使细胞适应无血清培养基(SFM):

1. 直接适应——细胞从添加血清的培养基转换到无血清培养基(SFM)中。一些类型细胞可直接从包含血清的培养基适应无血清培养基。对于直接适应,接种细胞密度应该:

2.5×105~

3.5×105细胞/ml。当细胞密度达到1×106~3×106细胞/ml时,传代培养细胞。当细胞密度在培养4到7天后达到2×106~4×106细胞/ml时,细胞完全适应了无血清培养基。每隔3~5天,当细胞密度达到1×106~3×106细胞/ml,细胞活率在90%时,贮备的适应了无血清培养基的细胞培养物应该再次传代培养。

2. 连续适应——分好几步把细胞从添加血清的培养基转换到无血清培养基(SFM)中,与直接适应相比较,连续适应趋向对于细胞更加温和一些。

●以2倍正常接种密度接种生长活跃的细胞培养物到75%有血清培养基:25%SFM 混合培养基中,传代培养。

●当细胞密度>5×105细胞/ml时,以2×105到3×105细胞/ml细胞密度,在有血清培养基:SFM为50∶50的混合培养基中传代培养。

●以2×106到3×106细胞/ml细胞密度,25%有血清培养基和75%SFM中传代培养。

●当细胞密度达到1×106到3×106细胞/ml(接种后4到6天),在100%SFM培养基中传代培养。

●每隔3到5天,当细胞密度达到1×106到3×106细胞/ml,细胞活率在90%时,贮备的适应了无血清培养基的细胞培养物应该再次传代培养。

建议备份前一次混合培养的培养物,直到每一次细胞适应了新的混合培养基。每一次减少血清前,可能需要在SFM/有血清混合培养基中进行几次传代。

在适应过程中,最好不要让细胞生长过度。这将增加选择亚群的可能性。需要注意,与有血清培养基相比,大部分SFM包含非常少的蛋白质,因而更易于受外界因素的影响。

细胞培养适应替代血清:许多细胞利用连续适应方法能很好的适应,用包含FBS的的培养基和包含有替代血清的培养基1∶1(v∶v)的混合培养基培养细胞。通过下列的混合培养基的方式,连续几代减少当前培养基的量:1∶2,1∶4,1∶16和100%替代培养基。每次适应改变血清比例时,传代细胞2到3次。

培养可以直接从FBS转换到替代血清。一开始就使用相同于FBS的浓度的替代物或血清,生长的延迟可能会发生,4允许进行2到3次的传代,使生长率恢复到以前的水平。

特别需要强调的是:配制无血清培养液必须使用高质量的水,如石英玻璃蒸馏器经三次蒸馏或超纯水净化装置制备的水。因为无血清培养基缺乏了血清中天然成分中和毒素、保护细胞的大分子,既便水中的有毒物质含量甚微,也可能对细胞产生致死性损害。这是无血清培养能否成功的关键因素之一。

三、使用无血清培养基的优点

●增加确定性

●性能更加一致

●容易进行纯化和下游加工

●细胞功能的精确评估

●增强生长和/或产量

●生理反应性的较好对照

●增强细胞内中介物的检测

无蛋白培养基与限定化学成分培养基

一、无蛋白培养基(protein free midium,PFM):即不含有动物蛋白的培养基。无血清培养基仍含有较多的动物蛋白,如胰岛素,转铁蛋白、牛血清白蛋白等。从生物技术发展的趋势来看,不含动物蛋白的培养基又广泛的应用前景,许多利用基因工程技术重组的蛋白质最终要应用于人体,如果再生长过程中使用了含有动物蛋白质的培养基,纯化过程就比较复杂,最终要达到一定的质量标准也有一定的难度。无蛋白培养基就是为了适应这发展趋势而出现的,许多无蛋白培养基添加了植物水解物以替代动物激素、生长因子的作用。市场上已有适合多种细胞生长的无蛋白培养基。

二、限定化学成分培养基(chemical defined medium,CDM):是指培养基中的素有成分都是明确的,它同样不含有动物蛋白,同样也不是添加了植物水解物,而是使用了一些已知结构与功能的小分子化合物,如短肽、植物激素等。这种培养基更有利于分析细胞的分泌产物。目前已经有适合于293细胞、CHO细胞、杂交瘤细胞生长的CDM问世,上海恒利安生物科技有限公司生产的水解乳蛋白培养基就属于CDM。

其他细胞培养用液

在细胞培养过程中,除了培养基外,还经常用到一些平衡盐溶液、消化液、pH调整液等。

一、平衡盐溶液(balanced salt solution,BSS):主要是由无机盐、葡萄糖组成,它的作用是维持细胞渗透压平衡,保持pH稳定及提供简单的营养。主要用于取材时组织块的漂洗、细胞的漂洗、配制其他试剂等。最简单的BSS是Ringer。D-Hank"s与Hank"s 的一个主要区别是前者不含有Ca2+、Mg2+,因此D-Hank"s常用于配制胰酶溶液。Earle平衡液含有较高的NaHCO3(2.2g/L),适合于5%CO2的培养条件,Hank"s平衡液仅含有0.35g/L NaHCO3,不能用于5%CO2的环境,若放入CO2培养相,溶液将迅速变酸,使用时应注意。

配制溶液应使用双蒸水或去离子水。如果配方中含有Ca2+、Mg2+,应当首先溶解这些成分。配好的平衡盐溶液可以过滤除菌或高温灭菌。

二、消化液:取材进行原代培养时常常需要将组织块消化解离形成细胞悬液,传代培养时也需要将贴壁细胞从瓶壁上消化下来,常用的消化液有胰酶(Trypsin)溶液和EDTA溶液,有时也用胶原酶(collagenase)溶液。

1.胰酶溶液:胰酶活性可用消化酪蛋白的能力表示,常见有1:125和1:250,即一份胰酶可消化125或250份酪蛋白。组织培养用胰酶溶液一般配制成0.1-0.25%浓度,配制时要用不含Ca2+、Mg2+及血清的平衡盐溶液(如前面的D-Hank"s),因为这些物质会对胰酶产生抑制作用。胰酶作用及溶解的最佳pH是8-9,配制胰酶溶液应将液体调至pH8左右,充分溶解,过滤除菌。过滤后可以再调只pH7.5,也可不调。

使用细胞清洗液配制胰酶消化液:含0.5%胰酶的细胞清洗液(100ml细胞清洗液加0.5g胰酶),过滤除菌,分装于4度保存。

2.EDTA溶液:EDTA溶液也常用来解离细胞,它的作用机制是破坏细胞间的连接。对于一些贴壁特别牢固的细胞,还可以用EDTA和胰酶的混合液进行消化。EDTA溶液的使用浓度为0.02%,配制时应加碱助溶,配制后可过滤除菌,也可高温消毒灭菌。

3.胶原酶溶液:胶原酶在上皮类细胞原代培养时经常使用,胶原酶作用的对象是胶原组织,因此不容易对细胞产生损伤。胶原酶的使用浓度为0.1-0.3mg/L或200000U/L,作用的最佳pH为6.5。胶原酶不受Ca2+、Mg2+及血清的抑制,配制时可用PBS。

三、pH调整液:常用的有HEPES液和NaHCO3溶液。

1.NaHCO3溶液:NaHCO3是培养基中必须添加的成分,一般情况下按说明书的要求准确添加,以保证培养基在5%CO2的环境下pH达到设计标准。如果是封闭式培养,即不与5%CO2的环境发生交换达到平衡,所使用的培养基就不能按照说明书所要求

加入NaHCO3。此时常用5.6%或7.4%的NaHCO3溶液调节培养基,使之达到所要求的pH环境。

2.HEPES溶液:是一种弱酸,中文名字是羟乙基哌秦乙硫磺酸,对细胞无毒性,主要作用是防止培养基pH迅速变动。在开放式培养条件下,观察细胞时培养基脱离了5%CO2的环境,CO2气体迅速逸出,pH迅速升高,若加了HEPES,此时可以维持pH7.0左右。一般在进行克隆化培养时要添加HEPES。

四、抗生素:常用的是青链霉素,俗称“双抗溶液”。青霉素主要是对革兰阳性菌有效,链霉素主要对革兰阴性菌有效。加入这两种抗生素可预防绝大多数细菌污染。通常使用青霉素终浓度0.007-0.008g/100ml,链霉素终浓度0.01g/100ml。一般配制成100倍浓缩液,可用PBS或培养基配制。

五、谷氨酰胺补充液:谷氨酰胺在细胞代谢过程中起重要作用,合成培养基中都要添加,由于谷氨酰胺在溶液中很不稳定容易降解,4℃下放置7天即可分解约50%,所以都是在使用前添加。配制好的培养液(含谷氨酰胺)在4℃放置2周以上时,要重新加入原来量的谷氨酰胺,故需单独配制谷氨酰胺,以便临时加入培养液内。谷氨酰胺使用终浓度为0.002mol/L。一般配制为100倍浓缩液,即浓度为200mmol/L(29.22g/L),配制时应加温30℃,完全溶解后过滤除菌,分装至小瓶,储存于-20℃。使用时,在每100ml培养液中加入0.5~2ml谷氨酰胺浓缩液,终浓度为1~4mmol/L。

六、二肽谷氨酰胺(L-丙氨酰-L-谷氨酰胺)

在细胞培养液中L-谷氨酰胺是大部分细胞培养基的基本成分;而L-谷氨酰胺是一种并不稳定的氨基酸,在中性的水溶液中会自发降解;需要频繁地补加L-谷氨酰胺。因而在培养操作过程中经常:

(1)频繁打开盖子,增加了破坏无菌状态的可能性;

(2)过多的追加L-谷氨酰胺,增加了培养基中氨的毒性水平。

上海恒利安生物科技有限公司已成功开发出用于细胞培养的二肽谷氨酰胺商业化产品。

二肽谷氨酰胺在细胞培养中稳定而不降解,可高压灭菌,释放毒性氨最少!

二肽谷氨酰胺在细胞内被氨肽酶(E.C.3.4.11.2)所水解,产生L-谷氨酰胺和L-丙氨酸;因此在大部分细胞系统中二肽谷氨酰胺就可以象L-谷氨酰胺同样有效地被利用。二肽谷氨酰胺是最优替代物,它无需适应;既可用于贴壁细胞培养,也适合于悬浮细胞的培养。

细胞培养综述

细胞培养综述 摘要:为了模拟机体生理条件,将细胞从机体中取出,在人工条件下使其生存、生长、繁殖和传代,进行细胞生命过程、细胞癌变、细胞工程等问题的研究。培养出的活细胞具有量大、均一和可重复性的特点,可以通过各种物理、化学、生物等因素进行调控,并且可以通过倒置、荧光、电子、激光共焦显微镜、流式细胞术、免疫组织化学、原位杂交、同位素标记等多样的方法进行研究,已广泛运用在不同科学研究领域。 关键词:分化,细胞分型,生长增殖过程,传代 一、体、外细胞的差异和分化 1、差异:细胞离体后,失去了神经体液的调节和细胞间的相互影响,生活在缺乏动态平衡的相对稳定环境中,日久天长,易发生如下变化:分化现象减弱;形态功能趋于单一化或生存一定时间后衰退死亡;或发生转化获得不死性,变成可无限生长的连续细胞系或恶性细胞系[1]。因此,培养中的细胞可视为一种在特定的条件下的细胞群体,它们既保持着与体细胞相同的基本结构和功能,也有一些不同于体细胞的性状。实际上从细胞一旦被置于体外培养后,这种差异就开始发生了。 虽然体外细胞与机体细胞存有差异,但并未失去研究的意义。且不论其有许多性状仍与体相同(如体外培养的心肌细胞仍可博动),只从细胞遗传学(Cyto-genetics)的角度看,离体细胞仍带有全套的二倍体基因。细胞在培养中的表现,只不过是相应基因关闭/开启

引起的现象,这并非是绝对缺陷。恰恰相反,在培养的细胞中某些特定功能的丧失,可为该基因的表达与调控提供线索。 2、分化;体外培养的细胞分化能力并未完全丧失,只是环境的政变,细胞分化的表现和在体不同。细胞是否表现分化关键在于是否存在使细胞分化的条件,如Friend细胞(小鼠红白血病细胞)在一定的因素作用下可以合成血红蛋白,血管皮细胞在类似基膜物质底物上培养时能长成血管状结构,杂交瘤细胞能产生特异的单克隆抗体,这些均属于细胞分化行为[2]。 二、体外培养细胞的分型 (一)贴附型:大多数培养细胞贴附生长,属于贴壁依赖性细胞,判断细胞形态时不能接体组织学标推判定,仅大致分成以下四型: 1、成纤维细胞型:胞体呈梭型或不规则三角形,中央有卵圆形核,胞质突起,生长时呈放射状。除真正的成纤维细胞外,凡由中胚层间充质起源的组织,如心肌、平滑肌、成骨细胞、血管皮等常呈本型状态。另外,凡培养中细胞的形态与成纤维类似时皆可称之为成纤维细胞。 2、上皮型细胞:细胞呈扁平不规则多角形,中央有圆形核,细胞彼此紧密相连成单层膜。生长时呈膜状移动,处于膜边缘的细胞总与膜相连,很少单独行动。起源于、外胚层的细胞如皮肤表皮及其衍生物、消化管上皮、肝胰、肺泡上皮等皆成上皮型形态[3]。 3、游走细胞型:呈散在生长,一般不连成片,胞质常突起,呈活跃游走或变形运动,方向不规则。此型细胞不稳定,有时难以和其

大规模细胞培养技术

大规模细胞培养技术简介 大规模培养技术应用简介通过大规模体外培养技术培养哺乳类动物细胞是生产生物制品的有效方法。上世纪60-70 年代,就已创立了可用于大规模培养动物细胞的微载体培养系统和中空纤维细胞培养技术。近十数年来,由于人类对生长激素、干扰素、单克隆抗体、疫苗及白细胞介素等生物制品的需求猛增,以传统的生物化学技术从动物组织获取生物制品已远远不能满足这一需求。随着细胞培养的原理与方法日臻完善,动物细胞大规模培养技术趋于成熟。 所谓动物细胞大规模培养技术( large-scale culture technology )是指在人工条件下(设定ph、温度、溶氧等) ,在细胞培养工厂 (Cosmo Cat.No. 1101-400 or 1101-800 )或生物反应器( bioreactor )中高密度大量培养动物细胞用于生产生物制品的技术。目前可大规模培养的动物细胞有鸡胚、猪肾、猴肾、地鼠肾等多种原代细胞及人二倍体细胞、cho(中华仓鼠卵巢) 细胞、BHK-21( 仓鼠肾细胞)、Vero 细胞(非洲绿猴肾传代细胞,是贴壁依赖的成纤维细胞)等,并已成功生产了包括狂犬病疫苗、口蹄疫疫苗、甲型肝炎疫苗、乙型肝炎疫苗、红细胞生成素、单克隆抗体等产品。 在过去几十年来,该技术经有了很大发展,从使用转瓶(roller bottle) 、CellCube 等贴壁细胞培养,发展为一次性细胞培养工厂( Made by Cosmo )或生物反应器 (Bioreactor )进行大规模细胞培养。第一代细胞培养技术核心问题是难以产业化或者说是规模化生产:一是在工艺生产时不能大规模制备产品;二是非批量生产容易导致产品质量的不均一性;三是难以对同批生产进行生产和质量控制。 随着生物技术的发展,迫切需要大规模的细胞培养,特别是培养表达特异性蛋白的哺乳动物细胞,以便获得大量有用的细胞表达产物。采用玻璃瓶静置或旋转瓶的培养方法,已不能满足所需细胞数量及其分泌产物。因而必须为工业化生产开创一种新的技术方法。自70 年代以来,细胞培养用生物

细胞培养基种类及用途

基础细胞培养基通常指基础合成培养基,主要成分为氨基酸、维生素、碳水化合物、无机盐、辅助物质(核酸降解物、氧化还原剂等)。 据不同细胞和研究目的,选用合适培养基,?还可补加新成分。?如杂交瘤中常用DMEM加丙酮酸钠、2-巯基乙醇(相当于胎牛血清可透析组分的作用)。 合成培养基使用时加5-30%血清。 1. 199细胞培养基及其改良品种 1950年Morgan等设计,除BSS外,含有53种成分,为全面培养基,广用于各类细胞培养,广泛用于病毒学、疫苗生产。 2. BME细胞培养基 基础Eagle培养基(Basal Medium Eagle),1955年Eagle设计,BSS+12种氨基酸+谷氨酰胺+8种维生素。简单、便于添加,适于各种传代细胞系和特殊研究用,在此基础上改良的细胞培养基品种有MEM、DMEM、IMEM等。 3. MEM细胞培养基 低限量Eagle培养基(Minimal Essential Medium),1959年修改,删去赖氨酸、生物素,氨基酸浓度增加,适合多种细胞单层生长,有可高压灭菌品种,是一种最基本、试用范围最广的培养基,但因其营养成分所限,针对生产之特定细胞培养与表达时,并不一定是使用效果最佳或者最经济的培养基。 4. DMEM细胞培养基及其改良品种 DMEM由Dulbecco改良的Eagle培养基,各成份量加倍,分低糖(1000mg/L)、高糖(4500mg/L)。生长快,附着稍差肿瘤细胞、克隆培养用高糖效果较好,常用杂交瘤的骨髓瘤细胞和DNA转染的转化细胞培养。例如CHO细胞表达生产乙肝疫苗、CHO细胞表达EPO。 5. IMEM细胞培养基 IMEM由Iscove's改良的Eagle培养基,增加了几种氨基酸和胱氨酸量。 6. RPMI-1640细胞培养基 Moore等人于1967年在Roswell Park Memorial Institute研制,针对淋巴细胞培养设计,BSS+21种氨基酸+维生素11种等,广泛适于许多种正常细胞和肿瘤细胞,也用做悬浮细胞培养 7.Fischer’s细胞培养基 用于白血病微粒细胞培养。 8. HamF10、F12细胞培养基 1963年、1969年Ham设计,含微量元素,可在血清含量低时用,适用于克隆化培养。F10适用于仓鼠、人二倍体细胞,特适于羊水细胞培养。 9. DMEM/F12细胞培养基 DMEM和F12细胞培养基按照1:1比例混合效果最佳,营养成分丰富,且可以使用较少血清,或作为无血清培养基的基础培养基。 10. McCoy5A培养基 1959年MeCoy为肉瘤细胞设计,

肿瘤干细胞培养技术

肿瘤干细胞培养技术 随着干细胞生物学以及肿瘤学研究的不断深入,肿瘤干细胞已成为当前肿瘤研究的热点。肿瘤干细胞的体外培养在肿瘤干细胞研究领域具有不可替代的重要地位,通过分离、纯化及培养肿瘤干细胞可以对其生物学特性如异质性、肿瘤的演化、转移和抗药性等进行研究,为肿瘤的早期诊断与治疗提供了新的思路和策略。 肿瘤干细胞的体外培养多采用无血清培养基(serum free medium, SFM),根据不同的细胞类型加入适当的细胞因子联合培养以防止其分化。肿瘤细胞系或者是临床肿瘤组织联合采用机械和胶原酶消化肿瘤组织得到单细胞悬液,经过流式细胞仪或者免疫磁珠分选的方法得到肿瘤干细胞使用无血清培养基在37℃,5%CO2饱和湿度的条件下进行体外培养,但值得注意的是临床肿瘤组织的获取应该越新鲜越好,最好是在外科手术后1小时内进行处理否则将影响肿瘤干细胞细胞的活性,不利于体外培养。 无血清培养基有很多种,针对不同的细胞类型有专门的无血清营养液出售。无血清培养基具有以下的优点:各批产品之间成分相对明确、质量相对一致;便于控制培养的生理环境;特殊细胞类型的优化配方有利于提高细胞的稳定性,使不同类型的细胞能在最有利于各自生长的环境中持续传代培养;依据不同类型的细胞、甚至不同的细胞系(株)都可能有各自的无血清培养基。总的来说可以分为基础营养基及附加成分两大部分[1]。基础培养基一般采用人工合成的培养基主要有DMEM、DMEM/F12、UltraCULTURETM、神经干细胞专用无血清培养基、黑色素瘤专用培养基等其中以DMEM/F12(1:1,Invitrogen)最为常用。附加成分是指在基础培养基中加入各种不同细胞生长所需的营养成分,包括①营养因子:胰岛素、转铁蛋白和亚硒酸钠、牛血清白蛋白、B27、L-谷氨酰胺;②细胞因子:白血病抑制因子、表皮生长因子、成纤维细胞生长因子、神经生长因子、血小板衍化生长因子等。使用无血清培养基培养的细胞经胰酶消化传代后不使用血清终止胰酶的作用,可使用0.1%-0.5%大豆胰酶抑制剂(soybean trypsin inhibitor)。 一、肿瘤干细胞培养中几种常见的细胞因子 (一)白血病抑制因子LIF(leukemin inhibitory factor,LIF) 是白介素6(IL-6)细胞因子家族中的一员,是典型的多功能生长因子,具有多种生物学功能:对细胞生长、增殖与分化有着广泛的作用,抑制分化促进干细胞增殖。胚胎干细胞的体外培养需要添加LIF以抑制其分化,维持其多能性。LIF可抑制成纤维细胞生长因子(Fibroblast Growth Factor ,FGF)、β转移生长因子(β-transforming Growth

细胞培养基本操作技能

细胞培养基本操作技能 无菌操作基本技术 1. 实验进行前,无菌室及无菌操作台(laminar flow) 以紫外灯照射30-60 分钟灭菌,以70 % ethanol 擦拭无菌操作抬面,并开启无菌操作台风扇运转10 分钟后,才开始实验操作。每次操作只处理一株细胞株,且即使培养基相同亦不共享培养基,以避免失误混淆或细胞间污染。实验完毕后,将实验物品带出工作台,以70 % ethanol 擦拭无菌操作抬面。操作间隔应让无菌操作台运转10 分钟以上后,再进行下一个细胞株之操作。 2. 无菌操作工作区域应保持清洁及宽敞,必要物品,例如试管架、吸管吸取器或吸管盒等可以暂时放置,其它实验用品用完即应移出,以利于气流之流通。实验用品以70 % ethanol 擦拭后才带入无菌操作台内。实验操作应在抬面之中央无菌区域,勿在边缘之非无菌区域操作。 3. 小心取用无菌之实验物品,避免造成污染。勿碰触吸管尖头部或是容器瓶口,亦不要在打开之容器正上方操作实验。容器打开后,以手夹住瓶盖并握住瓶身,倾斜约45°角取用,尽量勿将瓶盖盖口朝上放置桌面。 4. 工作人员应注意自身之安全,须穿戴实验衣及手套后才进行实验。对于来自人类或是病毒感染之细胞株应特别小心操作,并选择适当等级之无菌操作台(至少Class II)。操作过程中,应避免引起aerosol 之产生,小心毒性药品,例如DMSO 及TPA 等,并避免尖锐针头之伤害等。 5. 定期检测下列项目: 5.1. CO2 钢瓶之CO2 压力 5.2. CO2 培养箱之CO2 浓度、温度、及水盘是否有污染(水盘的水用无菌水,每周更换)。 5.3. 无菌操作台内之airflow 压力,定期更换紫外线灯管及HEPA 过滤膜,预滤网(300 小时/预滤网,3000 小时/HEPA)。 6. 水槽可添加消毒剂(Zephrin 1:750),定期更换水槽的水。 实验用品 1. 种类︰ 1.1. 细胞培养实验用品均为无菌,除了玻璃容器与pasteur pipet 外,其它均为塑料无菌制品。 1.2. TC 级培养盘表面均有coating 高分子物质以让细胞吸附,培养容器种类有Tflask, plates, dishes, roller bottle 等,依实验需要使用。 1.3. plastic sterile pipet: 1 ml, 2 ml,5 ml, 10 ml, 25 ml 1.4. 塑料离心管: 15 ml, 50 ml,均有2 种不同材质,其中polypropylene (PP) 为不透 明材质,polystyrene (PS) 为透明材质,可依实验需要而选择适合材质之离心管。 1.5. glass pastuer pipet: 9 inch,用以抽掉废弃培养液等。 1.6. 玻璃血清瓶(Pyrex or Duran glassware):100 ml, 250 ml,500 ml,1000 ml 2. 清洗︰ 2.1. 新购玻璃血清瓶先以0.1~0.05 N HCl 浸泡数小时,洗净后才开始使用。 2.2. 用过之玻璃血清瓶,以高压蒸汽灭菌,洗净后分别用一次与二次去离子水冲洗干净,勿加清洁剂清洗。 3. 灭菌︰ 3.1. 实验用玻璃血清瓶以铝箔纸包覆瓶盖,高压蒸汽灭菌121 oC, 15 lb, 20 分钟,置于

细胞培养知识

细胞培养基础知识 细胞培养基本条件 1、合适的细胞培养基 合适的细胞培养基是体外细胞生长增殖的最重要的条件之一,培养基不仅提供细胞营养和促使细胞生长增殖的基础物质,而且还提供培养细胞生长和繁殖的生存环境。 2、优质血清 目前,大多数合成培养基都需要添加血清。血清是细胞培养液中最重要的成分之一,含有细胞生长所需的多种生长因子及其它营养成分。 3、无菌无毒细胞培养环境 无菌无毒的操作环境和培养环境是保证细胞在体外培养成功的首要条件。在体外培养的细胞由于缺乏对微生物和有毒物的防御能力,一旦被微生物或有毒物质污染,或者自身代谢物质积累,可导致细胞中毒死亡。因此,在体外培养细胞时,必须保持细胞生存环境无菌无毒,及时清除细胞代谢产物。 4、恒定的细胞生长温度 维持培养细胞旺盛生长,必须有恒定适宜的温度。 5、合适的气体环境 气体是哺乳动物细胞培养生存必需条件之一,所需气体主要有氧气和二氧化碳。 细胞培养基种类与基本成分 细胞培养基的种类很多,按其来源分为合成培养基和天然培养基(目前使用的培养基绝大部分是合成培养基),按其物质状态分为干粉培养基和液体培

养基两类。干粉培养基需由实验者自己配制并灭菌,液体培养基由专业商家提供,用户可直接使用,非常方便。 1、合成培养基的主要成分有:氨基酸、碳水化合物、无机盐、维生素及其它辅助物质: 氨基酸 氨基酸是组成蛋白质的基本单位。不同种类的细胞对氨基酸的要求各异,但有几种氨基酸细胞自身不能合成,必须依靠培养液提供,这几种氨基酸称为必需氨基酸。其中谷氨酰胺是细胞合成核酸和蛋白质必需的氨基酸,在缺少谷氨酰胺时,细胞生长不良而死亡。因此,各种培养液中都有较大量的谷氨酰胺。但是,由于谷氨酰胺在溶液中很不稳定,应置于-20℃冰箱中保存,在使用前加入培养液内。已含谷氨酰胺的培养液在4℃冰箱中储存2 周以上时,还应重新加入原来量的谷氨酰胺。 碳水化合物 碳水化合物是细胞生长主要能量来源,其中有的是合成蛋白质和核酸的成分。主要有葡萄糖、核糖、脱氧核糖、丙酮酸钠和醋酸等。 无机盐 培养液中无机盐的主要功能是帮助细胞维持渗透压平衡。此外,通过提供钠,钾和钙离子,帮助细胞调节细胞膜功能。培养液的渗透压是一个非常重要的因素, 细胞通常可耐受260mOsm/kg ~320 mOsm/kg。标准培养液的渗透压在此范围内波动。特别注意:向培养液中加入其它物质有可能会明显改变培养液的渗透压,特别是溶于强酸或强碱中的物质。向培养液中添加HEPES 时需按以下方法调节钠离子浓度。

细胞培养合成培养基

合成培养基是根据天然培养基的成分,用化学物质模拟合成、人工设计、配制的培养基。它有一定的配方,是一种理想的培养基。目前合成培养基多达10多余种,有的培养基仍在不断进行改良。早期组织培养是利用天然培养基,目前合成培养基已经成为一种标准化的商品,从最初的基本培养基发展到无血清培养基、无蛋白培养基,并且还在不断发展。合成培养基的出现极大的促进了组织培养技术的普及发展。 一、基本组分 基本培养基包括四大类物质:无机盐、氨基酸、维生素、碳水化合物。 ●无机盐:CaCl2 KCl MgSO4 NaCl NaHCO3 NaH2PO4。对调节细胞渗透压、某些酶的活性及溶液的酸碱度都是必须的。 ●氨基酸:缬氨酸、亮、异亮、苏、赖、色、苯丙、蛋、组、酪、精氨酸、胱氨酸(L型)。它们都是细胞用以合成蛋白质的必需原料,不能由其他氨基酸或糖类转化合成。除此之外,还需要谷氨酰胺(glutamine)。谷氨酰胺具有特殊的作用,对细胞的培养特别重要,能促进各种氨基酸进入细胞膜;它所含的氮是核酸中嘌呤和嘧啶的来源,还是合成—磷酸腺苷、二磷酸腺甘和三磷酸腺苷的原料。细胞需要谷氨酰胺合成核酸和蛋白质,谷氨酰胺缺乏可导致细胞生长不良甚至死亡。在配制各种培养液中都应补加一定量的谷氨酰胺。值得注意的是:谷氨酰胺在溶液中很不稳定,故4℃下放置1周可分解50%,使用中最好单独配制,置-20℃冰箱中保存,用前加入培养液中。 ●维生素:是维持细胞生长的一种生物活性物质,在细胞中大多形成酶的辅基或辅酶,对细胞代谢有重大影响。脂溶性维生素(A、 D、E、K)常从血清中得到补充。水溶性维生素包括牛物素、叶酸、烟酰胺、泛酸、吡哆醇、核黄素、硫胺素和B12。维生素C 也是不可缺少的,对具有合成胶原能力的细胞更为重要。 ●碳水化合物:是细胞生命的能量来源,有的是合成蛋白质和核酸的成分。主要有葡萄糖、核糖、脱氧核糖和丙酮酸钠等。体外培养动物细胞时,几乎所有培养基或培养液中都以葡萄糖作为必含 的能源物质。 ●葡萄糖和谷胺酰胺的合理使用:乳酸是葡萄糖不完全氧化的产物。研究表明,体外培养条件下95%的葡萄糖转变为乳酸,这降低了营养物质的代谢效率,降低培养基pH值,增加渗透压。在氧气供给不足的情况下,NADH转运系统苹果酸-天冬氨酸穿梭系统活性低而不能将糖酵解产生的NADH氧化磷酸化为NAD+,细胞只得以降低能量需求的方式如激活乳酸脱氢酶将糖酵解产生的丙酮酸与NADH反应生产乳酸和NAD+,从而保证了糖酵解的顺利进行。另一个可能的解释是连接糖酵解与TCA循环的特异性酶如丙酮酸脱氢酶复合物、磷酸丙酮酸羧化酶激酶和丙酮酸羧化酶活性低下,直接导致糖酵解与TCA循环的失衡。因此体外培养条件下,葡萄糖主要经糖酵解降解,产生过量的乳酸。减少乳酸生产最常用的方法是限制培养基中葡萄糖的含量,但葡萄糖含量过低可造成细胞营养供应不足,细胞生长抑制。该方法需要对葡萄糖的消耗与需求、乳酸的生产速率以及目的蛋白的表达量等参数进行综合考虑方可应用。 在目前常用的培养基中,葡萄糖和谷胺酰胺是体外培养动物细胞的主要能源,其能量代谢通路与体内完全不同,表现为葡萄糖主要经糖酵解途径为细胞提供能量,谷胺酰胺大部分通过不完全氧化途径,另一小部分通过完全氧化为细胞供能。因此,适当的调整细胞内的代谢途径,使之能促进细胞的快速生长和产物合成,同时减少代谢抑制物的生成是行之有效的一种策略。 许多动物细胞如CHO、BHK和杂交瘤细胞对营养物质葡萄糖和谷氨酰胺的消耗利用很快。然而对于细胞生长而言,二者的快速利用并非细胞必需;相反相当一部分转化为代谢废物乳酸和氨,以及一些非必需氨基酸如丙氨酸,脯氨酸。其中,乳酸和氨是两种主要代谢废物,其积累可影响细胞生长以及产品质量。减少这两种代谢产物的积累,是大规模细胞培养技术研究的重要方向。 氨是由谷氨酰胺和天冬酰胺产生的。限制培养基中谷氨酰胺的含量亦是减少氨生成的常用方法。 ●除了以上与细胞生长有关的物质以外,培养基中一般还要加入酚红(当溶液酸性时pH小于6.8呈黄色;当溶液碱性时pH大于 8.4呈红色),一种pH指示剂。 ●在较为复杂的培养液中还包括核酸降解物(如嘌呤和嘧啶两类)以及氧化还原剂(如谷胱甘肽)等。有的培养液还直接采用了三磷酸腺苷和辅酶A。 二、常用细胞培养基 (1).MEM细胞培养基系列 (2).DMEM细胞培养基系列 (3)RPMI-1640细胞培养基系列

MDCK细胞培养基本技术方法 -2011本

MDCK细胞培养 一、目的MDCK细胞培养是分离流感病毒及相关研究实验的基本技术。 二、适用范围适用于疾控中心所有技术人员。 三、程序 (一)生物安全要求实验室生物安全级别:BSL-1所有操作必须在BSL-1实验室的生物安全柜里进行。 (二)材料 1.生长成片的MDCK细胞 2.无菌的T25细胞培养瓶 3.D-MEM培养液(含有L-谷氨酰胺) 4.青、链霉素母液(10000U/mL青霉素G;10000μg/mL硫酸链霉素),分装后保存于-20℃ 5.HEPES缓冲液,1M母液 6.胎牛血清 7.EDTA-胰酶(0.05%胰酶,0.53mMEDTA-4Na),分装后保存于-20℃8.7.5%牛血清白蛋白组分V9.1mL、10mL无菌移液管10.70%~75%的酒精注意事项:经常检查试剂使用的有效期。 (三)实验步骤这里以T75细胞瓶的单层细胞培养为例,叙述MDCK细胞的培养程序。如果细胞瓶的规格有变,MDCK细胞悬液的量必须做相应的调整。 1.D-MEM培养液的准备 500mLD-MEM液中加入:青、链霉素母液5mL(终浓度达:100U/mL青霉素;100μg/mL链霉素),HEPES缓冲液12.5mL(终浓度:25mM)。7.5%牛血清白蛋白组分Ⅴ12.5mL 2.细胞生长液的准备 胎牛血清10mL加到90mL的上述(1)的液体中,使胎牛血清的终浓度为10%。 3.首先将细胞培养瓶中的培养液弃去,加入5mL在37℃水浴中预热的EDTA-胰酶。 4.温和地摇动细胞瓶1min,使EDTA-胰酶均匀分布在整个细胞薄层。然后用移液管吸去EDTA胰酶。

5.重新加入5mL在37℃水浴中预热的EDTA-胰酶重复上述步骤。 6.加入1mLEDTA-胰酶使其均匀分布在整个细胞薄层,37℃孵育细胞瓶直至细胞从塑料细胞瓶的表面分离(约5~10min)。必要时可以摇动或吹打来分离细胞。然后加入1mL胎牛血清灭活残余的胰酶。 7.加9mL已经配置好的含有L-谷氨酸的D-MEM培养液,轻轻用移动移液管来吹散细胞团。 8.取10mL混合物加到90mL细胞生长液(细胞悬液的浓度大约为每毫升含105细胞) 9.每个T25细胞培养瓶加入6mL(6×105/mL)细胞悬液,剩余的细胞悬液可以加到T75细胞瓶用于细胞传代。通常6mL细胞悬液2~3日可生长成片(80%~90%)的单层细胞。 10.于37℃,5%CO2培养箱里培养细胞,每天观察细胞状态,以供进一步实验用。

血管内皮细胞培养

血管内皮细胞(endothelial cell, EC)体外培养 1.概述血管内皮细胞(endothelial cell, EC)是衬于心,血管和淋巴管腔内表面的一种单层扁平上皮细胞。EC极薄,厚度约为0.1~1μm,长约25~50μm,宽约10~15μm,在体内呈梭形,相邻细胞之间借少量粘合质彼此嵌合,细胞长轴与血流方向平行。其超微结构特点是在胞质中含有的特殊颗粒,称Weibel-palade小体(内含有与凝血有关的第Ⅷ因子相关抗原);细胞间有紧密连接的缝隙相连。EC除了能保持血管壁内表面的光滑和通透性外,还有多种生物学功能:维持正常的血液流动性,分泌多种生物活性物质,在调节细胞生长,改变脂质代谢,维持血管壁的完整性,调节血管张力和选择性通透性以及免疫调节方面起到重要作用。EC功能的异常,与血栓形成、动脉粥样硬化、高血压等心血管疾病及肿瘤扩散,免疫疾病都有密切关系。体外培养中的EC形态呈“鹅卵石样”镶嵌排列,细胞长满后呈接触抑制现象。 2.培养方法EC生长在血管内表面,由于其所处的独特位置不利于观察和研究,所以体外培养EC显得特别重要,目前已有多种种属(人、牛、猪、兔、大鼠等),多种组织(脐带动脉、静脉、肺动脉、主动脉、脑毛细血管、心脏毛细血管等)的EC能在体外培养成功。人们将培养器皿预先用明胶或纤连蛋白或胶原等粘附蛋白包被后,形成人工的EC下基质层,可促进EC的粘附与生长。 2.1 方法原理用酶消化法,酶消化+机械刮脱法或单纯刮脱法将EC分离下来,在适宜的条件下可贴壁并长成致密单层。 2.2 介绍几种主要EC的分离 2.2.1 酶消化法大血管内皮细胞的分离 2.2.1.1 人脐带动、静脉(或其它大血管) a.在37℃水浴中,预热培养用的所有无菌溶液,备用。 b.在无菌条件下,取健康产妇分娩后新鲜的婴儿脐带(25cm左右,不超过6h),选择无夹痕、无扭曲、无凝血阻塞的部分,放入含有100 U/ml的青霉素和100 μg/ml链霉素的D-Hanks液中,在脐静脉或脐动脉的两端插入磨平的注射器针头用丝线扎紧,用注射器从一端注入D-Hanks液冲洗血管,直到流出的液体无血迹。

从二维到三维细胞培养的变迁

从二维到三维细胞培养的 变迁 Newly compiled on November 23, 2020

细胞培养技术进展概述及分析 细胞培养一直是细胞生物学中基础且核心的部分。无论是进行细胞性状研究,还是进行细胞产物的研发,都需要以细胞体外扩增技术-即细胞培养技术为基础。随着生命科学的发展,细胞培养技术更是被广泛应用于生物学、、新药研发等多个领域,成为生命科学最重要的基础技术之一。 传统的细胞培养即细胞的平面培养,细胞在培养过程中只能沿平面延伸,属于细胞的二维培养技术。这种培养方式经济、便利、易操作,符合某个历史阶段对细胞培养技术的要求。但随着研究的深入,传统的二维培养技术已经不能满足细胞培养需求。盖因生物体内的细胞是在立体三维的微环境中生长的,二维培养微环境与体内微环境差异太大,影响细胞的基因表达、信号转导等,导致所培养的细胞逐渐丧失其在生物体内的生物学特性及功能,失去研究及应用价值。传统的二维培养技术,已经成为细胞学为基础的众多学科进步的壁垒之一。 科学家开始寻求更贴近自然状态的细胞培养技术。一种与活体组织内的细胞外基质相似的,能更好的模拟细胞在体内生长环境的培养技术,即细胞的三维培养技术。 目前已开发出很多细胞三维培养技术,大致可分为需要支架的三维培养技术和不需要支架的三维细胞培养技术。支架类主要是在三维空间内构建供细胞附着和生长的类似脚手架的多孔结构, 细胞依附于支架进行三维生长和迁移, 主要的支架材料有胶原和水凝胶等;而不需要支架的三维培养技术主要是通过物理方法使贴壁细胞悬浮于培养基中以达到三维培养的目的, 目前主要的技术有微载体、磁悬浮、悬滴板和磁性三维生物印刷等技术。

细胞培养基及其配制方法

细胞培养基及其配制方 法 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

D M E M(A)细胞培养基(粉末型)成分

●所用器皿应严格消毒。 ●配制好的培养基应马上过滤,无菌保存于4度。 ●液体培养基主要是为了科研工作的方便而设计的培养基,它是一种灭菌后保证 无菌的溶液,必要时可制成无内毒素等的溶液,可节省科研人员的工作量。 DMEM各种成分都有什么作用 一般的基础培养基包括四大类物质:无机盐、氨基酸、维生素、碳水化合物。 (1)无机盐:对调节细胞渗透压、某些酶的活性及溶液的酸碱度都是必须的。 (2)氨基酸:缬氨酸、亮、异亮、苏、赖、色、苯丙、蛋、组、酪、精氨酸、胱氨酸(L型)都是细胞用以合成蛋白质的必需氨基酸,不能由其他氨基酸或糖类转化合成。除此之外,还需要谷氨酰胺(glutamine)。谷氨酰胺具有特殊的作用,对细胞的培养特别重要,能促进各种氨基酸进入细胞膜;它所含的氮是核酸中嘌呤和嘧啶的来源,还是合成—磷酸腺苷、二磷酸腺甘和三磷酸腺苷的原料。细胞需要谷氨酰胺合成核酸和蛋白质,谷氨酰胺缺乏可导致细胞生长不良甚至死亡。在配制各种培养液中都应补加一定量的谷氨酰胺。值得注意的是:谷氨酰胺在溶液中很不稳定,故4℃下放置1周可分解50%,使用中最好单独配制,置-20℃冰箱中保存,用前加入培养液中。 (3)维生素:是维持细胞生长的一种生物活性物质,在细胞中大多形成酶的辅基或辅酶,对细胞代谢有重大影响。 (4)碳水化合物:是细胞生命的能量来源,有的是合成蛋白质和核酸的成分。体外培养动物细胞时,几乎所有培养基或培养液中都以葡萄糖作为必含的能源物质。 (5)葡萄糖和谷胺酰胺:体外培养条件下,葡萄糖主要经糖酵解降解,产生过量的乳酸。减少乳酸生产最常用的方法是限制培养基中葡萄糖的含量,但葡萄糖含量过低可造

细胞培养基本方法

1.操作台基本要求: 2.随着传代次数的增加,连续培养细胞系遗传物质不稳定,不得将细胞存放于-20℃或-80℃冰柜中,因为细胞存在次低温条件下活力迅速降低。 3.细胞污染: (1)细菌污染

(2)酵母污染 (3)霉菌污染 初期PH值维持稳定,污染严重后PH值迅速升高,导致培养基浑浊。 (4)病毒污染 一般不会对与其宿主物种不同的细胞培养物造成不良影响,通过电子显微镜检查、一组抗体的免疫染色,ELISA实验或者采用适当病毒引物的PCR技术可以检测出细胞为病毒污染。 (5)支原体污染 唯一检测支原体污染的方法是采用荧光染色、ELISE、PCR、免疫染色、放射自显影 4.抗生素只能作为对付污染的最后手段而且只能短期使用,并应尽快撤出 5.适合贴壁的细胞和悬浮的细胞

6.基础培养基,减血清培养基,无血清培养基 7.PH值:大多数正常哺乳动物细胞系PH为7.4; 成纤维细胞系适合轻度偏碱(pH7.4-7.7) Sf9和sf21等昆虫细胞系最适合在PH值为6.2的环境中生长8.温度:大多数人和哺乳动物细胞系在36℃至37℃最佳 昆虫细胞在27℃为最佳 禽类细胞在38.5℃最佳 冷血动物(15℃-26℃) 9.动物细胞形态划分: ●成纤维细胞,贴附生长 ●上皮样细胞呈多角形,贴附 ●淋巴母细胞样细胞呈球形,不贴附 ●特殊形态: ?I型有长突触 ?Ⅱ型没有轴突 10.细胞增长模式

11.何时传代? ●哺乳动物:生长的PH值通常表示乳酸储积,且有毒性,当PH迅速降低() 0.1-0.2PH单位),同时细胞浓度增大,则应对细胞进行传代。 ●昆虫细胞PH值会上升但不超过6.4 12.贴壁细胞的解离

细胞培养各种培养基简介

DMEM、RIPA1640、F12、L15等细胞培养基的基本知识 培养细胞的完全培养基由基础培养基(如MEM)和添加剂(如血清或无血清培养用的某些确定的激素及生长因子)组成,培养基的配方一直在改进,其中包括抗生素和抗有丝分裂剂等等。 一、基础培养基 绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和代谢添加剂(例如核苷酸)。MEM/F12 这两种培养基各取1/2,形成神经生物学最通用的培养基。Dulbecco`s改良培养基——DMEM,现应用于快速生长的细胞,同MEM 含有相同的营养成分,但浓度高出2~4倍。选择某种培养基,应仔细了解成分表,应知道大多数情形下培养基都有不足。例如,有些培养基在氨基酸中包括有谷氨酸,而这种培养基虽广泛用于神经生物学领域,但它对某些对谷氨酸敏感的可能有细胞外毒性损伤的神经元而言,则并非最佳选择,特别是如果神经元生长在缺乏胶质的环境中时。F12中含有硫酸亚铁,据报道也有神经毒效应。 在所有这些培养基中,谷氨酸比其他氨基酸有更高的浓度,这是因为它具有不稳定性以及在许多细胞培养中它常用作碳源。对于神经元的培养常常在基础培养基中增加葡萄糖的含量到0.6%或者加入丙酮酸(若培养基中这两种物质缺乏时)。MEM与F12均要用5%的CO2来平衡,DMEM含更高浓度的NaCO3,要用10%的CO2来平衡,当然也可以在较低CO2浓度下使用。这些基础培养基的组成成分是建立在对不同细胞系生长的研究之上的,但通常在原代培养中使用也能有比较令人满意的结果。 原则上,HEPES作为缓冲剂可用来代替碳酸氢盐,以解除需要高浓度CO2培养环境的限制。实际操作中并非如此简单。显然,溶解的CO2与碳酸氢盐对良好的细胞生长是重要的。Leiboviz`s L15培养基可用来在大气环境中令神经细胞生长,该培养基采用了与众不同的BSS作基础,它含有高浓度的氨基酸来提高缓冲能力,培养基中使用半乳糖作碳源,以阻止培养基中乳酸形成,少量溶解的CO2由丙酮酸代谢产生。这一培养基的优点是明显的,特别是在保持较高CO2有困难时,例如在长时间的显微操作及生理学研究中。L15培养基已用来成功的培养了外周神经元,但尚未在CNS神经元的发育研究中全面检测过。 二、血清 细胞在单纯的基础培养基中不能存活,在特殊类型的细胞培养中必须提供某些 痕量营养物质及生长因子才能使细胞得以生长并维持生长状态。基础培养基常常要添加血清,血清终浓度多为5~20%。特殊用途的血清来源须用经验确定,广泛应用的血清种类有马血清与胎牛血清。胎牛血清中富含有丝分裂因子,常选其作增殖细胞用的血清,也用于细胞系和原代培养。而马血清常常用来作有丝分裂后的神经元培养。然而,很多人也将胎牛血清

细胞培养技术

第一章 细胞培养的基本原理与技术 现代生物技术一般认为包括基因工程技术、细胞工程技术、酶工程技术和发酵工程技术,而这些技术的发展几乎都与细胞培养有密切关系,特别是在医药领域的发展,细胞培养更具有特殊的作用和价值。比如基因工程药物或疫苗在研究生产过程中很多是通过细胞培养来实现的。基因工程乙肝疫苗很多是以CHO细胞作为载体;细胞工程中更是离不细胞培养,杂交瘤单克隆抗体,完全是通过细胞培养来实现的,既使是现在飞速发展的基因工程抗体也离不开细胞培养。正在倍受重视的基因治疗、体细胞治疗也要经过细胞培养过程才能实现,发酵工程和酶工程有的也与细胞培养密切相关。总之,细胞培养在整个生物技术产业的发展中起到了很关键的核心作用。 第一节 体外培养的概念 一、基本概念 体外培养(in vitro culture),就是将活体结构成分或活的个体从体内或其寄生体内取出,放在类似于体内生存环境的体外环境中,让其生长和发育的方法。 ●组织培养:是指从生物体内取出活的组织(多指组织块)在体外进行培养的方法。 ●细胞培养:是指将活细胞(尤其是分散的细胞)在体外进行培养的方法。 ●器官培养:是指从生物体内取出的器官(一般是胚胎器官)、器官的一部分或器官原基在体外进行培养的方法。 二、体内、外细胞的差异和分化 1.差异:细胞离体后,失去了神经体液的调节和细胞间的相互影响,生活在缺乏动态平衡相对稳定环境中,日久天长,易发生如下变化:分化现象减弱;形态功能趋于单一化或生存一定时间后衰退死亡;或发生转化获得不死性,变成可无限生长的连续细胞系或恶性细胞系。因此,培养中的细胞可视为一种在特定的条件下的细胞群体,它们既保持着与体内细胞相同的基本结构和功能,也有一些不同于体内细胞的性状。实际上从细胞一旦被置于体外培养后,这种差异就开始发生了。 2.分化:体外培养的细胞分化能力并未完全丧失,只是环境的改变,细胞分化的表现和在体内不同。细胞是否表现分化,关键在于是否存在使细胞分化的条件,如Friend细胞(小鼠红白血病细胞)在一定的因素作用下可以合成血红蛋白,血管内皮细胞在类似基膜物质底物上培养时能长成血管状结构,杂交瘤细胞能产生特异的单克隆抗体,这些均属于细胞分化行为。 第二节 细胞培养的一般过程 一、准备工作 准备工作对开展细胞培养异常重要,工作量也较大,应

细胞培养基及其配制方法

D M E M(A)细胞培养基(粉末型)成分

DMEM(H) 细胞培养基(粉末型)成分 DMEM(L) 细胞培养基(粉末型)成分

双蒸水。(2)在室温(20℃到30℃)的水中加入干粉培养基,轻轻搅拌,不要加热。 (3)水洗包装袋的内部,转移全部的痕量干粉到容器内。 (4)加NaHCO3到培养基中。 (5)用双蒸水稀释到想要的体积,搅拌溶解。注意不要过分搅拌。 (6)通过缓慢搅拌加入1N NaOH 或1N HCL调节pH值,由于pH值在过滤时会上升到,因而调节pH值使它比最终想要的pH值低到。培养基在过滤前要保持密封。 配制培养基要注意以下问题: ●认真阅读说明书。说明书都注明干粉不包含的成分,常见的有NaHCO3、谷氨酰胺、丙酮酸钠、HEPES等。这些成分有些是必须添加的,如NaHCO3、谷氨酰胺,有些根据实验需要决定。 ●配制是要保证充分溶解,NaHCO3、谷氨酰胺等物质都要等培养基完全溶解之后才能添加。 ●配制所用的水应是三蒸水,离子浓度很低。 ●所用器皿应严格消毒。 ●配制好的培养基应马上过滤,无菌保存于4度。

●液体培养基主要是为了科研工作的方便而设计的培养基,它是一种灭菌后保证无菌的溶液,必要时可制成无内毒素等的溶液,可节省科研人员的工作量。 DMEM各种成分都有什么作用 一般的基础培养基包括四大类物质:无机盐、氨基酸、维生素、碳水化合物。 (1)无机盐:对调节细胞渗透压、某些酶的活性及溶液的酸碱度都是必须的。 (2)氨基酸:缬氨酸、亮、异亮、苏、赖、色、苯丙、蛋、组、酪、精氨酸、胱氨酸(L型)都是细胞用以合成蛋白质的必需氨基酸,不能由其他氨基酸或糖类转化合成。除此之外,还需要谷氨酰胺(glutamine)。谷氨酰胺具有特殊的作用,对细胞的培养特别重要,能促进各种氨基酸进入细胞膜;它所含的氮是核酸中嘌呤和嘧啶的来源,还是合成—磷酸腺苷、二磷酸腺甘和三磷酸腺苷的原料。细胞需要谷氨酰胺合成核酸和蛋白质,谷氨酰胺缺乏可导致细胞生长不良甚至死亡。在配制各种培养液中都应补加一定量的谷氨酰胺。值得注意的是:谷氨酰胺在溶液中很不稳定,故4℃下放置1周可分解50%,使用中最好单独配制,置-20℃冰箱中保存,用前加入培养液中。 (3)维生素:是维持细胞生长的一种生物活性物质,在细胞中大多形成

细胞培养的基本原理与技术

第一章细胞培养的基本原理与技术现代生物技术一般认为包括基因工程技术、细胞工程技术、酶工程技术和发酵工程技术,而这些技术的发展几乎都与细胞培养有密切关系,特别是在医药领域的发展,细胞培养更具有特殊的作用和价值。比如基因工程药物或疫苗在研究生产过程中很多是通过细胞培养来实现的。基因工程乙肝疫苗很多是以CHO细胞作为载体;细胞工程中更是离不细胞培养,杂交瘤单克隆抗体,完全是通过细胞培养来实现的,既使是现在飞速发展的基因工程抗体也离不开细胞培养。正在倍受重视的基因治疗、体细胞治疗也要经过细胞培养过程才能实现,发酵工程和酶工程有的也与细胞培养密切相关。总之,细胞培养在整个生物技术产业的发展中起到了很关键的核心作用。第一节体外培养的概念一、基本概念体外培养(in vitro culture),就是将活体结构成分或活的个体从体内或其寄生体内取出,放在类似于体内生存环境的体外环境中,让其生长和发育的方法。组织培养:是指从生物体内取出活的组织(多指组织块)在体外进行培养的方法。细胞培养:是指将活细胞(尤其是分散的细胞)在体外进行培养的方法。器官培养:是指从生物体内取出的器官(一般是胚胎器官)、器官的一部分或器官原基在体外进行培养的方法。 二、体内、外细胞的差异和分化

1、差异:细胞离体后,失去了神经体液的调节和细胞间的相互影响,生活在缺乏动态平衡相对稳定环境中,日久天长,易发生如下变化:分化现象减弱;形态功能趋于单一化或生存一定时间后衰退死亡;或发生转化获得不死性,变成可无限生长的连续细胞系或恶性细胞系。因此,培养中的细胞可视为一种在特定的条件下的细胞群体,它们既保持着与体内细胞相同的基本结构和功能,也有一些不同于体内细胞的性状。实际上从细胞一旦被置于体外培养后,这种差异就开始发生了。 2、分化:体外培养的细胞分化能力并未完全丧失,只是环境的改变,细胞分化的表现和在体内不同。细胞是否表现分化,关键在于是否存在使细胞分化的条件,如Friend细胞(小鼠红白血病细胞)在一定的因素作用下可以合成血红蛋白,血管内皮细胞在类似基膜物质底物上培养时能长成血管状结构,杂交瘤细胞能产生特异的单克隆抗体,这些均属于细胞分化行为。第二节细胞培养的一般过程一、准备工作准备工作对开展细胞培养异常重要,工作量也较大,应给予足够的重视,推备工作中某一环节的疏忽可导致实验失败或无法进行。准备工作的内容包括器皿的清洗、干燥与消毒,培养基与其他试剂的配制、分装及灭菌,无菌室或超净台的清洁与消毒,培养箱及其他仪器的检查与调试。 二、取材在无菌环境下从机体取出某种组织细胞(视实验目的而定),经过一定的处理(如消化分散细胞、分离等)后接入培养器血中,这一过程称为取材。如是细胞株的扩大培养则无取材这一过程。机体取出的组织细胞的首次培养称为原代培养。

细胞培养概要

= 细胞培养基本方法=

(三)小牛血清的处理 市场上出售的小牛血清一般做了灭菌处理,但在使用前还应做热灭活处理,即通过加热的方法破坏补体(近来也有观点认为热灭活处理是不必要的)。胎牛血清不必灭活。 1、将血清加热至56℃并保持30 min,其间要不时轻轻晃动,使受热均匀,防止沉淀析出。 2、处理后的血清贮存于4℃。 3、小牛血清在使用前最好进行筛选以掌握血清的质量。 (四)生长培养基的配制 除无血清培养之外,各种合成培养基在使用前需加入一定量的小牛血清或胎牛血清和抗菌素。 1.培养基分装成小瓶(100~200 mL)以便使用,翻帽塞塞紧瓶口。 2.按如下比例配制:基本培养基占80%~90%,小牛血清或胎牛血清占10%~20%。按 1%体积分数加入双抗贮存液(青霉素+链霉素),使青霉素和链霉素的终浓度分别为100 U/mL和100 μ/mL,。 (五)冻存细胞的复苏 1.应遵守慢冻快融的原则。先将水浴锅调至37-37。5度,取出冻存的细胞迅速放入后 将细胞面浸至水面以下不断摇动至融化。 2.在无菌台内将完全培养基加入50ml的小培养瓶内,约5ml左右,然后用无菌吸管从 冻存管内取出细胞,置培养并内轻轻摇晃,使细胞均匀后置培养箱内培养。 (六)传代: 1.贴壁细胞: 对于贴壁细胞应先吸(倒)尽培养基,吸的越干净越好,以免中和后加入的消化液,使强度减弱(或PBS洗1-3次)。50ml培养瓶加入消化液约1-3ml,按此比例进行消化,(根据经验),晃动使消化液铺均匀置37度培养箱约2-5分钟,镜下见细胞收缩变圆或少数脱落后,轻轻振动瓶底使细胞全部脱落,加入2-3ml完全培养基后,轻轻吹打,使细胞基本成单个悬浮,然后分置其它无菌培养瓶内,加入完全培养基后继续培养或实验。 2.悬浮细胞: 一般传代可直接将细胞原液分置其它培养瓶内,加入完全培养基继续培养,如要高浓度可先离心1000rpm,5min后加入完全培养基,轻轻吹匀后,分置其它培养瓶内加入完全培养基继续培养。 (七)冻存 将贴壁细胞消化后离心收集,悬浮细胞直接离心收集,以完全培养基或胎牛血清重悬细胞至终浓度约106/ml。加入10%的DMSO。以每管1~2ml分装至冻存管中。用绝热材料包裹置-70摄氏度冰箱冷冻过夜。次日保存到液氮中。 (八)注意事项 1.玻璃吸管和玻璃培养瓶的消毒:1)高压蒸汽灭菌15分钟以上;2)干烤消毒140度2小 时以上; 2.无菌工作台先清洗后用75%酒精擦拭干净,紫外线照射40分钟以上;各种培养板照 射3小时以上; 3.培养基(pH7.2)和血清配制好后要做无菌试验:将血清按10%加入培养基内,用无菌的 玻璃离心管或玻璃瓶取完全培养基5-10ml置培养箱内培养2-3天,肉眼见无浑浊或

相关文档
最新文档