第12节-强度理论

1材料的疲劳与断裂

第12 讲

材料的断裂与强度理论

2007年5月11日

2材料的强度及其意义

强度定义:指材料或构件抵抗失效的能力。

材料强度:指在室温、无化学介质、准静态加

载条件下,标准圆棒试样测定的拉

伸屈服强度称为材料的强度。

其他强度:断裂强度、高温强度、疲劳强度

环境强度、缺口强度、冲击强度

强度意义:表征材料在特定环境下抵抗破坏的

本征能力,也强烈依赖外力的施加

方式。即外力作用下的本征反应。

强度理论:是研究材料在复杂应力状态下屈服和破坏规律的理论。

强度理论的特点:

1、具有清晰而明确的物理概念;

2、具有相对简单的数学表达式;

3、要求的材料性能参数容易获得;

4、理论计算与实验应基本符合;

5、表达式应反映各个独立应力分量的作用;

6、理论能够应用于不同的材料,多多益善。

6

强度理论的研究方法

宏观唯象方法:以材料力学与力学分析为基础

假定—公式—实验验证

以力学家为主

材料微观方法:以材料性能与微观力学为基础

建立材料的微观组织与强度之

间的关系

以材料和物理学家为主

强度理论是一个很独特和奇妙的研究主题,它的命题很简单,但问题很复杂。经过几百年的研究,人们已经提出了大量的理论和实验研究,提出了上百个模型或准则,但没有一个模型或理论能够被所有人接受。

强度理论是一个“百花齐放、百家争鸣”的主题,这在自然科学中并不多见。

达芬奇:Leonardo da Vinci (1452-1519)

伽利略:Galileo Galolei(1564-1642) :意大利人。他们是那个时代最杰出的科学家,可能是材料强度和结构强度最早的研究者。他们进行了大量的关于铁丝和石料等脆性材料的拉伸试验,达芬奇认为铁丝的强度与其长度有很大关系;而伽利略认为当外加临界力达到一定值时,材料发生破坏,此观点即是材料的第一强度理论。他也是世界上第一次提出关于强度计算的人。

库仑:Coulomb (1736-1806):法国科学家

是最大剪应力强度理论的第一个研究者。18世纪的其他科学家对弹性力学研究的贡献没有人超过他,1773年4月2日在法国科学院宣读了他具有历史意义的论文,提出了莫尔-库仑强度理论。他认为破坏是沿着一定的平面的滑移引起的,当作用在滑移面的力大于该面的黏聚力时发生破坏。为了使理论更符合实验结果,他还提出,不仅要考虑滑移面的黏聚力,而且还要考虑作用在该滑移面上的法向力所引起的摩擦作用,这是莫尔-库仑理论的首次阐述

马里奥特:Mariotte(1620-1684):

对最大伸长准则和最大应变准则首次作了论述,被称为第二强度理论。该理论曾经广为流传。但由于与大多数实验结果不符,至今很少有人使用了。

Poncelet(1788-1867): 法国科学院院士,

Saint-Venant(1797-1886):法国科学家,

由于受两位科学家的影响,最大应变准则曾经得到广泛的应用,但由于该准则与大多数实验结果不符,至今已经很少有人再使用了。

1864年:Tresca在法国科学院发表了他关于金属在很高压力下流动的报告,他认为金属流动时最大剪应力保持为常量,现在称之为Tresca屈服准则。

此外,Guest也独立地提出过最大剪应力准则。

最大剪应力屈服准则与某些韧性材料的实验结果比较符合,并且应用简单,但是它只考虑了3个主应力中的3个主应力,忽略了中间应力的影响。

1856年Maxwell提出单位体积的总形变能可以分为两部分:1)均匀扩大和缩小的体积比能;2)形状改变比能。他在给William Thomson的信中说:“我有很强的理由相信,形状改变能达到极限时,单元体将开始破坏”。他又说:“这是我首次论述这个问题,我以前从来没有看到过对这一问题的任何研究”。此思想即是今天的van Mises准则的雏形,但该信于1937年才公开发表。

1885年贝尔特拉姆提出了“能量强度理论”,假设

单元体的变形能达到某一极限值时,材料发生破坏。这一理论虽然由于与很多实验结果不符合而

被淘汰,但却导致了最大畸变能理论的诞生。1904年胡贝尔(Huber),1924年汉基(H. Hencky)都对“能量强度理论”进行了修正,提出了新的能量强度理论:畸变能理论。他们假设材料的破坏与体

积变形能无关,而只与畸变能有关,由于当时波兰文不被人们重视。1913年van Mises正式提出了该能量理论,后来也常常将该理论称为van Mises理论或第四强度理论。

1900年莫尔(Mohr)在发展其强度理论时,将应力莫尔圆应用到理论分析中。莫尔对强度理论进行过比较系统的研究,他认为破坏是广义的,他可以是材料的屈服或断裂。莫尔准则可以被认为是Tresca准则的推广形式。两个准则都基于最大剪应力是材料破坏的决定性度量,但是Tresca准则假设剪应力的临界值是常数,而莫尔准则认为某平面上的极限剪应力是该截面上正应力的函数。

莫尔的准则可以追溯到1773年的库仑准则,目前这个准则被称为莫尔-库仑准则。

莫尔(Mohr:1835-1918):德国著名建筑工程师,他既是一位理论家也是一位实践设计者,他先在斯图加特工业大学作为一名教授,后来来到德累斯顿工业大学执教。他于1882年发展应力莫尔圆,他对强度理论做出了非常多的贡献。

他的学生Foppl说:所有的同学一致认为,莫尔是他们的最好的老师,莫尔总能带来一些新鲜的、有趣的话题来吸引学生门的注意。学生们对他的讲演感兴趣的原因也是来源于这样一个事实,他不仅完全了解这个主题,而且在科学创新方面做过大量工作。后来Foppl也成为一名杰出的教授。

16材料经典强度理论介绍

171638年:伽利略在?两种新科学?一书中首次提出,后来经过修正为最大拉应力理论,由于它是最早提出的强度理论,所以也称为第一强度理论。最大拉/正应力准则:第一强度准则(Maximum Tensile-Stress Criterion)

最大拉应力是引起材料断裂的原因1σ的强度极限,就发生断裂破坏

b σ具体说:无论材料处于什么应力状态,1σ只要微元内的最大拉应力达到了单向拉伸适用对象:砖石、铸铁、陶瓷、玻璃、混凝土等

19最大线应变理论:第二强度理论具体说:无论材料处于什么应力状态,只要构件内有一点处的最大线应变达到了单向拉伸的应变极限,就发生断裂破坏。

1682年:法国科学家马里奥特(Marriote) 提出最大伸长线应变是引起材料断裂的原因1ε《失效准则》

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

试按第三和第四强度理论计算单元体的相当应力。图中应力

一、从低碳钢零件中某点取出一单元体,其应力状态如图所示,试按第三和第四强度理论计算单元体的相当应力。图中应力单位是MPa 。 (1)、40=ασ,40090=+ασ,60=ατ (2)、60=ασ,80090-=+ασ,40-=ατ (1) max min 123r313r41004040MPa 202σ=100MPa,σ=0MPa,σ=-20MPa σσσ120MPa σ111.3MPa σ+= ±=-=-== (2) max min 123r313r470.66080MPa 90.6σ=70.6MPa,σ=0MPa,σ=-90.6MPa σσσ161.2MPa σ140.0MPa σ=-±=-=-== 二、上题中若材料为铸铁,试按第一和第二强度理论计算单元体的相当应力。图中应力单位是MPa ,泊松比3.0=μ。 (1) r11r2123σσ100MPa σσ(σσ)106.0MPa μ===-+= (2) r11r2123σσ70.6MPa σσ(σσ)97.8MPa μ===-+= α σ

三、图示短柱受载荷kN 251=F 和kN 52=F 的作用,试求固定端截面上角点A 、B 、C 及D 的正应力,并确定其中性轴的位置。 121i 33 121260025100150150100101012121.66106.750F F y F z Z y z σ---??=++????=-++ 1.668.0 2.58.84MPa 1.668.0 2.5 3.84MPa 1.668.0 2.512.16MPa 1.668.0 2.57.16MPa A B C D σσσσ=-++==-+-==---=-=--+=- -1.66+106.7y +50z =0 当z =0时,31.66 1015.5mm 106.70y -=?= 当y =0时,31.66 1033.3mm 50 y -=?=

四大强度理论

第10章强度理论 10.1 强度理论的概念 构件的强度问题是材料力学所研究的最基本问题之一。通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。 各种材料因强度不足而引起的失效现象是不同的。如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。对以铸铁为代表的脆性材料,失效现象则是突然断裂。在单向受力情 况下,出现塑性变形时的屈服点 σ和发生断裂时的强度极限bσ可由实 s 验测定。 σ和bσ统称为失效应力,以安全系数除失效应力得到许用应s 力[]σ,于是建立强度条件 可见,在单向应力状态下,强度条件都是以实验为基础的。 实际构件危险点的应力状态往往不是单向的。实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。常用的方法是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。这种薄壁筒

试验除作用内压和轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。此外,还有一些实现复杂应力状态的其他实验方法。尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。况且复杂应力状态中应力组合的方式和比值又有各种可能。如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。由于技术上的困难和工作的繁重,往往是难以实现的。解决这类问题,经常是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。 图10-1 经过分析和归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还是屈服和断裂两种类型。同时,衡量受力和变形程度的量又有应力、应变和变形能等。人们在长期的生产活动中,综合分析材料的失效现象和资料,对强度失效提出各种假说。这类假说认为,材料之所以按某种方式(断裂或屈服)失效,是应力、应变或变形能等因素中某一因素引起的。按照这类假说,无论是简单应力状态还是复杂应力状态,引起失效的因素是相同的。也就是说,造成失效的原因与应力状态无关。这类假说称为强度理论。利用强度理论,便可由简单应力状态的实验结果,建立复杂应力状态下的强度条件。至于某种强

材料力学四个强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

第7章应力状态和强度理论(答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应 变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+Q V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο 60 方向上的正应变4 60101.4-?=ο ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN ο

第十章强度理论(讲稿)

第十章强度理论 一、教学目标 掌握强度理论的概念。 了解材料的两种破坏形式(按破坏现象区分)。 了解常用的四个强度理论的观点、破坏条件、强度条件。 掌握常用的四个强度理论的相当应力。 了解莫尔强度理论的基本观点。 会用强度理论对一些简单的杆件结构进行强度计算。 二、教学内容 讲解强度理论的概念及材料的两种破坏形式。 讲解常用的四个强度理论的基本观点,并推导其破坏条件从而建立强度计算方法。 介绍几种强度理论的应用范围和各自的优缺点。 简单介绍莫尔强度理论。 三、重点难点 重点:强度理论的概念、常用的四个强度理论的观点、强度条件及其强度计算。 难点:常用四个强度理论的理解;危险点的确定及其强度计算。

四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 五、计划学时 2学时 六、实施学时 七、讲课提纲 (一)为什么需要强度理论及强度理论的概念? 1、为什么需要强度理论(回顾基本变形下强度条件的建立) 2、复杂应力状态下的强度条件是什么?怎样建立? 3、强度理论的概念 4、四个强度理论及其相当应力 (二)四个强度理论 第一强度理论——最大拉应力理论 第二强度理论——最大拉应变理论 第三强度理论——最大剪应力理论 第四强度理论——?????形状改变比能理论 均方根剪应力理论 (三)相当应力 11σσ=r -=12σσr μ)(32σσ+

313σσσ-=r 2132322214)()()(2 1 σσσσσσσ-+-+-= r (四)复杂应力状态下强度条件的表达式 σr ≤[σ] (一)为什么需要强度理论?强度理论的概念 1、回顾构件处于简单变形下的强度条件的建立 [拉、压] (单向) 图10-1 强度条件: []n A F o N σσσ=≤=,b S o σσσ由试验得 [扭转](双向)

练习题四——强度理论

第四部分 应力分析和强度理论 一 选择题 1、所谓一点处的应力状态是指( ) A 、受力构件横截面上各点的应力情况; B 、受力构件各点横截面上的应力情况; C 、构件未受力之前,各质点之间的相互作用情况; D 、受力构件中某一点在不同方向截面上的应力情况。 2、对于图示各点应力状态,属于单向应力状态的是( ) A 、a 点 B 、b 点 C 、c 点 D 、d 点 3、对于单元体中max ,正确的答案是( ) A 、100MPa B 、0 MPa C 、50MPa D 、200 MPa 4、关于图示梁上a 点的应力状态,正确的是( ) 5、关于图示单元体属于哪种应力状态,正确的是( ) A 、单向应力状态 B 、二向应力状态 C 、三向应力状态 D 、纯剪切应力状态

6、对于图示悬臂梁中,A 点的应力状态正确的是( ) 7、单元体的应力状态如图,关于其主应力,正确的是( ) A 、1230,0σσσ>>= B 、321,0σσσ<<= C 、123130,0,0,||||σσσσσ>=<< D 、123130,0,0,||||σσσσσ>=<> 8、对于图示三种应力状态(a )、(b )、(c )之间的关系,正确的是( ) A 、三种应力状态均相同; B 、三种应力状态均不同 C 、(b )和(c )相同; D 、(a )和(c )相同 9、已知某点平面应力状态如图,1σ和2σ为主应力, 在下列关系正确的是( ) A 、12x y σσσσ+>+ B 、12x y σσσσ+=+ C 、12x y σσσσ+<+ D 、12x y σσσσ-=-

东北大学岩石力学讲义第二章岩石破坏机制及强度理论.

第二章 岩石破坏机制及强度理论 第一节 岩石破坏的现象 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种 一、拉破坏:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。特点出现与最大应力方向平行的裂隙。 二、剪切破坏:岩石试件单向抗压的X 形破坏。从应力分析可知,单向压缩下某一剪切面上的切向应力达到最大引起的破坏。 (a ) (b )

三、重剪破坏:即沿原有的结构面的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 从岩石破坏的现象看,从小到几厘米的岩块到大的工程岩体,破坏形式雷同,并可归纳为两种,拉断与剪坏,因此有一定的规律可寻。 对岩石破坏的研究: 在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,不同应力的组合有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,因此在一般应力状态,对岩石破坏的研究需要结合理论分析和试验研究两个方面。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系 123(,)f σσσ= 研究的方法有:理论分析;2、试验研究;3、理论研究结合试验研究。 第二节 岩石拉伸破坏的强度条件 一、最大线应变理论 该理论的主要观点是,岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力状态无关。强度条件为 c εε≤ (2-1) c ε—拉应变的极限值,ε—拉应变。

若岩石在破坏之前可看作是弹性体,在受压条件下σ1>σ2>σ3下, 3ε是最小主应力。按弹性力学有3 3E E σμ εσσ= -12(+),即33E εσμσσ=-12(+)。若3ε<0则产生拉应变。由于E >0,因此产生拉应变的条件是 3σμσσ-12(+)<0,3μσσσ12(+)> 若3ε=0ε<0则产生拉破坏,此时抗拉强度为0t E σε=?0t E σε=。 按最大线应变理论30εε≥破坏,即 312()t σμσσσ-+≥ (2-2) 式中0ε是允许的拉应变。 二、格里菲斯理论 格里菲斯理论的主要观点是:材料内微小裂隙失稳扩展导致材料的宏观破坏。 格里菲斯理论的主要依据是:1)、任何材料中总有各种微小微纹;2)、裂纹尖端的有严重的应力集中,即应力最大,并且有拉应力集中的现象;3)、当这种拉应力集中达到拉伸强度时微裂纹失稳扩展,导致材料的破坏。 格里菲斯理论的来源:由玻璃破坏得到的启示。 格里菲斯理论的基本假设为: 1、岩石的裂隙可视为极扁的扁椭圆裂隙; 2、裂隙失稳扩展可按平面应力问题处理; 3、裂隙之间互不影响。 按格里菲斯理论,裂纹失稳扩展条件为 1)、当1330σσ+>时,满足 21313()8()0t σσσσσ-++= (2-2)

第7章应力状态和强度理论(答案)

已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x MPa ασσσσσατα+-= + -= sin 2cos 293.32 x y x MPa ασστατα-=+= (2)2 2max 261.82 2x y x y x MPa σσσσστ+-??= += ??? 2 2 min 38.222x y x y x MPa σσσσστ+-??=+= ??? MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 100100 200 60T α A 2 σ1 στ τ

用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变 4100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传递 的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60方向上的正应变460101.4-?= ε,E=200GPa ,0.3υ=,试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P= 45A 80120 60 A P

2 微观强度理论

第二章 微观强度理论 材料的力学行为主要靠支配塑性变形和断裂的那些材料力学性能来描述。在宏观上,这些性能可以用材料的基本参数来表达,测量这些参数通常无需知道这些性能微观起源方面的详细知识。然而,材料的多数力学,特别是强度均是微观结构、组织的敏感性参量,因此对材料工作者来说,一项很重要的工作就是用实验和理论方法来研究某一特定材料性能有关的微观机制,并把微观行为与宏观可测的性能联系起来。这是提高材料性能以及研制具有优良性能的新材料的关键一步。在设计零部件选材时优先考虑材料性能以及提高这些性能的方法工艺,也是材料科学技术中的一项主要工作。 微观强度理论从微观结构出发,以微(细)观力学方法并辅之以对微观结构特征的实验和理论分析,揭示决定材料力学行为的微(细)观组织及缺陷间的相互作用,并尽可能地建立起宏观性能参量与微观结构间的定量或半定量关系。 对微观强度理论的最早研究源自于对完整固体的强度分析。对于无缺陷的固体,其强度(即理论强度)是指固体依凭所有原子的键合力抵抗外力作用下变形和断裂的能力。显然,要获得理论强度,应从原子间的结合力入手,如果知道原子向结合力的细节,即知道应力——应变曲线的函数关系,就可算出理论强度。较精确理论计算方法有偶合势法和量子力学法两种。但不同的材料有不同的组成、不同的结构及不同的键合方式,进行上述理论计算是十分复杂的,通常可采用近似法来估算理论强度,它是将原子间相互作用力与距离的关系近似为正弦函数,在一些简化假设下,可得到理论强度为: 理论剪切强度:πτ2G th = 理论拉伸强度:10 E th = σ 这两个数值是很大的量值,比起实例的强度要高出很多。表2-1列出了若干中金属的理论屈服强度和实测强度,可见,实例值一般较理论值低2~4个数量级,对于抗热强度情况也类似。 表2-1 几种金属材料屈服强度的理论值和实测值 实测值与理论值之间这一巨大差异预示着理论强度计算的前提与实际情况不符。在理论强度计算中,塑性变形或断裂是瞬时,同时整体发生的。即同时损坏滑移面或断裂面上所有原子键合,这就需要很大的力。而实际情况是,塑性变形及断裂是一个局部发生、逐渐演进的过程,每一步的前进只需打开少数几个原子键合,这样所需的力就小很多,特别是这一过程总是首先发生在材料内部的缺陷处。缺陷越多,强度便愈低,而实际工程材料中不可避免地存在缺陷,包括冶炼、机械加工过程中引进的宏观缺陷、组织缺陷、晶体缺陷,这就是实际强度远低于理论强度的根本原因。从这个意义上来说,工程材料的强度实质上是缺陷数量和相互作用的量度,研究材料力学行为的微观机制,就是要研究“缺陷”在特定环境下的运动规律。总之,缺陷理论是工程材料微观强度理论的“核

7-第七章 应力状态分析 强度理论

第七章应力状态分析强度理论 7.1 应力状态概述 一、工程实例 1. 压缩破坏 2. 弯曲拉伸破坏 3. 弯曲剪切破坏 4. 铸铁扭转破坏 5. 低碳钢扭转破坏 二、应力状态的概念 1. 点的应力状态 过一点所作各斜截面上的应力情况,即过一点所有方位面上的应力集合。2. 一点应力状态的描述 以该点为中心取无限小三对面互相垂直的六面体(单元体)为研究对象,单元体三对互相垂直的面上的应力可描述一点应力状态。 3. 求一点应力状态 (1)单元体三对面的应力已知,单元体平衡 (2)单元体任意部分平衡 (3)截面法和平衡条件求得任意方位面上的应力,即点在任意方位的应力。 三、应力状态的分类 1. 单元体:微小正六面体 2. 主平面和主应力:

主平面:无切应力的平面 主应力:作用在主平面上的正应力。 3. 三种应力状态 单项应力状态:三个主应力只有一个不等于零,如A 、E 点 二向应力状态:三个主应力中有两个不等于零,如B 、D 点 三向应力状态:三个主应力都不等于零 四、应力状态分析的方法 1. 解析法 2. 图解法 7.2 应力状态分析的解析法 一、解析法 图示单元体,已知应力分量x σ、y σ 、xy τ和yx τ。 x x x

(一)任意截面上的正应力和切应力: 利用截面法,考虑楔体bef 部分的平衡。设ef 面的面积为dA , ∑=0 F n 0sin )Asin (cos )sin A (cos )cos A (sin )cos A (A =-+-+αασααταασαατσαd d d d d y yx x xy ∑=0F t sin )Asin (cos )sin A (sin )cos A (cos )cos A (A =++--ααταασαασαατταd d d d d yx y x xy 根据切应力互等定理: y x xy ττ= 三角函数关系:22cos 1cos 2αα+=,22cos 1sin 2 αα-=,?=cos sin 22sin αα 解得: ατασσσσσα2sin 2cos 2 2 x x xy y y --+ += (7-1) ατασστα2cos 2sin 2 x xy y +-= (7-2) (二)主应力即主平面位置 将式(8-1)对取一次导数,并令其等于零可确定正应力的极值和所在平面的位置。 令0αα=时,0d d =α σα 即: y x xy xy y x σσταατασσασα -- ==?? ????+--=22tan 02cos 2sin 22d d 000 将0α和ο 900+α代入(8-1),求出最大及最小的正应力为: 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=??? (三)最大切应力及其作用平面的位置 将式(8-2)对α取一次导数,并令其等于零可确定切应力的极值和它所在平面的位置。

第十章 强度理论

强度理论 强度理论的概念 四个强度理论 摩尔强度理论 各种强度理论的适用范围 强度理论的概念 1.简单应力状态下强度条件可由实验确定 2.一般应力状态下,材料的失效方式不仅与材料性质有关,且与其应力状态有关,即与各主应力大小及比值有关; 3.复杂应力状态下的强度准则不能由实验确定(不可能针对每一种应力状态做无数次实验); 4.强度准则: ①金属材料的强度失效分为:屈服与断裂; ②强度准则(强度理论):材料失效原因的假说 (假说—实践—理论); ③通过强度准则,利用单向拉伸实验结果建立各种应力状态下的失效判据和相应的设计准则。 四个强度理论 两类强度理论: 1. 第一类强度理论(以脆性断裂破坏为标志) 2. 第二类强度理论(以塑性屈服破坏为标志) 一、第一强度理论(最大拉应力理论) 准则:无论材料处于什么应力状态,发生脆性断裂的共同原因是单元体中的最大拉应力σ1达到某个共同极限值σjx 。 1.断裂原因:最大拉应力σ1 (与应力状态无关) 2破坏条件b σσ=1 3强度条件][1σσ≤ 4.应用情况:符合脆性材料的拉断试验,如铸铁单向拉伸和扭转中的脆断;但未考虑其余主应力影响且不能用于无拉应力的应力状态,如单向、三向压缩等。 二、最大伸长线应变理论 (第二强度理论) 准则:无论材料处于什么应力状态,发生脆性断裂的共同原因是单元体中的最大伸长线应变ε1达到某个共同极限值εjx 。 1.断裂原因:最大伸长线应变ε1(与应力状态无关); 2破坏条件b σσσμσε=+?=)(3211 3强度条件][)(321σσσμσ≤+? 4.应用情况:符合表面润滑石料的轴向压缩破坏等,不符合大多数脆性材料的脆性破坏。 三、最大切应力理论(第三强度理论) 准则:无论在什么样的应力状态下,材料发生屈服流动的原因都是单元体内的最大切应力t max

强度理论.

第九章 强度理论 9.1 直径d =100mm 的圆截面钢杆受轴向拉力F = 2kN 和矩M e =10Nm 的力偶作用。[σ] =1 60MPa ,试用第三强度理论校核该杆的强度。 (σ3r = 105 MPa) 解:拉伸扭转组合变形,危险点是圆周上各点, 应力状态见图 安全。 ],[MPa MPa )(MPa (στσσπτπσ≤=+==???===???==1054150101010155251010242233 32 3r p e .W M .)A F 9.2 炮筒横截面如图所示。在危险点处 ,t σ= 550 MPa 。τσ= -350 MPa ,第三个主应力垂直于图面是拉应力,且其大小为420MPa 。试按第三和第四强度理论,计算其相当应力。 解:危险点是三向越应力状态 ])()( )[(MPa MPa MPa MPa 2222 1 9003505503504205553332214313321=-+-+-= =+=-=-=====σσσσσσσσσσσσσσστr r t τ

9.3图示圆截面铸铁杆, 承受轴向载荷F 1,横向载荷F 2和矩为M 1的扭力偶作用,试用第一强度理论校核杆的强度。已知载荷F 1 = 30 kN , F 2 = 1.2 kN , M 1 = 700 Nm ,杆径d = 80 mm ,杆长l = 800 mm ,许用应力[σ] = 35 MPa 。 解:拉弯扭组合变形。A 截面上边缘为危险点 1. 应力分析:MPa MPa 696801070016161258080010213280103043243 3313 323 3 221.d M W T ..d l F d F W M A F p Z A N =???=??===????+???=+=+= ππτππππσ 2. 强度校核安全。,〈核杆的强度一采用第一强度理论校∴∴>==?+-==?++=][ -.8MPa,-]6.69425.1[25.126.8MPa, ]6.69425.1[25.12222σσσσσσσ1312310 12 1 2 1 ,, 9.4图示皮带轮传动轴,传递功率P = 7kW ,转速n =200r/min 。皮带轮重量W = 1.8kN 。 左端齿轮上啮合力F n 与齿轮节圆切线的夹角(压力角)为200 。轴的材料为Q255钢,其许用应力[σ] = 80 MPa 。试分别在忽略和考虑皮带轮重量的两种情况下,按第三强度理

四种强度理论(1)

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。 1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达

到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件:ε1=εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) =σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3)

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容 一、四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力

状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 二、四大强度理论适用的范围 1、各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。 第三理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 没考虑σ2对材料的破坏影响,计算结果偏于安全。 第四理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 与第三强度理论相比更符合实际,但公式过于复杂。 2、总结来讲: 第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂形式失效的脆性材料。 第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服形式失效的塑性材料。 以上是通常的说法,在实际中,有复杂受力条件下,哪怕同种材料的失效形

第九章强度理论

第九章 强度理论 1.图示应力状态,用第三强度理论校核时,其相当应力为: (A )21 3τσγ=; (B )=3γστ; (C )=3γστ213; (D )=3γσ2τ; 正确答案是 。 2和许用拉应力的关系为: (A )[τ] = [σ]; (B )[τ] =[σ] / 2 ; (C )[τ] = [σ] / 213; (D )[τ] = [σ] / 3 ; 正确答案是 。 3.塑性材料的下列应力状态中,那一种最易发生剪切破坏: 4

5.第三强度理论和第四强度理论的相当应力分别为3γσ 及4γσ ,对于纯剪 应力状态,恒有3γσ / 4γσ= 。 6.按第三强度理论计算图示单元体的相当应力3γσ= 。 7.图示①、②、③为三个平面应力状态的应力圆,试画出各应力圆所对应的 主平面微元体上的应力。 8.图示为承受气体压力p 的封闭薄壁圆筒,平均直径为D ,壁厚t ,气体压强p 均为已知,用第三强度理论校核筒壁强度的相当应 力3γσ= 。

9.单元体如图,已知αττσ42?==xy y 。证明:2/3/=y x σσ ; 6/7/=x σσα。 τx 10.证明线弹性材料的泊松比μ满足关系式:0<μ<0.5

11.图(a )、(b )表示同一材料的两个单元体。材料的屈服极限s σ= 275 MPa 。 试根据第三强度理论求两个单元体同时进入屈服极限时拉应力 σ 与剪应力τ的值。若σ> τ。 (a) (b) 12.图示受扭圆轴的d = 30 mm ,材料的弹性模量 ,v =0.3 , 屈服极限 MPa E 5101.2×=S σ= 240MPa ,实验测得a b 方向的应变为 0002.0=ε 。试按第三强度理论确定设计该轴时采用的安全系数。

四种强度理论

1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。

脆断破坏条件:ε1= εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) = σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3 ) 破坏条件:σ1?σ3= σs 强度条件:σ1?σ3≤[σ]

第三强度理论.

第七章 应力和应变分析 强度理论 §7.1应力状态概述 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 §7.2二向和三向应力状态的实例 §7.3二向应力状态分析—解析法 1.任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yx αασαατ τsin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += xy τyx τn α t

ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取得极值。且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。求得最大或最小正应力为 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= ??? 0α代入剪力公式,0ατ为零。这就是说,正应力为最大或最小所在的平面,就是主平 面。所以,主应力就是最大或最小的正应力。 将切应力公式对α求导,令 02sin 22cos )(=--=ατασσα τα xy y x d d 若1αα=时,能使导数0=α τα d d ,则在1α所确定的截面上,剪应力取得极值。通过求导可得 02sin 22cos )(11=--ατασσxy y x xy y x tg τσσα221-= 求得剪应力的最大值和最小值是: 2 2min max )2 ( xy y x τσσττ+-±=??? 与正应力的极值和所在两个平面方位的对应关系相似,剪应力的极值与所在两个平面方

东北大学岩石力学讲义第二章岩石破坏机制及强度理论

精品文档 第二章岩石破坏机制及强度理论 岩石破坏的现象第一节 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。特点出现与最大应力一、拉破坏方向平行的裂隙。

) (b) (a 形破坏。从应力分析可知,单向压缩下某一剪二、剪切破坏:岩石试件单向抗压的X 切面上的切向应力达到最大引起的破坏。

精品文档. 精品文档 三、重剪破坏:即沿原有的结构面的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 并可归纳从小到几厘米的岩块到大的工程岩体,破坏形式雷同,从岩石破坏的现象看,为两种,

拉断与剪坏,因此有一定的规律可寻。对岩石破坏的研究:不同应力的组合在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,对岩石破因此在一般应力状态,有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,坏的研究需要结合理论分析和试验研究两个方面。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系???)(,?f321、理论研究结合试验研究。、试验研究;3研究的方法有:理论分析;2 岩石拉伸破坏的强度条件第二节 一、最大线应变理论岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力该理论的主要观点是,状态无关。强度条件为(2-1) ???c—拉应变的极限值,—拉应变。??c 精品文档. 精品文档 ?是最小主应力。σ下,σ>σ>若岩石在破坏之前可看作是弹性体,在受压条件下3123??????3,E>0<0则产生拉应变。由于,即。若按弹性力学有?????)?(?+)E?(?+32312133EE因此产生拉应变的条件是 ????????)>((?++)<0,312132??????t?E==。若则产生拉破坏,此时抗拉强度为= <0

相关文档
最新文档