声速测量

声速测量
声速测量

测量声速 (极值法与相位比较法)

一、实验目的

1、 了解超声波产生和接收的原理,加深对相位概念的理解。

2、 掌握声速测量的基本原理及方法。 二、实验仪器

信号发生器,示波器、声速测量仪等。 三、实验原理

机械波的产生有两个条件:首先要有作机械振动的物体(波源),其次要有能够传播这种机械振动的介质,只有通过介质质点间的相互作用,才能够使机械振动由近及远地在介质中向外传播。发生器是波源,空气是传播声波的介质。故声波是一种在弹性介质中传播的机械纵波。声速是声波在介质中的传播速度。如果声波在时间t 内传播的距离为s ,则声速为v s

t

= ,由于声波在时间T (周期)内传播的距离为λ(波长),则v T

f ==λ

λ ,可见,

只要测出频率和波长,便可以求出声速v 。

本实验使用交流电信号控制发生器,故声波频率即电信号的频率,它可用频率计测量或信号发生器直接显示。而波长的测量常用相位比较法和振幅极值法(共振干涉法)。 1、振幅极值法(共振干涉法)

声源产生的一定频率的平面声波,经过空气介质的传播,到达接收器。声波在发射面和接受面之间被多次反射,故声场是往返声波多次叠加的结果,入射波和反射波相干涉而形成驻波。在

发射面和接受面之间某点的合振动方程为

)cos()2cos(

221t x A y y y ωλ

π

=+= (2)

最大振幅(2A )处被称为驻波的“波腹点”,最小振幅(0)处被称为“波节点”。

波腹点位置:A x A 2)(=,即π

λ

π

k x =2,,.....)2,1,0(2

==k k x λ

波节点位置:0)(=x A ,即2

)

12(2π

λ

π

+=k x ,,.....)2,1,0(4)12(=+=k k x λ

可知,相邻两个波腹点(或波节点)的距离为2

λ,当发射面和接受面之间的距离正好是半波长的整数倍时,即形成稳定的驻波,系统处于共振状态。

.....)3,2,1,0(2

==k k

L λ

(3)

共振时,驻波的幅度达到极大,同时,接受器表面的振动位移应为零,即为波节点,但由于声波是纵波,所以声压达到极大值。理论计算表明,若改变发射器和接收器之间的距离,在一系列特定的距离上,介质将出现稳定的驻波共振现象。若保持声源频率不变,移动发射源,依次测出接受信号极大的位置

,4321,,,L L L L ,2

=

-=?+k k L L L 则可以求出声波的波长λ,进一步

计算出声速v 。 2、相位比较法

由声波的波源(简称声源)发出的具有固定频率f 的声波在空间形成一个声场,声场中任一点的振动相位与声源的振动相位之差??为

v

fL

L πλπ?22==? (4)

在示波器上可观测到发射波与接受波信号的垂直振动合成的李萨如图形。若发射波合接受波的信号为

1122

cos()

cos()x A t y A t ω?ω?=+??

=+? (5) 则该李萨如图形,即合振动方程为

222

212122

1212

2cos()sin ()x y xy A A A A ????--+-= (6) 当210???-?==时,示波器上合振动轨迹为处于第一、第三象限的直线段;当212

π???-?==时,示波器上合振动轨迹为一正

椭圆;当21???π-?==时,合振动轨迹为处于第二、第四象限的直线段。三种情况下的李萨如图形分别如图1所示。一般情况下为一斜椭圆。随着相位差从0变到π时,李萨如图形会依次按如下变化:一、三象限直线段→斜椭圆 →正椭圆 →斜椭圆 →二、四象限直线段。

若在距离声源L 1处的某点振动与声源的振动反相,则??1为π的奇数倍:

),2,1,0(2)12(1

1 ==

+=?k L k λ

ππ? (7)

若在距离声源L 2处的某点振动与声源的振动同相,则??2为π的偶数倍:

),2,1,0(222

2 ==

=?k L k λ

ππ? (8)

相邻的同相点与反相点之间的相位差为

π???=?-?=?12 相邻的同相点与反相点之间的距离为

2

12λ

=

-=?L L L

将接收器由声源处开始慢慢移开,随着距离为 ,2,2

3,,2

λλλλ,可探测到一系列与声源反相或同相的点,由此可求波长λ。

Y

X Y

X

X Y

Y

X

(a) (b) (c) (d)

图1

f f x y ::=11的李萨如图形

()()()a b c ????π

??π21212102

-=-=

-= ()d ??π2132

-=

??的测定可以用示波器观察李萨如图形的方法进行。将发射

器和接收器的信号,分别输入示波器的X 轴和Y 轴,则荧光屏上亮点的运动是两个相互垂直的谐振动的合成,当Y 方向的振动频率与X 方向的振动频率比即f f y x :为整数时,合成运动的轨迹是一个稳定的封闭图形,称为李萨如图形。李萨如图形与振动频率之间的关系如图(1)所示。

由图1可知,随着相位差的改变将看到不同的椭圆,而在各个同相点和反相点看到的则是直线。 四、实验中易出现的问题

1、声波发射器和声波接收器的两个端面尽量调平行。

2、注意电路的正负极要接正确。

3、若信号源的输出频率不稳定,可取其平均值。输出电压有效值3伏。

4、信号源仪器误差为%05.0?=?f f ,游标卡尺仪器误差为

0.02mm 。

5、实验室温度从温度计读出。 五、数据记录与计算 f=37.XXXKHz, t=XX.X

表1 共振干涉法

0331.45331.45346.9/v m s ===

25

L λ=?

()21

2.362 2.352 2.380 2.386 2.3600.945655

cm =?++++?= 3337.2109.4610351.5/v f m s λ-==???= 00

351.5

346.9

100%100%

1.

3%346.9

v v v η--=

?=

?= 2107.39 1.110f Hz μ=

===?

0.005

c l

cm μ

?

===

1.32(/)

cv

m s

μ===

〔绝对不确定度保留一位有效数字,只进不舍〕

结果表达式:

351.523522(/)

cv

V v m s

μ

=±=±=±

〔真值的最佳估计值的修约为四舍六入五凑偶,末位和不确定度对齐〕

表2 相位比较法

3

22

37.210 2.341348.3/

55

v f f l m s

λ

==?=???=

348.3346.9

100%100%0.5%

346.9

v v

v

η

--

=?=?=

共振频率在36KHZ――38KHZ时,L

?的值在2.45-2.25之间

声速的测量

物理实验报告 班级土木1804 姓名 123 学号 201806050412 实验日期 20190530 实验名称:声速的测量 1.实验原理: 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: 叠加后合成波为: 的各点振幅最大,称为波腹,对应的位置:

的各点振幅最小,称为波节,对应的位置: 因此只要测得相邻两波腹(或波节)的位置Xn、X n-1即可得波长。 相位比较法测波长 从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:其中λ是波长,x为S1和S2之间距离。因为x改变一个波长时,相位差就改变2π。利用李萨如图形就可以测得超声波的波长。 不同? 的李萨如图 2. 实验内容: 1.调整仪器使系统处于最佳工作状态,换能器共振频率约为35KHz。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。 注意事项 1.确保换能器S1和S2端面的平行。 2.信号发生器输出信号频率与压电换能器谐振频率f0保持一致。 3. 实验数据 1)用相位法测波长和声速

2)用驻波法(或共振干涉法)测声速。

4. 思考题: 1.固定距离,改变频率,以求声速。是否可行? 2.各种气体中的声速是否相同?为什么? 答:1.不可行,改变频率会使图形的范围变化,且变化范围极小,不可能得到多组数据。 2.不相同,因为气体作为传播声音的介质,介质不相同,传播速度也不相同。 评定: 签字: 日期:

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: 3,2,1,2==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即S 2所移过的距离为: ()22211λ λ λ=?-+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122122-=--???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差012=-=?φφφ时,由(5)式,得x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

声速测量实验

实验四声速测量 【实验目的】 1.了解超声换能器的工作原理和功能 2.学习不同方法测定声速的原理和技术 3.熟悉信号源和示波器的使用 【实验原理】 声波是一种在弹性媒质中传播的机械波。声波在媒质中传播时,声速,声衰减等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以探知媒质的特性及状态变化。例如,通过测量声速可求出固体的弹性模量;气体、液体的比重、成分等参量。 在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。超声波在医学诊断,无损检测,测距等方面都有广泛应用。 声速的测量方法可分为两类: 第一类方法是直接根据关系式V=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”,这是工程应用中常用的方法。 第二类方法是利用波长频率关系式V=f·λ,测量出频率f和波长λ来计算出声速,测量波长时又可用“共振干涉法”或“相位比较法”。 1.压电陶瓷换能器 压电材料受到与极化方向一致的应力F时,在极化方向上会产生一定的电场巳它们之间有线性关系E=g·F 。反之,当在压电材料的极化方向上加电压E 时,材料的伸缩形变S与电压E也有线性关系S=a·E,比例系数g、a称为压电常数,它与材料性质有关。本实验采用压电陶瓷超声换能器将实验仪输出的正弦振荡电信号转换成超声振动。压电陶瓷片是换能器的工作物质,它是用多晶体结构的压电材料(如钛酸钡,锆钛酸铅等)在一定的温度下经极化处理制成的。在压电陶瓷片的前后表面粘贴上两块金属组成的夹心型振子,就构成了换能器.由于振子是以纵向长度的伸缩,直接带动头部金属作同样纵向长度伸缩,这样所发射的声波,方向性强,平面性好。每一只换能器都有其固有的谐振频率,换能器只有在其谐振频率,才能有效的发射(或接收)。实验时用一个换能器作为发射器,另一个作为接收器,二换能器的表面互相平行,且谐振频率匹配。 2.共振干涉(驻波)法测声速 到达接收器的声波,一部分被接收并在接收器电极上有电压输出,一部分被向发射器方向反射。由波的干涉理论可知,两列反向传播的同频率波干涉将形成驻波,驻波中振幅最大的点称为波腹,振幅最小的点称为波节,任何两个相邻波腹(或两个相邻波节)之间的距离都等于半个波长。改变两只换 能器间的距离,同时用示波器监测接收器上的输出电压幅度变化,可观察到电压幅度随距离周期性的变化。记录下相邻两次出现最大电压数值时游标尺的读数。两读数之差的绝对值应等于声波波长的二分之一。已知声波频率并测出波长,即可计算声速。实际测量中为提高测量精度,可连续多次测量并用逐差法处理数据。

声速的测量

物理实验报告 一、【实验名称】 超声波声速的测量 二、【实验目的】 1、了解声速的测量原理 2、学习示波器的原理与使用 3、学习用逐差法处理数据 三、【仪器用具】 1、SV-DH-3型声速测定仪段 2、双踪示波器 3、SVX-3型声速测定信号源 四、【仪器用具】 1.超声波与压电陶瓷换能器 频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。 图1 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器

及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的结构简图。 2.共振干涉法(驻波法)测量声速 假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。 在上述假设条件下,发射波ξ1=Acos (ωt+2πx /λ)。在S2处产生反射,反射波ξ 2 =A 1cos (ωt+2πx /λ),信号相位与ξ1相反,幅度A 1<A 。ξ1与ξ2在反射平面相交叠加, 合成波束ξ 3 ξ3=ξ1+ξ2=(A 1+A 2)cos (ωt-2πx /λ)+A 1cos (ωt+2πx /λ) =A 1cos(2πx /λ)cos ωt+A 2cos (ωt - 2πx /λ) 由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。 图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。 图2 换能器间距与合成幅度 实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2 在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何 发射换能器与接收换能器之间的距离

声速的测量

姓名:姚家村;学号:5120180426;班级:软件1803;教师________;信箱号:______预约时间:第_____周、星期_____、第_____~ _____节;座位号:_______ 预习操作实验报告总分教师签字 一、实验名称:声速的测量 二、实验目的 1.掌握驻波法和相位比较法及时差法测量声速的原理。 2.了解压电换能器的功能,熟悉信号源和示波器的使用。 3.加深对驻波及振动合成理论的理解。 三、实验原理(基本原理概述、重要公式、简要推导过程、重要图形等;要求用自己的语言概括与总结,不可照抄教材) 三、实验原理(基本原理概述、重要公式、简要推导过程、重要图形等;要求用自己的语言概括与总结,不可照抄教材) 声速的测量方法: 1.根据波动理论,测量声波频率和波长得到声速u。 ,在该式子中,频率由声速测试仪的信号源频率显示窗口直接得出,而波长可以 跟用共振干涉法即驻波法和相位比较法来测 量。 (1)共振干涉法:s1和s2为压电陶瓷换能器, S1作为声波发射器,S2作为声波接收器,信号 源提供数万频率的交流电信号给S1声波发射器, S2收到后转换为电信号,输入示波器,,可以看 到一组声压信号产生的正旋波形。 根据波的干涉理论可以知道:任何两相邻的振幅最大值的位置之间或者两相邻的振幅最小值的位

置之间,距离均为,要测量 波长,在观察示波器上波形幅值的同时,缓慢的改变发射器S1与S2之间的位置距离,这样在示波器上就可以看到波形幅值不断地由最大变道最小在变到最大,两个相邻的最大振幅之间所对应的接收器S2移动过的距离为,超声换能器S2和S1之间的距离可以通过转动鼓轮实现变化。连续多次测量相隔半波长的S2的位置变化以及声波频率f之后,运用数据的出声速,这里要使用逐差法处理测量的数据。 (2)相位比较法:声波发射器S1发出的超声波通过介质传到S2,在S1,S2之间的相位差为 当,L每改变一个波长,相位差之间的变化,通过观察相位差的变化,就可以得出,得出声速。 的测定一般是用相互垂直的两个振动的合成的李萨如图形来进行。发射器S1的信号输入为 X轴,接收器S2的信号输入为Y轴,一般选择右斜线作为测量起点,移动S2的时候注意当L变换一个波长时,会出现相同斜率的直线,可以得出声波的波长。 2.运动学理论测量声速 发射器发射声波至被测介质中,声波此时在介质中传播,经过t时间后,到达接收器,发射器与接收器之间的距离为L,那么由于运动学公式我们可以得出,声波在介质中的传播速度为 ,表示声波速度,表示距离,表示时间。 四、实验内容和步骤(要求用自己的语言概括与总结,不可照抄教材) 1.调整仪器是系统处于最佳的工作状态 仪器在使用之前要先开机预热15分钟。测量装置连接正确,声波发射器正确连接用于输出一定频率的功率信号,接收器正确连接到示波器上的CH2通道,并且将示波器的通道开关调整到CH2通道。 2.用驻波法(共振干涉法)测量波长和声速。 想要得到清晰的接受波形,需要将外加的驱动信号频率调节到换能器S1,S2的谐振频率附近,发生共振,这样声能和电能之间的相互转换才能有更好的效果,对实验结果有更好的帮助。 测量波长的时候选择合适的发射强度,选好谐振频率,转动距离调节鼓轮,波形会发生变化,记录下幅度为最大时的坐标Li。再向前或者向后移动坐标,当接受波经过变小后在变到最大时, 记录下此时的坐标Li+1,就可以得到声波波长,用逐差法处理数据。 3.用相位比较法测波长和声速。

实验声速的测量

实验3-5 声速的测量 声波是一种在弹性媒质中传播的机械波,由于其振动方向与传播方向一致,故声波是纵波。振动频率在20~20Hz KHz 的声波可以被人们听到,称为可闻声波;频率超过20KHz 的声波称为超声波。对于声波特性的测量(如频率、波速、波长、声压衰减和相位等)是声学应用技术中的一个重要内容,特别是声波波速(简称声速)的测量,在无损检测、测距和定位、测气体温度的瞬间变化、测液体的流速、测材料的弹性模量等应用中具有重要的意义。如测量氯气等气体或蔗糖溶液的浓度、橡胶乳液的密度以及测定输油管中不同油品的分界面等,这些问题都可以通过测定这些物质中的声速来解决。声速的测量方法可分为两类;第一类方法是根据关系式/L t =v ,测出传播距离L 和所需时间 t 后,即可算出声速v ;第二类方法是利用关系式λf ?v =,从测量其频率f 和波长λ来算出声速v .本实验所采用的共振干涉法和相位比较法属于后者,时差法则属于前者。 声速与声波的频率无关,只决定于弹性介质的性质。由于超声波具有波长短、易于定向发射及抗干扰等优点,所以在超声波段进行声速测量是比较方便的。对声速这一非电量的测量本实验是利用压电陶瓷换能器来进行。 【实验目的】 ①学会用共振干涉法和相位法测量空气中的声速; ②学会使用示波器和信号发生器; ③加强对驻波及振动合成等理论的理解。 【预习思考题】 ①实验中是如何获得超声波的? ②驻波法和相位法测声速的方法有何异同? 【实验原理】 声波的传播速度与其频率和波长的关系为 λf ?v = (3-5-1) 测得声波的频率和波长,就可得到声速。 同样,传播速度亦可用/L t =v 表示,若测得声波传播所经过的距离L 和传播时间t ,也可求得声速。 1.超声波与压电陶瓷换能器 超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确地测出声速。本实验超声波的发射和接收采用的是压电陶瓷制成的换能器(探头),它利用压电效应和磁致伸缩效应可以在机械振动与交流电压之间双向换能。声速

声速的测定

实验3 声速测定 【实验目的】 1.了解超声波的产生、发射和接收方法。 2.用驻波法、行波法和时差法测量声速。 【实验仪器】 声速测试仪,示波器,声速测试仪信号源等。 【预习要求】 1. 确定实验步骤。 2. 列出数据记录表格。 【实验依据】 声波的传播速度与其频率和波长的关系为 =λ (1) v? f 由(1)式可知,测得声波的频率和波长,就可得到声速.同样,传播速度亦可用 = (2) v/ t L 表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速. 高于20kHz称为超声波。由于超声波具有波长短,易于定向发射、易被反射等优点.在超声波段进行声速测量可以在短距离较精确地测出声速。声速实验所采用的声波频率一般都在20~60kHz之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。这种压电陶瓷是利用压电效应和磁致伸缩效应实现电磁振动与机械振动的相互转换。压电陶瓷制成的换能器(探头)如图8-1所示。 图 8-1 纵向换能器的结构简图 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向(振动)换能器。 【实验内容与方法】 1.共振干涉法(驻波法)测声速

实验装置如图8-2 所示。 (a) 驻波法、相位法连线图 图中S 1和S 2为压电晶体换能器,S 1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出一近似的平面声波;S 2 为超声波接收器,声波传至它的接收面上时,再被反射。当S 1 和S 2的表面互相平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 ,2,1,0,2==n n L λ (3) 时,来回声波的波峰与波峰、波谷与波谷正好重叠,形成驻波。 因为接收器S 2 的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹.本实验测量的是声压,所以当形成驻波时,接收器的输出会出现明显增大,从示波器上观察到的电压信号幅值也是极大值(如图8-3)。

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输出的 正弦电压信号接到发射超声换能器上,超声发 射换能器通过电声转换,将电压信号变为超声 波,以超声波形式发射出去。接收换能器通过 声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于

声速的测量

声速的测量 1. 实验目的 (1)了解声速测量仪的结构和测试原理; (2)通过实验了解作为传感器的压电陶瓷的功能; (3)用共振干涉法和相位比较法测量声速,并加深有关共振、振动合成、波的干涉等理论知识的理解; (4)进一步掌握示波器、低频信号发生器和数字频率计的使用。 2. 实验仪器 SV-DH系列声速测试仪,SVX-5型声速测试仪信号源,双踪示波器(20MHz)。 3. 仪器简介 (1) 声波 频率介于20Hz~20kHz的机械波振动在弹性介质中的传播就形成声波,介于20kHz~500MHz的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。 (2) 压电陶瓷换能器 SV-DH系列声速测试仪主要由压电陶瓷换能器和读数标尺组成。压电陶瓷换能器是由压电陶瓷片和轻重两种金属组成。 压电陶瓷片是由一种多晶结构的压电材料(如石英、锆钛酸铅陶瓷等),在一定温度下经极化处理制成的。它具有压电效应,即受到与极化方向一致的应力T时,在极化方向上产生一定的电场强度E且具有线性关系:E=CT;当与极化方向一致的外加电压U加在压电材料上时,材料的伸缩形变S与U之间有简单的线性关系:S=KU,C为比例系数,K为压电常数,与材料的性质有关。由于E与T,S与U之间有简单的线性关系,因此我们就可以将正弦交流电信号

4. 实验原理 根据声波各参量之间的关系可知V =λν,其中V 为波速,λ为波长, ν为频率。 在实验中,可以通过测定声波的波长λ和频率ν求声速。声波的频率ν可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。 (1) 相位比较法 实验装置接线如图2所示,置示波器功能于X -Y 方式。当S1发出的平面超声波通过媒质到达接收器S2,在发射波和接收波之间产生相位差: V L L πνλπ???2221==-=? (1) 因此可以通过测量??来求得声速。 ??的测定可用相互垂直振动合成的李萨如图形来进行。设输入X 轴的入射波振动方程为 )cos(11?ω+=t A x (2) 输入Y 轴的是由S2接收到的波动,其振动方程为: )cos(22?ω+=t A y (3) 图2 实验装置 上两式中:A 1和A 2分别为X 、Y 方向振动的振幅,ω为角频率,1?和2?分别为X 、Y 方向振动的初相位,则合成振动方程为 )(sin )cos(2122122 1222212????-=--+A A xy A y A x (4) 此方程轨迹为椭圆,椭圆长、短轴和方位由相位差21???-=?决定。当??=0时,由式得

声速测量实验报告.doc

声速测量实验报告 只有通过实验才能知道结果,那么,下面是我给大家整理收集的声速测量实验报告,供大家阅读参考。 声速测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张x——测量时间 张x——发声 贾x——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速测量实验报告2 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: 双踪示波器一台,信号发生器一台,测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×10Hz 的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ × f λ=2X v = 2X × f

声速的测量实验报告

声速的测量实验报告 声速的测量实验报告 1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬测量时间 张海涛发声 贾兴藩测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间 17∶30 温度 21℃ 发声时间 0.26 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。

声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称比热[容]比,它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(11.710-6)Jmol-1K-1为摩尔气体常量。) 标准干燥空气的平均摩尔质量为Mst =28.9668710-3kg/mol b.在标准状态下(T088273.15 K,p88101.388kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2)

6声速测量

实验6 声速的测量 声波是一种在弹性媒质中传播的纵波。声速是描述声波在媒质中传播特性的一个基本物理量。超声波(频率超过20k Hz 的声波)由于波长短,易于定向发射,在超声波段进行声速测量比较方便。实际应用中超声波传播速度对于超声波测距、定位、测液体流速、比重、溶液的浓度、测量材料弹性模量、测量气体温度瞬间变化等都有重要意义。 【实验目的】 1.掌握用不同方法测定声速的原理和技术。 2.了解压电陶瓷换能器的结构和工作原理。 3.进一步熟悉示波器和信号源的使用方法。 4. 加深对纵波波动和驻波特性的理解。 【实验原理】 由波动理论得知,声波的传播速度υ与声波频率f 和波长λ之间的关系为λυf =。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。 1.压电陶瓷换能器 实验采用压电陶瓷换能器来实现声压与电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成,如图2-18所示。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。超声波的产生是利用压电陶瓷的逆压电效应,在交变电压作用下,压电陶瓷纵向长度 周期性地伸、缩,产生机械振动而在空气中激发 出超声波。超声波的接收是利用压电陶瓷的正压 电效应使声压变化转变为电压的变化。压电陶瓷 换能器在声电转化过程中信号频率保持不变。 压电换能器系统有其固有的谐振频率0f ,当 输入电信号的频率等于谐振频率时,它的振幅最大, 作为波源其辐射功率就最大;当外加强迫力以谐振频率迫使压电换能器产生机械谐振时,它作为接收器转换的电信号最强,即灵敏度最高。 本实验中,压电换能器的谐振频率在35kHz ~39kHz 范围内,相应的超声波波长约为1cm 。由于波长短,而发射器端面直径比波长大得多,因而定向发射性能好,离发射器端面稍远处的声波可以近似认为是平面波。 2. 测量声速的实验方法 声波的传播速度v 可以由声波频率f 和波长λ求出 λυf = 其中声波频率可由信号发生器的显示屏读出,实验中的主要任务就是测声波波长。 (1)共振干涉法(驻波法)测量波长λ

声速的测量

实验报告:声速的测量 张贺 PB07210001 一、 实验题目: 声速的测量 二、 实验目的: 了解超声波的产生、发射和接收方法,用干涉法和相位法测量声速。 三、 实验仪器: 低频信号发生器、示波器、超声声速测定仪、频率计等 四、 实验原理: 声速是声波在截至中传播的速度,声波在空气中的传播速度 M RT v γ= (1) 在C ?0时的声速 s m M RT v /45.3310 0== γ (2) 在C t ?时的声速 15 .27310t v v t + = (3) 由波动理论知 λf v = (4) 1.驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: ??? ? ? -=λπx ft A y 2cos 1

??? ? ? +λπx ft Acod 2 叠加后合成波为: ??? ? ? ++??? ??-=+=λπλπx ft Acod x ft A y y y 22cos 21 ft x A πλπ2cos 2cos 2??? ? ? = (5) 12cos =λ πx 的各点振幅最大,称为波腹,对应的位置()K 2,1,02 =±=n n x λ ; 02cos =λ π x 的各点振幅最小,称为波节,对应的位置()()K 2,1,04 12=+±=n n x λ 。 因此只要测得相邻两波腹(或波节)的位置Xn 、Xn-1即可得波长n n x x -=+12λ。 2.相位比较法测波长 从换能器S 1发出的超声波到达接收器S 2,所以在同一时刻S 1与S 2处的波有一相位差:其中λ是波长,l 为S 1和S 2之间距离 。因为l 改变一个波长时,相位差 就改变π2。利用李萨如图形就可以测得超声波的波长。 五、 实验内容: 1.调整仪器使系统处于最佳工作状态 (1)使1S 与2S 端面平行 (2)调整低频信号发生器输出谐振频率 2.驻波法(共振干涉法)测波长和声速 测量前移动游标,将2S 从一端缓慢移向另一端,并来回几次,观察示波器上 的讯号幅度的变化,了解波的干涉现象。测量时1S 与2S 之间的距离从近到远或从远到近均可,选择一个示波器上的讯号幅度最大处为起点,记下2S 的位置,缓慢移动2S ,依次记下每次讯号幅度最大时2S 的位置,共12个值: (1)用逐差法处理数据,求出λ和λ?,由谐振频率和测出的,利用(4)算出声速,并计算误差。 (2)记下实验室实验开始时的室温与实验结束时的室温,由式(3)算出声速理论值,与测量值比较,并对结果进行讨论。 3.相位比较法测波长和声速

大学物理实验报告-声速的测量

实 验 报 告 声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为:v f λ=? (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。

声 速 的 测 量(超声波法)

声速的测量(超声波法) 声波是一种在弹性媒质中传播的机械波。声波在媒质中传播时,声速,声强等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以测知媒质的特性及状态变化。例如,通过测量声速可求出固体的弹性模量:气体、液体的比重、成分等参量。 在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。超声波在医学诊断,无损检测,测距等方面都有广泛应用。 声速的测量方法可分为两类;第一类方法是直接根据关系式v=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”。第二类方法是利用波长频率关系式v=fλ,测量出频率f和波长λ来计算出声速。 【实验目的】 1.了解超声换能器的工作原理和功能 2.学习不同方法测定声速的原理的技术 3.熟悉测量仪和示波器的调节使用 4.测定声波在空气及水中的传播速度 【实验仪器】 QSSV-2型声速测定实验仪、示波器 【实验原理】 一、声速在空气中的传播速度 在理想气体中声波的传播速度为 v=(1)式中γ =Cp/Cv称为比热比,即气体定压比热容与定容比热容的比值,μ是气体的摩尔质量,T是绝对温度,R=8.31441J/moL?K为普适气体常数。由(1)式可见,声速与温度有关,又

与摩尔质量μ及比热比γ有关,后两个因素与气体成分有关因此,测定声速可以推算出气体的一些参量。利用(1)式的函数关系还可制成声速温度计。 在正常情况下,干燥空气成分按重量比为氮:氧:氩:二氧化碳=78.084:20.946:0.934:0.033。它的平均摩尔质量为0μ=28.94×10-3 kg/moL 在标准状态下,干燥空气中的声速为0 v =331.5m/S 。在温室t ℃下,干燥空气中的声速为 0v v = (2) 式中T0=273.15K 。由于空气实际上并不是干燥的,总含有一些水蒸气,经过对空气平均摩尔质量a μ和比热比γ的修正,在温度为t 、相对温度为t 0的空气中,声速为 (3) 式中s p 为t ℃时空气的饱的和蒸气压,可从饱和蒸气压、蒸气压和温度的关系表中查出;P为大气压,取P =1.013×105Pa 即可;相对温度r 可从干湿温度计上读出。由这些气体参量可以计算出声速,故(3)式可作为空气中声速的理化计算公式。 二、测量声速的实验方法 声速的传播速度v 与声波频率f 和波长λ的关系为 v = f λ (4) 测出声波的频率和波长,就可以求出声速。其中声波频率可通过测量声源的振动频率得出,剩下的任务就是测声波波长,也就是本实验的主要任务。 波长可用下面两种方法测出: 1.相位法:波是振动状态的传播,也可以说相位传播。沿传播方向上的任何两点、如果其振动状态相同(同相)或者说其相位差为2π的整数倍,这时两点间的距离应等于波长λ的整数倍,即 L=n λ (n 为-正整数) (5) v =

声速测量.doc

实 验 报 告 评分 13系 07级 姓名龙林爽 日期2008-12-12 No.PB07013075 实验题目:声速的测量 实验目的:用压电陶瓷超声换能器来测定声波在空气中的传播速度。 实验内容: 一、通过温度测量声速 由温度计读数得,00 022.5,22.8t T C T C ==, 0022.522.8 22.6522 t T T T C ++∴= == 由公式0331.45v v v m s ==得: 331.45344.9185m s v == 二、驻波法测量声速 1、调节信号发射器,使压电陶瓷换能器达到谐振,记下共振频率335.0610f Hz =?。 2、记录下示波器上信号幅度最大时的游标卡尺的读数。 3、由逐差法求得两波腹间的差值: -34.9818210i x x m n ?∴?= =?∑ 误差分析

0.00004143 0.00001249 x A A m u m σ ? = = ∴=== 类不确定度 0.020 0.0004mm0.0000004 0.0000002309 B B B mm mm m u m C ?=?= ?==== ? ∴=== 仪估 B类不确定度 0.95 0.0002448 U m ==合成不确定度 4、求出波长 -3 22 4.98182100.00996364 x m m λ=?=??= 5、计算声速和不确定度 由公式v fλ =得, 3 35.06100.00996364=349.3252184m s v=?? 误差分析: ln ln ln v v f v f dv df d v f U λ λ λ λ = ∴=+ =+ = 0.01 3.3333,0.0002448 3 f kHz U Hz U m Cλ ? === = 仪 349.3252184 8.583m s v v U U ∴== = () 349.3258.583m v ∴=±(0.95) t=

声速的测量

超声声速测量预习提纲 1、实验任务: (1)用相位法、共振法测空气中的声速;(必做) (2)用时差法测空气中的声速; (选做) 2、实验原理: (1)压电陶瓷换能器如何进行工作的? (2)驻波如何形成? (3)三种测量方法的主要实验原理如何? (4)i x ?是半个波长还是一个波长? (5)如何利用逐差法计算波长?(2 5 x λ=?,测10个数据用逐差法进行处 理) 3、操作规范: (1)为什么要进行谐振频率调节?如何调? (2)如何理解示波器上的的直线、椭圆图形? (3)如何避免回程差? (4)时差法中如何调节使接收波信号幅度始终保持一致? (5)如何正确使用示波器? 4、数据处理: (1)逐差法是采用逐项逐差还是隔项逐差; (2)如何设计表格及必要数据的具体计算过程; (3)为什么时差法中延迟时间1i i t t --必需是三位有效数? 5、结果讨论和误差分析:(本次实验项目的重点)。 (1)二种或三种测量方法的优劣比较,定量分析引起误差的原因; (2)百分差一般控制在5%以内。

超声声速测量数据记录表格设计提示 实验数据及结果: 1、共振干涉法: 温度:t= ± 0C 谐振频率:f = ± H 2、相位比较法:(参照共振干涉法) 数据处理: 1、 共振干涉法: 5,i i i x x +?=- ()5i i i x x x +?-?=?===仪 x S m ?= =--- x m ??==--- 2 5x m λ??=??=--- 15 i x x m ?=?∑?=--

2 5 x m λ=?=-- 2 5 x m λ??=??=-- m V f S ==--V m f S λ?=?=-- () V m V V S =±?=--±-- () 331.45S m m V V S S ===-- 100%%V V V E ??=--= 100%%S S V V V E P -?=--= 2、相位比较法: 计算过程同上 3、时差法: 3 0.01510L m -??==? 同理:6 0.510t s -??=? L m V S t ?==--? V m V S ?==-- () V m V V S =±?=--±-- 100%V V E V ?=? 100%S P S V V E V -=? 误 差 分 析 举 例 结果讨论及定性分析: 1、从百分差中可知,共振干涉法的误差最大,其次是相位比较法,最小是时差法。共振干涉法的误差最大原因:主要是每次观察正弦波波峰最大时容易出现误差,而相位比较法用里萨尔图形的斜率正、负直线观察出现误差较小,而时差法误差最小,其实验原理决定了该实验方法的误差。 2、在调节谐振频率时,由于信号源稳定性较差,开始时的谐振频率跟实验结束时的谐振频率有变化,变小,存在系统误差。

相关文档
最新文档