不确定度例题

不确定度例题
不确定度例题

6.不确定度计算示例

用游标精度为

mm 的游标卡尺测量圆柱体的外径D 和高H 如下表所示,求圆柱体

体积V 和不确定度V U ,并写出测量结果的标准表达式。

解:外径

D 和柱高H 的算术平均值分别为

cm D D n D i i n i i 003.6101110

1

1=∑=∑===

cm H H n H i i n i i 095.8101110

1

1=∑=∑===

D 、H 的残差及残差的平方和如下表

D 、H 的不确定度的A 类分量分别为

cm D D n n S n i i D 009.01066)

110(101)()1(1612

=??-=

∑--=-= cm H H n n S n i i H 006.01026)

110(101)()1(1612

=??-=

∑--=-= D 、H 的不确定度的B 类分量分别为

cm u u inst H D 001.03

1002.031=?=?==-

D 、H 的总不确定度分别为

cm u S U D D D 009.0001.0009.02222=+=+=

cm u S U H H H 006.0001.0006.02222=+=+=

D 、H 的测量结果分别表示为

cm U D D D )009.0003.6()(±=±=

cm U H H H )006.0095.8()(±=±=

圆柱体的底面积

A 为

22

29.284

1cm D A ==π

A 的不确定度为

2

09.02

1cm U D U D A =?=π

圆柱体的体积V 为

3

0.229cm

H A V =?=

V 的不确定度为

222

2

)()(H A H A V U A U H U H V U A V U ?+?=??

?

?????+??? ?????=

3228.0)006.029.28()09.0095.8(cm =?+?=

V 的测量结果为

3)8.00.229(cm V ±=

%3.0=rV U

热电偶校准不确定度报告

工作用铂铑10-铂热电偶校准结果的不确定度评定 1、概述 热电偶校准结果的不确定度评估,主要是为确定标准器和电测设备选择的合理性。校准结果不确定度的评估方法和结果为日常校准工作提供参考。 2、校准对象 工作用铂铑10-铂热电偶,校准点分别为419.527℃(锌点),660.323℃(铝点),1084.62℃(铜点)。铂铑10-铂热电偶各校准点的微分热电势为:S 锌=9.64μV/℃,S 铝=10.40μV/℃,S 铜=11.80μV/℃。 3、测量标准及设备 3.1 标准器 标准器为一等标准铂铑10-铂热电偶,主要技术指标如表1 表1 计量标准器技术指标 3.2 电测设备 数字多用表,测量范围(0~100)mV ,分辨力0.1μV ,MPE :±(0.005%读数+0.0035%量程)。 4、测量方法 将一等标准铂铑10-铂热电偶(以下简称标准热电偶)和工作用铂铑10-铂热电偶(以下简称被检热电偶)捆扎后放入管式检定炉,用双极比较法在锌、铝、铜三个温度点进行检定。分别计算算术平均值,最后得到被检热电偶在各温度点的热电势值。 5、测量模型 检定点测量结果的测量模型: )(标被证E E E E t -+= (式1) 式中: t E ——被检热电偶在检定点上的热电动势值,mV ; 证E ——标准热电偶证书上给出的热电动势值,mV ; 被E ——被检热电偶测得的热电动势算术平均值,mV ;

标E ——检定时标准热电偶测得的热电动势算术平均值,mV 。 被E 和标E 是用一台数字多用表同一时间同一条件下测得,故两组测量数据具有相关 性,根据不确定度传播率得到: )()()(2)()()()(322 232222212标被标被标被证,E u c E u c E E r E u c E u c E u c y u c +++= (式2) 式中,灵敏系数: 11=??= 证E E c t 12=??=被 E E c t 1-3=??=标E E c t 相关系数:=),(标被E E r (-1~1) 6、标准不确定度评定 主要不确定度来源:测量重复性、标准器、电测设备、多路开关、参考端、炉温变化及均匀性等影响量。 6.1 测量重复性引入的不确定度分量a u ,用A 类方法进行评定。 因在三个温度点校准时,测量重复性情况大致相同,故对其在任意校准点进行重复性分析,可代表其在其他温度点重复性情况,现以1084.62℃点测量为例分析。 用一等标准热电偶作为标准检定工作用热电偶。由于本检测系统为自动读数,只能按规程测量4次,测得工作偶的五组每组4个重复性试验数据,合并样本标准偏差1p s ,测得标准偶的五组每组4个重复性试验数据,合并样本标准偏差2p s ,数据见表2。 表2

长度不确定度评定示例

用外径千分尺检验某主轴直径φ700 -0.019mm 的 测量不确定度评定报告 1.概述 1.1 测量依据:产品图纸(或生产工艺)编号□□□□# 1.2 环境条件:温度 (20±10)oC ; 相对湿度<70% RH 1.3 测量设备:一级50~75mm 外径千分尺,示值误差为±4μm。 1.4 被测对象:主轴的直径φ700-0.019mm ;材料为球墨铸铁α1= 10.4×10-6/℃ 1.5 测量方法:用外径千分尺直接测量 2.数学模型: 由于主轴直径值可在外径千分尺上直接读得,故: L=L S -L S (δα·Δt +αs ·δt) L — 被测主轴的直径。 L S — 外径千分尺对主轴直径的测量值。 δα—被测主轴线膨胀系数与外径千分尺线膨胀系数之差。 Δt — 被测主轴温度对参考温度20℃的偏差,本例为±10℃。 αs — 外径千分尺线膨胀系数,本例为11.5×10-6/℃。 δt — 被测主轴温度与外径千分尺温度之差,本例为±1℃。 3.灵敏系数 显然该数学模型是透明箱模型,必须逐一计算灵敏系数: 1)1(≈-?-=??=t s t S Ls f C δαδαL ; t S s L s f C δαα-=??==-70×1㎜℃=-7×104μm ℃; δα S t t L f C -=???=?=-70×1×10-6㎜/℃=-0.07μm/℃ δα δα??=/f C =-Ls Δt=-70×10㎜℃=-7×105μm ℃ t f C t δδ??=/ =-Ls αs=-70×11.5×10 -6 ㎜/℃=-0.805μm /℃ 4.计算各分量标准不确定度 4.1外径千分尺示值误差引入的分量u(L S ) 根据外径千分尺检定规程,示值误差e=±4μm , 在半宽为4μm 区间内,以等概率分布(均匀分布),则:u (L S ) =4/3=2.31μm u(L S )=|C LS |·u (L S )=1×2.31=2.31μm , 其相对不确定度 () () =?S S L u L u 0.1=1/10 , 自由度υ(Ls)=50 4.2被测主轴线膨胀系数不准确引入的分量u(αS ) 由于被测主轴线膨胀系数α1= 10.4×10-6/℃是给定的,是一个常数, 故 u(αS )= 0 , 自由度υ(αS )= ∞ 4.3测量环境偏离标准温度20℃引入的分量u(Δt) 测量环境偏离标准温度20℃的偏差为±10℃,在半宽为10℃范围内,以等概

测量不确定度评定作业指导书(含表格)

测量不确定度评定作业指导书 (IATF16949/ISO9001-2015) 1.目的: 规定了测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围: 适用于各检测项目的不确定度评定与表示。 3.依据的技术文件: JJF1059.1Y2012 测量不确定度的评定与表示。 4. 不确定度的评定方法: 测量不确定度评定依据JJF 1059.1-2012《测量不确定度评定与表示》进行,应对由仪器设备、人员、试验环境、试验方法等各方面可能引入的不确定度分量进行全面分析,然后根据JJF 1059.1-2012的要求合成不确定度,作出正确的分析报告。不确定度愈小,分析测试结果与真值愈靠近,其质量愈高,数据愈可靠。因此,测量不确定度就是对测量结果质量和水平的定量表征。 5.测量不确定度评定的步骤: 5.1一般评定不确定度的流程如下:

5.2建立测量的数学模型 测量的数学模型是指测量结果与其直接测量的量、引用的量以及影响量等有关量之间的数学函数关系。当被测量Y由N个其他量X1、X2、…、XN的函数关系确定时,被测量的数学模型为: Y = f (X1、X2、…、XN) 5.3测量不确定度的来源 一般应从被测量、样本离散性、环境、人员、仪器设备、方法、试剂、用于数据计算的常量及其他参量、测量方法及测量重复性等方面考虑不确定度来源。详细介绍如下: 1、对被测量的定义不完整或不完善 若在定义要求的温度和压力下测量,就可避免由此引起的不确定度。 2、实现被测量定义的方法不理想 如上例,被测量的定义虽然完整,但由于测量时温度和压力实际上达不到定义的要求(包括由于温度和压力的测量本身存在不确定度),使测量结果中引入了不确定度。

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

压力表不确定度

一、1.测量依据:JJG52-1999 《弹簧管式一般压力表、压力真空表和真空表》 2.环境条件:温度(20±5)℃、相对湿度不大于85% 3.测量标准:精密压力表,量程为0~2.5MPa准确度等级为0.4级 4.被测量对象:测量范围0~1.6MPa,准确度等级为1.6级的普通压力表5.测量方法:通过升压和降压两个循环将被测压力表各检定点与标准器比 较逐点读取被检压力表显示值。被检压力表显示值与标准压力表显示值 之差即为被检压力表示值误差。 6.评定结果的使用:在符合上述条件下的测量,一般可直接使用本不确定度的评定结果。 二、数学模型δ= P 被—P 标 式中:δ—被检压力表示值误差 P被—被检压力表在被测点上的示值 P标—精密压力表的标准压力值 三、输入量的标准不确定度的评定 1.输入量P被的标准不确定度u(P被)的评定输入量P被的标准不确定度u(P被)的来源主要是普通压力表的测量重复性,可以通过连续测量得到测量列,采 用A类方法进行评定。取一块量程为1.6MPa,准确度等级为1.6级的普通压 力表,在1.2MPa点作10次等精度重复测量,得到测量结果P 被I (I=1,2,3...)为以下测量数列 则测量结果的算术平均值为:P被=1.208MPa

单次测量P 被 的实验标准差为 s ()P 被 = () () 11 2 -∑-=n i n i P P 被 被 = 0.0063 MPa 算术平均值的实验标准差 s ()P 被 = () n s P 被 =0.0020 MPa 对于A 类评定u ()P 被 ,可由n 次独立重复观察的算术平均值的标准差作为测量 结果的标准不确定度为 u ()P 被 = s ()被 =0.0020 MPa u ()P 被 的自由度 ν 被 = n – 1 = 9 2.输入量 P 标 的标准不确定度 u (P 标) 的评定 1). 输入量P 标 的标准不确定度u (P 标)的来源主要是精密压力表装置的最大 允许示值误差,由上级检定部门出具的检定证书中给出其值为±0.4%, 而在区间内属均匀分布,包含因子为3,可按B 类不确定度评定。 α1 =0.4%×2.5 MPa = 0.01 MPa u (P 标1) = k α 1 = 3 01.0 = 0.0058 MPa 估计 ()() 11标标P u P u ? = 0.1,故自由度()501=标P ν 2) 输入量标P 的标准不确定度u ()2标P 的来源主要是,在工作中至少存在

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

合成标准不确定度计算举例

合成标准不确定度计算举例 (例1) 一台数字电压表的技术说明书中说明:“在校准后的两年内,示值的最大允许误差为±(14×10-6×读数+2×10-6×量程)”。 现在校准后的20个月时,在1V 量程上测量电压V ,一组独立重复观测值的算术平均值为0.928571V ,其A 类标准不确定度为12μV 。求该电压测量结果的合成标准不确定度。 评定:(1)A 类标准不确定度: =12μV ( 2)B 类标准不确定度: 读数:0.928571V ,量程:1V a = 14×10-6×0.928571V +2×10-6×1V=15μV 假设为均匀分布, (3)合成标准不确定度: 由于上述两个分量不相关,可按下式计算: (例2)在测长机上测量某轴的长度,测量结果为40.0010

mm,经不确定度分析与评定,各项不确定度分量为: 1)读数的重复性引入的标准不确定度分量u1: 从指示仪上7次读数的数据计算得到测量结果的实验标准偏差为0.17 μm。 u1=0.17 μm 2)测长机主轴不稳定性引入的标准不确定度分量u2: 由实验数据求得测量结果的实验标准偏差为0.10 μm。u2=0.10 μm。 3)测长机标尺不准引入的标准不确定度分量u3:根据检定证书的信息知道该测长机为合格,符合±0.1μm的技术指标,假设为均匀分布,则:k =3 u3= 0.1 μm /3=0.06 μm。 4)温度影响引入的标准不确定度分量u4: 根据轴材料温度系数的有关信息评定得到其标准不确定度为0.05 μm。 u4=0.05 μm 不确定度分量综合表

轴长测量结果的合成标准不确定度计算:各分量间不相关,

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

TG-04-989 化学不确定度评定示例

中检集团南方电子产品 测试(深圳)有限公司 发布日期:2013年04月23日 实施日期:2013年05月10日 作业指导书 化学不确定度评定示例 CCIC-SET/TG-04-989 编制: 杨 勇 审核: 邓春涛 批准: 王克勤

2013年05月10日生效

不确定度评定练习试题2013-01 Cd 214.439 加标1ppm 回收率的不确定度评定计算 (中检集团南方电子产品测试(深圳)有限公司 化学部 杨勇) 一、测量及不确定度评定对象 依据IEC62321:2008 标准,对塑料样品采用粉碎后用微波消解法进行处理,使其中的待测元素 Cd 成为可溶性盐类溶解在酸消解液中。将酸消解液定容至25ml ,导入ICP-OES 中进行测定,从而定量样品中的 Cd 。对测定结果的不确定度进行分析,找出影响测定结果不确定度的因素,对不确定度进行评估,如实反映测量的置信度和准确性。 本次评定采用加标试验的方法,评定待测溶液浓度(ml g /μ)、加标回收率(%)、假定为实际样品的 Cd 含量(kg mg /)的测量不确定度。 二、测定方法描述 1、测量过程 (1) 称取约0.2g 塑料样品(经过粉碎)于消解罐中。加入10ml g /μ的 Cd 标准溶液1ml ,加入8ml 硝酸与2ml 双氧水,按照规定程序使之消解完全;;冷却,转移至于25ml 的容量瓶中,用10%硝酸定容至刻度以备分析。 (2) 用 Cd (编号为:GSB XXXX,,1000ml g /μ,不确定度为:2ml g /μ,%95,2==p k ),首先配制10.0ml g /μ,用1ml 移液管取1ml ,用10%硝酸定容于100ml 容量瓶中。 (3)从10ml g /μ分别使用25ml 、10ml 、5ml 取满刻度溶液到100ml 容量瓶中,分别得到2.5ml g /μ、1.0ml g /μ、0.5ml g /μ的标液。 (4)从10ml g /μ使用25ml 、10ml 、5ml 分别取(25+10+5)ml 、(10+5)ml ,定容到100ml 容量瓶中,分别得到4.0ml g /μ、1.5ml g /μ的标液。 (5) 以上均使用10%硝酸定容,同时做空白;采用0.5、1.0、1.5、2.5、4.0ml g /μ共5点绘制工作曲线 (6)取样0.2g,加标取10ml g /μ标液1ml,前处理完成后,定容于25ml 容量瓶,平行样9个;均使用10%硝酸定容,同时做空白。 (7) 在ICP 上于Cd 214.439nm 处测定,以空白标准溶液,进行标准曲线法测量,采用线性回归法算出工作校准曲线,从校准曲线上求得样品的 Cd 浓度,根据公式(1)计算样品中的Cd 含量。 2、测量结果计算公式 (1)实际样品的测量不确定度评定 被测元素含量以质量分数M W 计,数值以kg mg g g ppm /,/,或或μ表示,按下式计算: m d V C W M ??= 0……………………………………………………………(1) 式中: 0C —在校准曲线上查得试液中被测元素浓度的数值,单位为微克每毫升(ml g /μ); V ——样品溶液的体积,单位为毫升(ml ); d -样品溶液的稀释倍数; m —试样量,单位为克(g )。 取9次次测试结果的算术平均值,报告结果。 (2)待测样品溶液浓度的测量不确定度评定 被测元素浓度含量以0C W 计,数值以ml g /μ表示,按下式计算: n C W i s C ∑-= (2)

利用表格对三相智能电能表示值误差的不确定度评定

利用表格对三相智能电能表示值误差的不确定度评定 摘要电能表是列入国家强检目录的强制检定的计量器具。智能型电表是以智能芯片为核心,应用计算机通信技术,具有电能计量、计费、信息存储与处理、实时监测、远程控制的电度表。为了维护用电公平交易、电能监测、电网运行调试,确保电能测量结果的可信性、有效性和质量,有必要对电能表进行不确定的评定。依据JJG596—2012《电子式交流电能表检定规程》,通过分析检定中对示值误差有影响的各分量,并充分利用Eexcel表格功能进行计算和有效合成,对三相智能电能表示值误差测量不确定度的评定过程和方法进行探讨。在JJG596—2012《电子式交流电能表》中,明确了电能表平衡负载和不平衡负载下应调定的负载点和基本误差限,给出了检定时示值误差的计算公式,在实际评定中结合自己的工作经验和学习体会,就如何正确分析和计算三相智能电能表检定示值误差的不确定度做如下探讨。 关键词智能型电表;电能表平衡;电能监测 1 测量不确定度的评定条件 一是测量依据:JJG596—2012《电子式交流电能表检定规程》。 二是测量方法:比较法。 三是测量条件:温度(20±2)℃,相对湿度(50%~70%)RH。 四是测量标准:三相智能电能表检定装置WT—Z3D,准确度等级0.05级。 五是被测对象:12台0.5S级三相智能电能表,其规格为参比电压220V,参比电流3x1.5(6)A,经互感器接入。 六是测量方法:将被检表按规定安装在装置上,接好连接线,用标准功率表测定调定的恒定功率,或用标准功率源确定功率,同时用标准测时器测量电能表在恒定功率下输出若干脉冲所需时间,该时间与恒定功率的乘积所得实际电能,与电能表测定的电能相比较来确定电能表的相对误差。 七是评定结果的使用:符合上述条件的测量结果,一般可参照使用本不确定度评定方法。 2 数学模型 =×100% 式中:被检电能表的相对误差,%;

至今见过的最规范的不确定度评定的例子!

至今见过的最规范的不确定度评定的例子! 不确定度是指由于测量误差的存在,对被测量值的不能肯定的程度。反过来,也表明该结果的可信赖程度。在报告结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。今天,仪器论坛版友六弦琴为大家找来了不确定度评定的范例,供大家参考。如有疑问,请点击阅读原文版友将为大家详细解答 点击图片查看大图不确定度评定中需要注意的几个问题a) 抓住影响测量不确定度主要分量的评估,避免漏项。通常测量重复性分量、标准物质不确定度分量、工作曲线变动性分量等在合成标准不确定度中所占比重较大,须逐一评估。对某些不可能进行多次的测定,无重复性数据,应尽可能采用方法精密度参数或以前在该条件下的测试数据进行评估。b)忽略次要不确定度分量的影响。有些分量量值较小(属微小不确定度),对合成不确定度的贡献不大。例如,一个分量为1.0,另一个分量0.33,二者的合成不确定度为1.05,相差5%,即分量0.33在合成标准不确定度中的贡献可忽略。通常试料称量、相对原子量、物质的摩尔质量等分量相对于测量重复性、工作曲线变动性分量要小得多,一般可忽略。 c)不确定度评估中避免重复评估。如当已评估了测量重复性

分量,不必再评估诸如样品称量、体积测量、仪器读数的重复性分量。 d)不应将一些非输入量的测量条件当作输入量评估。例如,重量法中高温炉灼烧温度的变动性,测定碳、硫时氧气纯度的变动性,光度分析中波长的精度等,它们不是输入量,其对测量结果的影响反映在测量重复性中,不应将其作为分量进行评估。 e)合成标准不确定度和扩展不确定度通常取一位或两位有效数字。计算过程中为避免修约产生的误差可多保留一位有效数字。修约时可采用末位后面的数都进位而不舍去,也可采用一般修约规则。测量结果和扩展不确定度的数位一致。

不确定度的计算方法(可编辑修改word版)

(U u )2 + (U w )2 u w = = = = 测量结果的正确表达 被测量 X 的测量结果应表达为: X = X ± U (仪仪 ) 表 1 常用函数不确定度合成公式 其中 X 是测量值的平均值,U 是不确定度。 例如: 用最小刻度为 cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。 1. 不确定度的计算方法 2 N = X αY β Z γ U N = N 直接测量不确定度的计算方法 U = 1. 在函数关系是乘除法时,先计算相对不确定度( U N )比较方便.例如表中第二行 N 的公式. 2. 不确定度合成公式可以联合使用. 其中: S = 为标准差; sin θ u 例如: 若 τ ,令u sin θ , w 3φ 则 τ . 3φ w ?仪 是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小 分度计算。也可按仪器级别计算或查表。 间接测量不确定度的合成方法 根据表中第二行公式,有: U τ = ; τ 间接测量 N = f (x , y , z ,??仪 的平均值公式为: N = f (x , y , z ,??仪 ; 根据表中第一行公式,有: U w = = 3U φ ; 不确定度合成公式为:U N = 根据表中第三行公式,有: 。 U u = cos θ ?U θ . 也可根据表 1 中的公式计算间接测量的不确定度。 所以, U τ = τ ? = τ S 2 + ? 2 仪 ∑ ( X - X ) 2 i n -1 ( ) ?U + ( ) ?U + ( ) ?U + ? N 2 2 ? N 2 2 ? N 2 2 ?X X ?Y Y ?Z Z α 2 (U X ) 2 + β 2 (U Y ) 2 + γ 2 (U Z ) 2 X Y Z 32U 2 φ

数字表最新不确定度评定(CMC表示法)

数字表(电压、电流、电阻)测量不确定度评估报告 一、概述 1.测量依据: JJG315-1983《直流数字电压表检定规程》 JJG598-1989《直流数字电流表检定规程》 JJG(航天)34-1999《交流数字电压表检定规程》 JJG(航天)35-1999《交流数字电流表检定规程》 JJG724-1991《直流数字式欧姆表检定规程》 2. 计量标准: 计量标准设备为美国FLUKE公司生产的编号8555011、型号5520A多功能校准器,其量程、基本误差极限见下表。 直流电压: 直流电流: 第1页共9页

交流电流: 交流电压: 阻: 电

3.测量环境条件:温度:20.5℃,相对湿度:50.5%。 4.被测对象: 选用美国FLUKE公司生产的编号86770198、型号F189数字万用表,其量程、基本误差极限见下表。

交流电压: 交流电流: 5. 测量方法: 5.1直流电压表: 依据规程JJG315-1983第7.1条“直流标准电压发生器检定方法”。设多功能校准器输 出标准设定电压U N ,被校表的显示读数U x ,每个设定值测量一次,则被校表的误差为Δ=U x-U N 。 5.2直流电流表: 依据规程JJG598-1989第10.1条“直流标准电流源检定方法”。设多功能校准器输出标 准设定电流I N ,被校表的显示读数I x ,每个设定值测量一次,则被校表的误差为Δ=I x -I N 。 5.3交流电压表: 依据规程JJG(航天)34-1999第5.2.3.3条“交流标准源检定方法”。设多功能校准器输 出标准设定电压U N ,被校表的显示读数U x ,每个设定值测量一次,则被校表的误差为Δ=U x-U N 。

测量不确定度评估报告

测量不确定度评估报告 1.识别测量不确定度的来源 在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。 2.目标不确定度 2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。 2.2 检验科每个测量程序的目标不确定度由各实验室确定。 2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。 2.4目标不确定度如下: 2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。 2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。 3.确立输出量与输入量之间的数学模型 若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。 4测量不确定度的计算 4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。 计算本室2水平质控品的日间精密度。计算批间变异系数CV。

不确定度计算示例

五、交流标准电流源电流测量不确定度评定 一、概 述 1.1 目 的 评定交流标准电流源测量不确定度。 1.2 依据标准 暂无,参考JJG445-1986《直流标准电压源检定规程》。 1.3 使用的仪器设备 交流数字电压表,仪器校准后1年内,在1.5V ,50Hz 点示值最大允许误差为: 80×10-6 ×(读数) +10×2×10-6 ?(满量程) 6位半显示,经检定合格。 交流电流电压变换器,型号:LYB-02,准确度等级:0.005%。 1.4 测量程序 由被检交流标准电流源输出1A 加到交流电流-电压变换器,调准被检源交流电流为1A ,由交流电流电压变换器将1A ,50Hz 交流电流转换为1.5V ,50Hz 交流电压,读取交流数字电压表值。 1.5 不确定度评定结果的应用 符合上述条件或十分接近上述条件同类测量结果,一般可以参照本例方法评定。 二、数学模型 测量结果直接由交流数字电压表读数给出 I x = C E 0 式中: I x ——被检标准源的输出电流值,A ;

E 0——交流数字电压表的显示值,V (为避免与不确定度符号U 混淆,采用字母E 表示电压); C ——常数,交流电流-电压变换器的变比值,C =1.5V/1A 。 三、不确定度来源 直流标准电压源测量不确定度来源主要包括: (1) 测量重复性的不重复引入的不确定度u A ,采用A 类方法评定; (2) 交流数字电压表准确度引入的不确定度u B1,采用B 类方法评定; (3) 交流数字电压表上级标准传递引入的不确定度u B2,采用B 类方法评定; (4) 交流数字电压表分辨力引入的不确定度u B3,采用B 类方法评定; (5) 交流电流-电压变换器准确度引入的不确定度u B4,采用B 类方法评定。 (6) 交流电流电压变换器上级传递引入的不确定度u B5,采用B 类方法评定。 测量重复性 数字式电压表引入的不确 交流数字电压表上级标准传递引入的不确定度 交流电流-电压变换器引入的不确定度 交流电流电压变换器上级标准传递引入的不确定度 图1 各种不确定度分量关系图

第八讲 扩展不确定度的计算

第八讲扩展不确定度的计算 减小字体增大字体作者:李慎安来源:https://www.360docs.net/doc/ff4398416.html, 发布时间:2007-05-08 10:33:45 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 8.1 什么叫扩展不确定度? 按《JJF1001》扩展不确定度定义为:确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间。也称展伸不确定度或范围不确定度。符号为大写斜体U,U P。当除以被测量之值后,称为相对扩展不确定度,符号为U rel,U prel。符号中的p为置信概率,一般取95%,99%,这时其符号成为U95,U99,U95rel或U99rel。定义中所指大部分,最常用的是95%和99%。 扩展不确定度过去曾称总不确定度(overall uncertainty),这一名称已为《导则》所禁止使用,因其从含义上易与合成不确定度混淆。 扩展不确定度是比合成标准不确定度大的一个参数,它等于合成标准不确定度乘以包含因子k后的值,对于合成标准不确定度而言,它是成倍地被扩大了的一个值。 8.2 扩展不确定度分成几种? 扩展不确定度根据所乘的包含因子k的不同,分成两大类。当包含因子k之值取2或3时,扩展不确定度U只是合成标准不确定度u C的k倍。在给出U时,必须指明k的取值。实际上,这时的U所包含的信息与u C一样,并未因乘以k后,其信息有所增多。此外,还有一种包含因子k p,它是为了使扩展不确定度所给出的区间内能有概率为p的合理赋予被测量之值含于其中所必须有的因子。所得到的扩展不确定度为U p。一般,只在被测量Y可能值y的分布类型可估计为正态时才给出U P。这时的k p之值,按u c(y)的有效自由度υeff,通过本讲座6.6中的表得出,即t p值,k p=t p(υ)。随υ的增大,k有所降低,随p的增大,k p有所增加。 与上述类似,相对扩展不确定度亦有两种。 8.3 什么情况下使用U,什么情况下使用U p来说明测量结果的不确定度? (1)根据有关测量仪器校准的技术规范。例如,以下技术规范规定取k=3,JJF2002,2003,2004,2018,2019,2025,2026,2030,2032~2041,2045,2446等,不一一例举。而以下技术规范规定取k=2,JJF2049,2050,2072,2089等。也有一些技术规范规定用U95,如JJF2006,2061,等。规定采用U99的如JJF2020,2056,146等。 (2)可以估计被测量Y估计值y之分布接近正态时,可给出U p,否则只能给出U。 8.4 什么情况下可用包含因子k95=2及k99=3? 如果y的分布是比较理想的正态分布,那么,当合成标准不确定度u C(y)的有效自由度充分大时,即可做出这样较简单的处理,例如,在p=95%时,自由度为12,这时,按本讲座6.6,k p=2.18,如取k p=2,其值小了不到十分之一,应该说就无足轻重了。当p=99%时,υeff无穷大的k p=2.58≈2.6,整化为k99=3,已较保守;而当υeff=20时,k99之值为2.85,它比2.6大约大十分之一,因此,这时如不用2.85而用2.6,所得U99也只小十分之一左右,应可忽略。因此,在《JJF1059》中所要求的有效自由度应充分大,拿十分之一作为可忽略的标准,则对于p=95%时,υeff应大于12,对于p=99%,应大于20。 8.5 什么情况下,虽未计算合成标准不确定度u c(y)的有效自由度,取包含因子k=2给出的扩展不确定度U可以估计是置信区间在p=95%的半宽,可否在检定证书中给出其值为U95? 虽未算出υeff,但其值估计不太小,例如,大于12,而且,可以估计Y的估计值的分布接近正态,这时,一般可以认为U=2u c(y)的置信概率p大约为95%。但是不能在证书上给出其值为U95之值。

相关文档
最新文档