一种动态规划算法模型预测控制在混合动力汽车控制策略中的应用

一种动态规划算法模型预测控制在混合动力汽车控制策略中的应用
一种动态规划算法模型预测控制在混合动力汽车控制策略中的应用

汽车发动机电子控制系统开发现状及趋势

汽车发动机电子控制系统开发现状及趋势 丁志盛叶挺宁 摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。 关键词:EECS,ECU汽车发动机电喷 一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括: - 燃油喷射控制; - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; - 后备系统; - 诊断系统等功能。 另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术容: - 传感器 主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感

汽车模型的背景、现状与前景

汽车模型的背景、现状与前景 1927年美国通用汽车公司将油泥应用到汽车设计开发模型上,1955年日本首次使用工业油泥进行汽车模型的设计开发,我国则在70年代初开始应用这一技术。汽车模型工是在80年代初期形成的,目前从业人员大约有1000多人,分布在全国20多个省100多家汽车生产企业。 汽车模型工是设计师与工程师之间的桥梁,没有这个桥梁汽车设计将无法进行。由于汽车车身设计程序要经过汽车效果图、小比例模型制作、1:1模型制作、模型数据采集、修线修面、结构设计等设计过程,因此汽车模型工水平的高低将直接影响到汽车产品开发的进度和质量。一个1:1的汽车油泥模型需要四人同时制作,制作周期为3-4个月,1:1内饰模型需要两人同时制作,制作周期为2-3个月,小比例模型制作周期为2个月。一般规模的汽车生产企业一年能开发2个或更多个新产品。 在欧美国家,汽车模型工可在专门的职业培训机构进行系统培训,在日本也有一些职业培训学校开设了汽车模型工的专业课程。国内目前没有专门的汽车模型工职业培训学校,汽车模型工都是各汽车厂内部自己培养的技术工人。一些有条件的汽车厂,如:解放汽车公司、东风汽车公司只能将该厂的汽车模型工送到国外进行培训,或通过国外代理商组织的专业培训班来提高技术水平。如,日本在中国的汽车模型工代理商每年在上海举办一次汽车模型工培训班,为国内汽车厂家培训了大批的汽车模型工。一方面,企业不可能大批量的培养人才,导致了汽车模型工人才的紧缺,使得国内很多的汽车生产企业无自主产品开发能力;另一方面,国内的汽车模型工与国外的汽车模型工的技术水平相比较还有很大的差距,从而限制了我国汽车工业的发展。

汽车发动机电子控制单元(ECU)

汽车发动机电子控制单元(ECU) 功能说明书 佛山菱电变频实业有限公司王与平 2004年3月 一、概述 汽车发动机控制系统一般有进气系统、燃油供给系统、点火系统、电脑控制系统四大部分组成.进气系统由空气滤清器、空气流量计、节气门、进气总管、进气歧管等组成,它为发动机可燃混合气提供所需空气;燃油供给系统由燃油泵、燃油滤清器、燃油压力调节器、喷油器与供油管等组成,它为发动机可燃混合气提供所需燃油;点火系统为发动机提供电火花,它由点火电子组件、点火线圈、火花塞、高压导线等组成;电脑控制系统由电子控制单元(ECU)与各种传感器组成,它控制燃油喷射时间与喷射量以及点火时刻. 汽车发动机电子控制单元(ECU)就是汽车发动机控制系统得核心,它可以根据发动机得不同工况,向发动机提供最佳空燃比得混合气与最佳点火时间,使发动机始终处在最佳工作状态,发动机得性能(动力性、经济型、排放性)达到最佳。 汽车发动机机电子控制单元(ECU)得主要功能: 1、燃油喷射(EFI)控制 ⑴、喷油量控制 发动机控制器(ECU)将进气量与发动机负荷作为主要控制信号,以确定喷油脉冲宽度(即基本喷油量),并根据循环水温度、进气温度、进气压力、尾气氧含量等信号修正喷油量,最后确定总喷油量。 ⑵、喷油正时控制 采用多点顺序燃油喷射系统得发动机,ECU除了控制喷油量外,还要根据发动机各缸得点火顺序,将喷油时间控制在最佳时刻,以使燃油充分燃烧。 ⑶、断油控制 减速断油控制:汽车在正常行驶中,驾驶员突然松开油门踏板时,ECU自动中断燃油喷射,直至发动机转速下降到设定得低转速时再恢复喷油。 超速断油控制:当发动机转速超过安全转速或汽车车速超过设定得最高车速时,ECU 自动中断喷油,直至发动机转速低于安全转速一定值且车速低于最高车速一定值时恢复喷油。 ⑷、燃油泵控制 当打开点火开关后,ECU控制燃油泵工作3秒钟,用于建立必要得油压。若此时发动机不起动,ECU控制燃油泵停止工作。在发动机起动与运转过程中,ECU控制燃油泵正常运转。 2、点火(ESA)控制 ⑴、点火提前角控制

动态矩阵和模型预测控制的半自动驾驶汽车(自动控制论文)

Dhaval Shroff1, Harsh Nangalia1, Akash Metawala1, Mayur Parulekar1, Viraj Padte1 Research and Innovation Center Dwarkadas J. Sanghvi College of Engineering Mumbai, India. dhaval92shroff@https://www.360docs.net/doc/ff6134806.html,; mvparulekar@https://www.360docs.net/doc/ff6134806.html, Abstract—Dynamic matrix and model predictive control in a car aims at vehicle localization in order to avoid collisions by providing computational control for driver assistance whichprevents car crashes by taking control of the car away from the driver on incidences of driver’s negligence or distraction. This paper provides ways in which the vehicle’s position with reference to the surrounding objects and the vehicle’s dynamic movement parameters are synchronized and stored in dynamic matrices with samples at regular instants and hence predict the behavior of the car’s surrounding to provide the drivers and the passengers with a driving experience that eliminates any reflex braking or steering reactions and tedious driving in traffic conditions or at junctions.It aims at taking corrective action based on the feedback available from the closed loop system which is recursively accessed by the central controller of the car and it controls the propulsion and steeringand provides a greater restoring force to move the vehicle to a safer region.Our work is towards the development of an application for the DSRC framework (Dedicated Short Range Communication for Inter-Vehicular Communication) by US Department of Traffic (DoT) and DARPA (Defense Advanced Research Projects Agency) and European Commission- funded Project SAVE-U (Sensors and System Architecture for Vulnerable road Users Protection) and is a step towards Intelligent Transportation Systems such as Autonomous Unmanned Ground and Aerial Vehicular systems. Keywords-Driver assist, Model predictive control, Multi-vehicle co-operation, Dynamic matrix control, Self-mapping I.INTRODUCTION Driver assist technologies aim at reducing the driver stress and fatigue, enhance his/her vigilance, and perception of the environment around the vehicle. It compensates for the driver’s ability to react [6].In this paper, we present experimental results obtained in the process of developing a consumer car based on the initiative of US DoT for the need for safe vehicular movement to reduce fatalities due to accidents [5]. We aim at developing computational assist for the car using the surrounding map data obtained by the LiDAR (Light Detection and Ranging) sensors which is evaluated and specific commands are issued to the vehicle’s propellers to avoid static and dynamic obstacles. This is also an initiative by the Volvo car company [1] where they plan to drive some of these control systems in their cars and trucks by 2020 and by General Motors, which aims to implement semi-autonomous control in cars for consumers by the end of this decade [18].Developments in wireless and mobile communication technologies are advancing methods for ex- changing driving information between vehicles and roadside infrastructures to improve driving safety and efficiency [3]. We attempt to implement multi-vehicle co-operative communication using the principle of swarm robotics, which will not only prevent collisions but also define specific patterns, which the nearby cars can form and pass through any patch of road without causing traffic jams. The position of the car and the position of the obstacles in its path, static or moving, will be updated in real time for every sampling point and stored in constantly updated matrices using the algorithm of dynamic matrix control. Comparing the sequence of previous outputs available with change in time and the inputs given to the car, we can predict its non-linear behavior with the help of model predictive control. One of the advantages of predictive control is that if the future evolution of the reference is known priori, the system can react before the change has effectively been made, thus avoiding the effects of delay in the process response [16]. We propose an approach in which human driving behavior is modeled as a hybrid automation, in which the mode is unknown and represents primitive driving dynamics such as braking and acceleration. On the basis of this hybrid model, the vehicles equipped with the cooperative active safety system estimate in real-time the current driving mode of non-communicating human-driven vehicles and exploit this information to establish least restrictive safe control actions [13].For each current mode uncertainty, a mode dependent dynamic matrix is constructed, which determines the set of all continuous states that lead to an unsafe configuration for the given mode uncertainty. Then a feedback is obtained for different uncertainties and corrective action is applied accordingly [7].This ITS (Intelligent Transport System) -equipped car engages in a sort of game-theoretic decision, in which it uses information from its onboard sensors as well as roadside and traffic-light sensors to try to predict what the other car will do, reacting accordingly to prevent a crash.When both cars are ITS-equipped, the “game” becomes a cooperative one, with both cars communicating their positions and working together to avoid a collision [19]. The focus is to improve the reaction time and the speed of communication along with more accurate vehicle localization. In this paper, we concentrate on improving vehicle localization using model predictive control and dynamic matrix control algorithm by sampling inputs of the car such as velocity, steering frame angle, self-created maps Dynamic Matrix and Model Predictive Control for a Semi-Auto Pilot Car

汽车发动机电子控制单元(ECU)

汽车发动机电子控制单元(ECU) 功能说明书

佛山菱电变频实业有限公司王和平 2004年3月 一、概述 汽车发动机控制系统一般有进气系统、燃油供给系统、点火系统、电脑控制系统四大部分组成。进气系统由空气滤清器、空气流量计、节气门、进气总管、进气歧管等组成,它为发动机可燃混合气提供所需空气;燃油供给系统由燃油泵、燃油滤清器、燃油压力调节器、喷油器和供油管等组成,它为发动机可燃混合气提供所需燃油;点火系统为发动机提供电火花,它由点火电子组件、点火线圈、火花塞、高压导线等组成;电脑控制系统由电子控制单元(ECU)和各种传感器组成,它控制燃油喷射时间和喷射量以及点火时刻。 汽车发动机电子控制单元(ECU)是汽车发动机控制系统的核心,它可以根据发动机的不同工况,向发动机提供最佳空燃比的混合气和最佳点火时间,使发动机始终处在最佳工作状态,发动机的性能(动力性、经济型、排放性)达到最佳。 汽车发动机机电子控制单元(ECU)的主要功能: 1、燃油喷射(EFI)控制 ⑴、喷油量控制

发动机控制器(ECU)将进气量和发动机负荷作为主要控制信号,以确定喷油脉冲宽度(即基本喷油量),并根据循环水温度、进气温度、进气压力、尾气氧含量等信号修正喷油量,最后确定总喷油量。 ⑵、喷油正时控制 采用多点顺序燃油喷射系统的发动机,ECU除了控制喷油量外,还要根据发动机各 缸的点火顺序,将喷油时间控制在最佳时刻,以使燃油充分燃烧。 ⑶、断油控制 减速断油控制:汽车在正常行驶中,驾驶员突然松开油门踏板时,ECU自动中断燃油喷射,直至发动机转速下降到设定的低转速时再恢复喷油。 超速断油控制:当发动机转速超过安全转速或汽车车速超过设定的最高车速时,ECU自动中断喷油,直至发动机转速低于安全转速一定值且车速低于最高车速一定值时恢复喷油。 ⑷、燃油泵控制 当打开点火开关后,ECU控制燃油泵工作3秒钟,用于建立必要的油压。若此时发动机不起动,ECU控制燃油泵停止工作。在发动机起动和运转过程中,ECU控制燃油泵正常运转。 2、点火(ESA)控制 ⑴、点火提前角控制 发动机运转时,ECU根据发动机的转速和负荷信号,计算相应工况下的点火提前角,并根据发动机的水温、进气温度、节气门位置、爆震信号等修正点火提前角,最

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

汽车发动机电子控制系统

汽车发动机电子控制系统 电控汽油喷射式发动机电子控制系统主要由传感器、电子控制装置ECU和执行机构三部分组成。 一.传感器 (1)传感器现状 早在20 世纪60 年代,汽车发动机上仅有机油压力传感器、水温传感器、油量传感器等,它们仅与仪表和指示灯相连。进入70 年代,为了解决发动机的节油和排气净化两大技术难题,又增加了一些传感器来帮助控制汽车发动机,以达到节油和减少废气污染;80 代以后,随着电子技术的迅猛发展,电子控制发动机系统也不断发展完善,逐步形成了当今性能卓越的电子集中控制系统,传感器在汽车发动机上得到了广泛应用。随着电子技术的发展,汽车电子化程度不断提高,通常的机械系统已经难以解决某些与汽车功能要求有关的问题,而被电子控制系统代替。传感器的作用就是根据规定的被测量的大小,定量提供有用的电输出信号的部件,亦即传感器把光、时间、电、温度、压力及气体等的物理、化学童转换成信号的变换器。传感器作为汽车电控系统的关键部件,它直接影响汽车技术性能的发挥。目前,普通汽车上大约装有10 ~20只传感器,高级豪华轿车则更多,这些传感器主要分布在发动机控制系统、底盘控制系统和车身控制系统中。汽车的传感器与市场上常见的通用的传感器不同,它是按照汽车电子系统的特殊要求而设计的。汽车上各种新的电气和电子系统需要更多的新型传感器,这就需要加大新型传感器的研发力度,满足市场需求。除了不断提出新的传感器任务外,现有各种传感器在使用一段时间后,将会被新的、更便宜的、性能更好的、用更新工艺制造的传感器所代替。如今,在汽车市场的激烈竞争中,关键部件的性能甚至可以影响整机的质量,因此,对汽车关键部件的研发应当加以重视,以提高整体效能。在汽车传感器的研发过程中,必须满足新的要求,符合新的发展趋势。 (2)传感器的应用 氧传感器有多种形式,接线有1 根、2 根或者3 根、4 根。后两种是装有加热元件的加热式氧传感器。使用时需要按照规定里程或时间间隔定期检测或更换。新型的能保证行驶8 ~11 万千米。检测时有的要求用扫描仪器来测量氧传感器的输出,有的可用数字电压表检测输出电压信号随混合气浓度变化的情况,以及ecu 对电压信号的反应。 底盘控制用传感器是指分布在变速器控制系统、悬架控制系统、动力转向系统、防抱制动系统中的传感器,在不同系统中作用不同,但工作原理与发动机中传感器是相同的,主要有:变速器控制传感器、悬架系统控制传感器、动力转向系统传感器、防抱制动传感器。 车身控制用传感器主要目的是提高汽车安全性、可靠性、舒适性等,主要有应用于自动空调系统中的多种温度传感器、风量传感器、日照传感器等;安全气囊系统中加速度传感器;

并联式式混合动力汽车的全速控制策略

并联式式混合动力汽车的全速控制策略 摘要:并联式混合动力汽车综合了传统汽车和电动汽车的优点,不仅具有低油耗、低排放等优点,而且续驶里程不受限制,是目前最有希望替代传统汽车的方案。因此,对混合动力汽车关键技术的研究具有非常重要的应用价值。利用瞬态优化控制策略,通过对发动机、电动机、电动机在不同功率进行分配组合,来确定混合动力系统最佳工作模式和工作点切换。本文利用混合动力汽车的数学模型,在MATLAB/Simulink环境中建立了前向仿真模型,进行整车控制策略的研究,并对全速范围的运行控制策略进行了验证。 关键词:并联式混合动力汽车 MATLAB/Simulink 全速范围1 引言 并联式混合动力电动汽车主要由发动机、电动/发电机、电池组、能量管理系统等部件组成,与串联式混合动力电动汽车不同的是,发动机和电动/发电机以机械能叠加的方式来驱动汽车,可以组合成不同的功率输出模式。发动机功率和电动/发电机功率约为电动汽车所需最大驱动功率的50%~100%,其能量利用率高。因此,可以采用小功率的发动机与电动/发电机,使得整个动力系统的装配尺寸、质量都较小,造价也更低,行程也可以比串联式混合动力电动汽车的长些,但布置结构相对复杂,实现形式也多样化,其特

点更加接近内燃机汽车。并联式式混合动力驱动系统通常应用在小型混合动力电动汽车上。 因此,并联式驱动系统最适合在城市间道路和高速公路上行驶,工况稳定,发动机经济性和排放性都会有所改善,和混联式混合动力电动汽车相比较而言结构简单,价格也容易被广大消费者接受,因此,在电池技术问题没有得到很好的解决的情况下,它有望在不久的将来成为汽车商业的主流产品。 2 并联式式混合动力汽车的关键技术 混合动力汽车兼具传统燃油汽车和纯电动汽车的优点,是二者的完美结合,这个结合的纽带就是混合动力汽车的整车控制系统,整车控制系统的主要功能是进行整车能量管理和混合动力系统的控制。整车控制系统如同混合动力汽车的大脑,指挥各个系统的协调工作,以达到效率、排放和动力性的最优,同时兼顾行驶的平稳性。整车控制系统根据驾驶员的操作,如加速踏板、制动踏板、变速杆的操作等,判断驾驶员的意图,在满足驾驶需求的前提下,最优的分配电机、发动机、电池等动力部件的功率输出,实现能量的最优管理,使有限的燃油发挥最大的功效。 目前的混合动力汽车都不需要外部充电,因此,与传统汽车一样,混合动力汽车的能量全部来自于发动机的燃料燃烧所释放的热能,电机驱动所需的电能是燃料的热能在车

发动机电子控制系统

摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。关键词: EECS,ECU汽车发动机电喷一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括:中国发动机论坛(XHEPPo!G - 燃油喷射控制; |柴油机|柴油机配件|内燃机原理|内燃机构造|发动机测试| - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; e - 后备系统; - 诊断系统等功能。 |柴油机|柴油机配件|内燃机原理|内燃机构造|发动机测试另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术内容: - 传感器 主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感器、曲轴位置传感器、凸轮轴位置传感器、爆燃传感器、车速传感器、氧传感器等。- 执行器 主要包括喷油器、点火控制模块、怠速空气控制阀以及各种电磁阀等。 - 电控单元ECU(Electronic Control Unit) 和控制算法程序软件 其作用是通过采集各种传感器输入信号并将信号进行调理,根据发动机管理控制算法进行运算,然后输出控制信号并进行功率放大给执行器。同时检测传感器信号正常状态,出现故障时报警。 另外,为了应对汽车产业产品作为多种产品链状集成开发的特点以及快速更新的市场需求,高性能的发动机试验台架、集成开发环境工具以及测试产品耐环境性能的设备为快速开发高质量面向不同汽车发动机的管理系统产品提供保障: - 发动机试验台架 主要包括不同种类的发动机以及工况装置、测功仪、废气测量仪以及各种传感器和测量装置。 - 集成开发环境IDE(Integrated Development Environment)系统 主要包括用于开发电控单元ECU 和控制算法程序软件的集成开发环境。目前,基于模型设计(Model Based Design)、快速原型(Rapid Prototyping)技术以及符合OSEK标准的实时操作系统得到了越来越广泛的应用。 - 耐环境实验设备 用于元器件、产品的耐温、振动、抗干扰、防漏水、耐久性等环境试验设备。上述设施的联合使用,为开发汽车发动机电子控制系统提供必要的联调、参数标定、性能试验、环境试验等必要条件。另外,为了适应不同区域的气候条件,在不同海拔地区、不同季节的车载试验需要脱离发动机试验台架并借助车载标定系统在特定环境及试验地完成,以确定相对不同区域和气候的控制参数。 二、汽车发动机电子控制系统应用市场现状 汽车发动机电子控制系统技术属于汽车电子领域的关键技术并占据汽车电子市场的主要份

汽车发动机油门控制系统的开发

电子控制 汽车发动机油门控制系统的开发 陈培红1,田 颖2,聂圣芳1,卢青春1 (1.清华大学汽车工程系,北京 100084; 2.北京交通大学机械与电子控制工程学院,北京 100044) 摘要:开发了基于摩托罗拉16位单片机M C9S12DP256B 的汽车发动机油门控制系统,介绍了单片机核心控制电路、力矩电机驱动电路及控制算法设计,该系统已应用到电涡流测功机控制器中,实现了对发动机油门位置的控制。试验证明,该系统运行稳定、可靠,控制效果良好。 关键词:汽车发动机;油门控制;控制电路;单片机 中图分类号:T K421 文献标志码:B 文章编号:1001-2222(2006)05-0045-03 油门执行器主要由直流力矩电机和拉线机构构成,汽车发动机台架油门执行器内部安装与电机旋转方向相反的拉力弹簧,控制系统通过功率驱动电路调节电机线圈中电流大小来调节其输出力矩,不同的输出力矩可以通过与其内部拉力弹簧反力矩相平衡而稳定在任意恒定位置。油门执行器与发动机油门相连来控制其油门位置,发动机在不同的油门位置时发出的功率不同,直接影响着发动机扭矩和转速输出,对于发动机转速调节是一个相当重要的环节,油门执行器恒定位置控制需要有很好的稳态和动态调节特性。 1 油门控制系统 直流力矩电机的基本工作原理和普通直流电机相同,只是在结构和外形尺寸比例上有所不同。从直流电机基本工作原理可知,设直流电机每个磁极下磁感应强度平均值为B ,电枢绕组导体上的电流为I a ,导体的有效长度(即电枢铁心的厚度)为L ,则每根导体所受的电磁力为F =B I a L ,则电磁转矩为 T =N F D 2=(B N L D)I a 2 ,(1) 式中,N 为电枢绕组总匝数;D 为电枢铁心直径。 由式(1)可知,一台成品力矩电机的B,N,L ,D 都是固定不变的。由于电磁转矩和I a 成正比,而I a 又和加在电枢绕组导体上的电压有效值成正比,所以,电磁转矩和加在电枢绕组导体上的电压有效值也成正比[1]。本研究所述的闭环控制,主要是控制电枢绕组导体上的电压有效值。 图1示出油门闭环控制系统框图。主要由功率MOSFIT 主回路、MOSFIT 控制电路、单片机核心电路、滤波电路、油门给定电路、位置检测及调理电路组 成。 图1 油门闭环控制系统框图 2 硬件及控制算法设计 2.1 单片机核心控制电路 单片机核心控制电路主要由16位单片机MC9S12DP256及12位A/D 转换芯片MAX180组成。M C9S12DP256的主频高达25MH z,片上还集成了许多标准模块,片内拥有12kB 的RAM,4kB 收稿日期:2006-04-29;修回日期:2006-08-16 作者简介:陈培红(1965 ),女,山西省定襄县人,工程师,主要从事汽车电子产品的研发工作. 第5期(总第165期)2006年10月 车 用 发 动 机VEHICL E ENGIN E N o.5(Serial N o.165) Oct.2006

浅谈混合动力汽车控制策略

浅谈混合动力汽车工作模式和控制策略 王志杰 (福建信息职业技术学院福州,350003) 摘要:依据混合动力电动汽车发展现状,介绍串联式、并联式和混联式的混合动力电动汽车的概况,探讨三种结构方式下的工作模式及其能量流动和几种典型控制策略。 关键词:混合动力汽车;HEV;控制策略; 0 前言 近几十年来,世界各国汽车工业都一直面对能源安全与环境保护两大挑战,为此,各国政府纷纷制定相应的对策,力图开发新一代的清洁节能型汽车。从上世纪90年代开始,全球各大汽公司首先把目光投放到电动汽车研究上,但由于车用蓄电池的能量密度低、质量较大,使得纯电动汽车的续驶里程短且成本较高,很难实现市场化,而混合动力汽车的出现正好解决了这一难题。 混合动力汽车(Hybrid-Electric Vehicel,缩写HEV)是将电动机与辅助动力单元组合在一辆汽车上做驱动力,辅助动力单元实际上是一台小型燃料发动机或动力发电机组。混合动力汽车结合了传统和电动驱动系统的特点,即明显减少汽车排放和降低油耗,又有大的行程。 控制策略是混合动力汽车的核心,它根据驾驶员意图和行驶工况,协调各部件间的能量流动合理进行动力分配,优化车载能源,提高整车经济性,适当降低排放,并在不牺牲整车性能的况下,实现两者之间的折中优化。 本文就混合动力汽车工作模式、能量流动和控制策略作了初步的论述,使人们对混合动力汽车技术有一定了解。 1 混合动力汽车技术 1.1串联式混合动力汽车 串联式混合动力电动汽车由发动机、发电机和电动机三大主要部件总成组成。发动机仅仅用于发电,发电机所发出的电能供给电动机,电动机驱动汽车行驶。发电机发出的部分电能向电池充电,来延长混合动力电动汽车的行驶里程。另外电池还可以单独向电动机提供电能驱动电动汽车,使混合动力电动汽车在零污染状态下行驶。 1.1.1工作模式及其能量流动 1.1.1.1纯蓄电池模式 当混合动力汽车负荷小(空载)时,由电池驱动电动机带动车轮转动,此时的能量流 动如图1所示。 1.1.1.2纯发动机模式 载荷比较大时,则由发动机带动发电机发电驱动电动机带动车轮转动。此时的能量流动如图2所示。 1.1.1.3混合驱动模式 当车处于启动、加速、爬坡的工况时,发动机-发电机和蓄电池共同向电动机提供电能。能量流动图如图3所示。

汽车模型的设计及数控加工

2012届本科毕业论文(设计)论文题目:汽车模型的设计及数控加工 学生姓名: 所在院系:机电学院 所学专业:机械设计制造及其自动化 导师姓名: 完成时间:2012年5月18日

摘要 数控机床是典型的机电相融合的机电一体化产品,CAD/CAM是计算机科学同机械工程交叉的结果。本课题主要是对汽车模型进行设计并用数控机床加工,在设计和加工过程中,用Solid Works进行造型设计, CAXA制造工程师来生成加工轨迹路线和加工代码,然后采用数控机床进行各个零件的加工,最终完成模型组装。 关键词:数控机床,造型设计,Solid Works ,CAXA制造工程师,数控加工 Abstract CNC machine tool is typical of combining electromechanical integration of the mechanical and electronic products,CAD/CAM is computer science with mechanical engineering cross results. This topic is mainly to the car model design and CNC machine tool processing, in the design and processing process, with Solid Works on model design, CAXA manufacturing engineers to generate processing track route and processing code, then the CNC machine tools for various pats processing ,finally complete assembly model. Keywords:CNC Machine Tool , Model Design ,Solid Works ,CAXA Manufacturing Engineers ,CNC Machining

汽车发动机控制技术主要考题

1.怠速控制系统有何功用? 是在发动机怠速工况下,根据发动机冷却液温度、空调压缩机是否工作、变速器是否挂入挡位等,通过怠速控制阀对发动机的进气量进行控制,使发动机随时以最佳怠速转速运转。 2.自诊断系统的功用是什么? 用来提示驾驶员发动机有故障;同时,系统将故障信息以设定的数码(故障码)形式储存在存储器中,以便帮助维修人员确定故障类型和围。 3.车电子技术发展经历了哪三个阶段? 第一阶段,从20世纪60年代中期到70年代中期,主要是为了改善部分性能而对汽车产品进行的技术改造,如在车上装了晶体管收音机; 第二阶段,从20世纪70年代末期到90年代中期,为解决安全、污染、和节能三大问题,研制出电控汽油喷射系统、电子控制防滑制动装置和电控点火系统; 第三阶段,20世纪90年代中期以后,电子技术广泛的使用在底盘、车身、和车用柴油发动机多个领域。 4.电控技术对发动机性能有何影响? 1.提高发动机的动力性 2.改善发动机燃油经济性 3.降低排放污染 4.发动机的加速和减速性能 5.改善发动机的起动性能 5.电子燃油喷射系统的功用? 根据进气量确定基本喷油量,再根据其他传感器(如冷却液温度传感器、节气门位置传感器等)信号等对喷油量进行修正,使发动机在各种运行工况下均能获得最佳浓度的混合气,从而提高发动机的动力性、经济性和排放性。 6.什么叫开环控制系统?什么叫闭环控制系统? 开环控制——ECU根据传感器的信号对执行器进行控制,但不去检测控制结果; 闭环控制——也叫反馈控制,在开环的基础上,它对控制结果进行检测,并反馈给ECU。 7.电子控制单元的功能是什么? ECU,给各传感器提供参考电压,接受传感器信号,进行存储、计算和分析处理后执行器发出指令; 8.电控点火系统的功用是什么? 是点火提前角控制。根据各相关传感器信号,判断发动机的运行工况和运行条件,选择最理想的点火提前角点燃混合气,从而改善发动机的燃烧过程,以实现提高发动机动力性、经济性和降低排放污染的目的。 1.名词解释:(1)同时喷射;(2)分组喷射;(3)顺序喷射;(4)开环控制系统;(5)闭环控制系统;(6)同步喷油;(7)间歇喷射。 2.简述电控燃油喷射系统的优点? 1.能提供发动机在各种工况下最合适的混合气浓度:汽油喷射能够保证各气缸混合气的分配比较均匀; 2.用排放物控制系统后,降低了HC、CO和NOX三种有害气体的排放;(二冲程发动机:避免扫气过程的燃料损失,HC排放和燃油经济性明显改善) 3.增大了燃油的喷射压力,因此雾化比较好; 4.提高发动机的充气效率:在进气系统中,由于没有像化油器那样的喉管部位,因而进气阻力小; 5.实现燃料的分层燃烧;

相关文档
最新文档