CC-Link现场总线

CC-Link现场总线
CC-Link现场总线

CC-LINK现场总线概述

摘要

CC-Link是一种开放式现场总线,其数据容量大,通信速度多级可选择,而且它是一个复合的、开放的、适应性强的网络系统,能够适应于较高的管理层网络到较低的传感器层网络的不同范围。随着计算机信息网络技术的飞速发展, 以PLC为核心的工业控制系统也向着大规模、网络化方向发展,与此相对应,工业控制网络产品也越来越丰富,可以构成各种档次的网络系统, 以适用于各种层次的工业自动化网络的不同需求。其最具代表性的三种网络为:信息与管理层的以太网(Ethernet)、管理与控制层的局域令牌网(ELSECNET/H)、CC-Link 开放式现场总线设备网。

关键词

开放式现场总线;CC-Link现场总线;PLC

1. 开放式现场总线的技术背景

在1996年11月,以三菱电机为主导的多家公司以“多厂家设备环境、高性能、省配线”理念开发、公布和开放了现场总线CC-Link,第一次正式向市场推出了CC-Link这一全新的多厂商、高性能、省配线的现场网络。并于1997年获得日本电机产业会(JEMA)颁发的杰出技术成就奖。

CC-Link是Control& Communication Link (控制与通讯链路系统)的简称。即:在工控系统中,可以将控制和信息数据同时以10Mbps高速传输的现场网络。CC-Link具有性能卓越、应用广泛、使用简单、节省本钱等突出优点。作为开放式现场总线,CC-Link是唯一起源于亚洲地区的总线系统,CC-Link的技术特点尤其适合亚洲人的思维习惯。于1998年,

汽车行业的马自达、五十铃、雅马哈、通用、铃木等也成为了CC-Link的用户,而且CC-Link 迅速进进中国市场。1999年,销售的实绩已超过17万个节点,2001年达到了72万个节点,到2001年累计量达到了150万,其增长势头迅猛,在亚洲市场占有份额超过15%(据美国工控专业调查机构ARC调查),受到亚、欧、美、日等客户的高度评价。

为了使用户能更方便地选择和配置自己的CC-Link系统,2000年11月,CC-Link协会(CC-Link Partner Association简称CLPA)在日本成立。主要负责CC-Link在全球的普及和推进工作。为了全球化的推广能够同一进行,CLPA(CC-Link协会)在全球设立了众多的驻点,分布在美国、欧洲、中国、中国台湾、新加坡、韩国等国家和地区,负责在不同地区在各个方面推广和支持CC-Link用户和成员的工作。

CLPA现在有“Woodhead”、“Contec”、“Digital”、“NEC”、“松下电工”、“idec”和“三菱电机”等7个常务理事会员。到2002年4月底,CLPA在全球拥有250多家会员公司,其中包括浙大中控、中科软大等等几家中国大陆地区的会员公司。

2. CC-Link现场总线的特点及功能

2.1 CC-Link网络的特点

CC-Link(Control &Communication Link ,控制与通信链路系统),是三菱电机新近推出的开放式现场总线,其数据容量大,通信速度多级可选择,而且它是一个以设备层为主的网络,同时也可覆盖较高层次的控制层和较低层次的传感层。一般情况下,CC-Link 整个一层网络可由1 个主站和64 个从站组成。网络中的主站由PLC 担当, 从站可以是远程I/O模块、特殊功能模块、带有CPU 和PLC 本地站、人机界面、变频器及各种测量仪表、阀门等现场仪表设备。且可实现从CC-Link 到AS-I 总线的联接。CC-Link 具有高速的数据传输速度, 最高可达10 M b/ s 。CC-Link 的底层通信协议遵循RS 485 , 一般情况下, CC-Link 主要采用广播-轮询的方式进行通信,CC-Link 也支持主站与本地站、智能设备站之间的瞬间通信。2005年7月CC-Link被中国国家标准委员会批准为中国国家标准指导性技术文件。

2.2 CC-Link 网络的功能

CC-Link 网络具有完善的RAS(Reliability , Availability, Serviceability)功能。即自动返回、切断从站、通过链接继电器/寄存器的错误检测功能。

3. CC-Link总线的通信原理

CC-Link的底层通讯协议遵循RS485,具体的通讯方式请参照下图.

图3.1 CC-Link的通信原理

CC-Link提供循环传输和瞬时传输2种通讯方式。一般情况下,CC-Link主要采用广播-轮询(循环传输)的方式进行通讯。循环通讯意味着不停地进行数据交换,具体的方式是:主站将刷新数据(RY/RWw)发送到所有从站,与此同时轮询从站1;从站1对主站的轮询作出响应(RX/RWr),同时将该响应告知其它从站;然后主站轮询从站2(此时并不发送刷新数据),从站2给出响应,并将该响应告知其它从站;依此类推,循环往复。广播-轮询时的数据传输帧格式请参照下图,该方式的数据传输率非常高。

除了广播-轮询方式以外,CC-Link也支持主站与本地站、智能设备站之间的瞬时通讯。从主站向从站的瞬时通讯量为150字节/数据包,由从站向主站的瞬时通讯量为34字节/数据包。瞬时传输时的数据传输帧格式请参照下图,由此可见瞬时传输不会对广播轮询的循环扫描时间造成影响。

图3.2 主站与远程设备站通信图

所有主站和从站之间的通讯进程以及协议都由通讯用LSI-MFP(Mitsubishi Field Network Processor)控制,其硬件的设计结构决定了CC-Link的高速稳定的通讯。

图3.2 MFP结构

3.1 CC-Link 通信的初始化

CC-Link 通信的初始化实际上就是指CC-Link 的网络参数设置。网络参数指:站的信息和站号。通信的初始化对于启动数据链接非常重要, CC-Link 通信初始化设置方法只要在三菱GPPW 编程软件的网络配置菜单中设置相应的网络参数, 远程I/O 信号就可自动刷新到CPU 内存,还能自动设置CC-Link 远程元件的初始参数。

4. CC-Link的卓越性能

一般产业控制领域的网络分为3到4个层次,分别是上位的治理层,控制层和部件层。部件层也可以再细分为设备层和传感器层,CC-Link是一个以设备层为主的网络,同时也可

以覆盖较高层次的控制层和较低层次的传感器层。

4.1 CC-Link的网络结构

现场总线CC-Link的一般系统构成如图所示:

图4.1 CC-Link系统构成

一般情况下,CC-Link整个一层网络可由1个主站和64个子站组成,它采用总线方式通过屏蔽双绞线进行连接。网络中的主站由三菱电机FX系列以上的PLC或计算机担当,子站可以是远程I/O模块、特殊功能模块、带有CPU的PLC本地站、人机界面、变频器、伺服系统、机器人以及各种丈量仪表、阀门、数控系统等现场仪表设备。假如需要增强系统的可靠性,可以采用主站和备用主站冗余备份的网络系统构成方式。采用第三方厂商生产的网关还可以实现从CC-Link到ASI、S-Link、Unit-wire等等网络的连接。

4.2 CC-Link的传输速度和间隔

CC-Link具有高速的数据传输速度,最高可以达到10Mbps,其数据传输速度随间隔的增长而逐渐减慢,传输速度和间隔的具体关系如下表所示。

表4.1 传输速度和间隔的对应关系

CC-Link的中继器目前有多种:一种为T型分支中继器AJ65SBT-RPT,每增加一个间隔延长一倍。一层网络最多可以使用10个。第二种为光中继器AJ65SBT-RPS或AJ65SBT-RPG,用光缆延长,因此在一些比较轻易受干扰的环境可以采用。光中继器要成对使用,每一对

AJ65SBT-RPS之间的延长间隔为1公里,最多可以使用4对;每一对AJ65SBT-RPG之间的延长间隔为2公里,最多可以使用2对。第三种为空间光中继器AJ65BT-RPI-10A/AJ65BT-RPI-10B,采用红外线无线传输的方式,在布线不方便,或者连接设备位置会移动的场合使用。空间光中继器也必须成对使用,两者之间的间隔不能超过200米,还有一些方便接线的中继器和与其他网络相连的网关和网桥。

CC-Link提供了110欧姆和130欧姆两种终端电阻,用于避免因在总线的间隔较长、传输速度较快的情况下,由于外界环境干扰出现传输信号的奇偶校验出错等传输质量下降的情况。

4.3 CC-Link实现高速大容量的数据传输

CC-Link提供循环传输和瞬时传输2种方式的通讯。

每个内存站循环传送数据为24字节,其中8字节(64位)用于位数据传送,16字节(4点RWr、4点RWw)用于字传送。一个物理站最大占用4个内存站,故一个物理站的循环传送数据为96个字节。

对于CC-Link整个网络而言,其循环传输每次链接扫描的最大容量是2048位和512字。

在循环传输数据量不够用的情况下,CC-Link提供瞬时传输功能,可将960字节的数据,用指令传送给目标站。

CC-Link在连接64个远程I/O站、通讯速度为10Mbps的情况下,循环通讯的链接扫描时间为3.7毫秒。稳定快速的通讯速度是CC-Link的最大上风。

4.4 CC-Link丰富的功能

1)自动刷新功能、预约站功能

CC-Link网络数据从网络模块到CPU是自动刷新完成,不必有专用的刷新指令;安排预留以后需要挂接的站,可以事先在系统组态时加以设定,当此设备挂接在网络上时,CC-Link 可以自动识别,并纳进系统的运行,不必重新进行组态,保持系统的连续工作,方便设计职员设计和调试系统。

2)完善的RAS功能

RAS是Reliability(可靠性)、Availability(有效性)、Serviceability(可维护性)的缩写。例如故障子站自动下线功能、修复后的自动返回功能、站号重叠检查功能、故障无效站功能、网络链接状态检查功能、自诊断功能等等,提供了一个可以信赖的网络系统,帮助用户在最短时间内恢复网络系统。

3)互操纵性和即插即用功能

CC-Link提供给合作厂商描述每种类型产品的数据配置文档。这种文档称为内存映射表,用来定义控制信号和数据的存储单元(地址)。然后,合作厂商按照这种映射表的规定,进行CC-Link兼容性产品的开发工作。以模拟量I/O开发工作表为例,在映射表中位数据RX0被定义为“读预备好信号”,字数据RWr0被定义为模拟量数据。由不同的A公司和B公司生产的同样类型的产品,在数据的配置上是完全一样的,用户根本不需要考虑在编程和使用上A公司与B公司的不同,另外,假如用户换用同类型的不同公司的产品,程序基本不用修改。可实现“即插即用”连接设备。

5)优异抗噪性能和兼容性

为了保证多厂家网络的良好的兼容性,一致性测试是非常重要的。通常只是对接口部分进行测试。而且,CC-Link的一致性测试程序包含了抗噪音测试。因此,所有CC-Link兼容产品具有高水平的抗噪性能。正如我们所知,能做到这一点的只有CC-Link。除了产品本身具有卓越的抗噪性能以外,光缆中继器给网络系统提供了更加可靠、更加稳定的抗噪能力。至今还未收到过关于噪音引起系统工作不正常的报告。

5. 应用特点简介

由于CC-Link可以直接连接各种流量计、电磁阀、温控仪等现场设备,降低了配线本钱,并且便于接线设计的更改;通过中继器可以在4.3公里以内保持10M的高速通讯速度,因

此广泛用于半导体生产线、自动化传送线、食品加工线以及汽车生产线等各个现场控制领域。在中国国内,也已经有不少地方使用了CC-Link。现将其应用特色回纳如下:

b)便于组建价格低廉的简易控制网

作为现场总线网络的CC-Link不仅可以连接各种现场仪表,而且还可以连接各种本地控制站PLC作为智能设备站。在各个本地控制站之间通讯量不大的情况下,采用CC-Link可以构成一个简易的PLC控制网,与真正的控制网相比,价格极为低廉。

例如青岛海尔的空调测试生产线。该生产线的每个测试工位都采用了一套独立的PLC (三菱电机的FX2N PLC),来控制该测试工位的测试任务。为了使治理层的职员能够及时了解生产线各工位的工作情况,所以采用CC-Link将各个独立的控制站连接成为一个网络,通过与主站(三菱电机的A1SJHCPU)连接的上位机来监控整个测试线的工作情况。与传统的RS485通讯方式相比,CC-Link不仅通讯间隔长、速度快,具有价格上的竞争上风,而且由于CC-Link提供了强大的RAS功能,所以在上位机上可以监控各个现场测试站的工作情况,及时发现各种异常,以及网络的连线异常等。当现场测试站中的某一个PLC站出现题目,会自动断线,而不影响其他站的工作,当该站修复后,会自动上线。

b)便于组建价格低廉的冗余网络

在一些领域对系统的可靠性提出了很高的要求,这时往往需要设置主站和备用主站构成冗余系统。固然CC-Link是一个现场级的网络,但是提供了很多高一等级网络所具有的功能,如:可以对其设定主站和备用主站,由于其造价低廉,因此性价比较高。

例如在银川的热电厂项目中,采用了CC-Link的这一功能。主站、备用主站均采用三菱电机的Q2ASHCPU,通过CC-Link连接了两个远程输进站和远程输出站。当主站、备用站均正常工作时,由主站对远程站进行控制;当主站出现故障时,备用主站将自动接管系统的控制权,作为主站工作,防止了系统的停滞。

c)适用于一些控制点分散,安装范围狭窄的现场。

在楼宇监控系统中,如燃气监控系统,其相应的检测点很多,而且比较分散。另外,高层建筑为追求设计的经济型,往往尽量缩小夹层和上下通道的尺寸。采用CC-Link现场网连接分立的远程I/O模块,一层网络最多可以控制64个地方的2048点,总延长间隔可达7.6公里。小型的输进输出模块体积仅为87.3x50x40mm,足以安装在极为狭窄的空间内。

上海西派埃实业公司测控部采用CC-Link的现场网络通讯方式,与1998年上半年景功地

开发了“FLD现场总线式燃气泄漏监控系统”并将其产品化,此产品已成功运用于上海浦东国际机场等项目中。

d)适用于直接连接各种现场设备。

由于CC-Link是一个现场总线网,因此它可以直接连接各种现场设备。

例如在河北大剧院的项目中,使用了众多的变频器。原先常用的连接变频器的方法是通过输出接点、模拟量或者RS485通讯等方式进行控制。例如采用模拟量,则针对一个变频器,PLC需要有一个模拟量模块的一个通道与之相对应,假如采用1个模块8通道的D/A转换模块,则连接40台变频器需要5个这样的模块,而假如采用CC-Link的连接方式,PLC上安装一个连接模块,就可以连接42台变频器。采用CC-Link连接变频器,不仅可连接的数目多,通讯间隔也比RS485长,而且具有网络通讯的总体监控和诊断功能,通讯编程方便,这些都是RS485通讯所无法相比的。

变速器和同步器图解

变速器和同步器图解 三轴五当变速器传动简图 1-输入轴 2-轴承 3-接合齿圈 4-同步环 5-输出轴 6-中间轴 7-接合套 8-中 间轴常啮合齿轮 此变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输出轴)、倒档轴、各轴上齿轮、操纵机构等几部分组成。 两轴五当变速器传动简图

1-输入轴 2-接合套 3-里程表齿轮 4-同步环 5-半轴 6-主减速器被动齿轮 7-差速器壳 8-半轴齿轮 9-行星齿轮 10、11-输出轴 12-主减速器主动齿轮 13-花键毂 与传统的三轴变速器相比,由于省去了中间轴,所以一般档位传动效率要高一些;但是任何一档的传动效率又都不如三轴变速器直接档的传动效率高。 同步器有常压式,惯性式和自行增力式等种类。这里仅介绍目前广泛采用的惯性式同步器。 惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。 惯性同步器按结构又分为锁环式和锁销式两种。 其工作原理可以北京BJ212型汽车三档变速器中的二、三档同步器为例说明。花键毂7与第二轴用花键连接,并用垫片和卡环作轴向定位。在花键毂两端与齿轮1和4之间,各有一个青铜制成的锁环(也称同步环)9和5。锁环上有短花键齿圈,花键齿的断面轮廓尺寸与齿轮 1,4及花键毂 7上的外花键齿均相同。在两个锁环上,花键齿对着接合套8的一端都有倒角(称锁止角),且与接合套齿端的倒角相同。 锁环具有与齿轮1和4上的摩擦面锥度相同的内锥面,内锥面上制出细牙的螺旋槽,以便两锥面接触后破坏油膜,增加锥面间的摩擦。三个滑块2分别嵌合在花键毂的三个轴向槽11内,并可沿槽轴向滑动。在两个弹簧圈6的作用下,滑块压向接合套,使滑块中部的凸起部分正好嵌在接合套中部的凹槽10中,起到空档定位作用。滑块2的两端伸入锁环9和5的三个缺口12中。只有当滑块位于缺口12的中央时,接合套与锁环的齿方可能接合。

感应同步器的原理及应用

感应同步器工作原理及应用 摘要:感应同步器是利用电磁原理将线位移和角位移转换成电信号的一种装置。根据用途,可将感应同步器分为直线式和旋转式两种,分别用于测量线位移和角位移线。将角度或直线位移信号变换为交流电压的位移传感器,又称平面式旋转变压器。它有圆盘式和直线式两种。在高精度数字显示系统或数控闭环系统中圆盘式感应同步器用以检测角位移信号,直线式用以检测线位移。感应同步器广泛应用于高精度伺服转台、雷达天线、火炮和无线电望远镜的定位跟踪、精密数控机床以及高精度位置检测系统中。 关键词:感应同步器、原理、应用、直线式、旋转式 Abstract:The inductosyn is a system that transform the linear and angular displacement into electric signal use the Electromagnetic theory.According to its use the inductosyn can be divided into the linear and the rotary,which is use to measure the linear and the angular.The linear inductosyn that transform the linear and angular displacement into AC V oltage is called plane rotary transformer,which is divided into two types than is the linear and the disc.In the precision digital display system or CNC closed-loop system,the disc inductosyn is used to measure the signal of angular and the linear inductosyn is used to measure the signal of linear.The inductosyn is also widely used in the location tracking ,the precision CNC machine tools and the high-precision position detection system of the precision servo turntable, the radar antenna, the artillery and the radio Telescope. Keywords: inductosyn theory use linear rotary 1.感应同步器的工作原理 感应同步器是利用两个平面形绕组的互感随位置而变化的原理而进行工作的。 直线式感应同步器由定尺和滑尺组成,定尺上是连续绕组,滑尺上是分段绕组,滑尺为正余弦绕组。其绕组布置如图1所示。滑尺上展开分布着两个印刷电路绕组,每个节距相当于绕组空间分布的周期,又称极距,一般为2mm,用2τ表示。 滑尺与定尺相互面向平行安装,两者保持0.2mm左右距离。感应同步器的工作原理如图2所示。当定尺绕组加以频率为f,幅值恒定的交流激磁电流I(或电压)时,滑尺两绕组将产生与激磁电流频率相同、幅值随两尺相对位置而变化的感应电势e,滑尺某一绕组与定尺绕组完全重合时,磁通耦合度最大,故该滑尺感应的电势最大;两绕组错开1/4节距(即1/4*2τ=0.5τ)时,滑尺耦合的

0-1项目管理设置

项目管理设置 定义项目分类 指定核算科目 定义项目大类定义项目目录

三、网络课程制作特色科目编码 科目名称项目核算 4101生产成本410101 基本生产成本41010101 甲产品4101010101 直接材料4101010102直接人工 4101010103 制造费用41010102 乙产品4101010201 直接材料4101010202直接人工 4101010203 制造费用 …… (410102) 辅助生产成本41010201劳务费………… 例如,某制造企业在建立会计科目中设置如下:

如果按这种做法,则会造成会计科目庞大且难以方便地统计各种数据。为了满足企业的实际需要,可定义多类项目核算,将具有相同特性的一类项目定义成一个项目大类,一个项目大类可以核算多个项目。其做法是在会计科目设置时,先将使用项目核算功能的科目进行标识,即在建立会计科目时,不要将项目作为科目设置,只需将项目的费用、成本、收入等作为科目设置,且将这些科目的账类设为“项目核算”即可。

例如,上例中制造企业可先进行以下设置: 科目编码科目名称项目核算4101生产成本 410101基本生产成本√41010101直接材料√41010102直接人工√41010103制造费用√410102辅助生产成本 41010201劳务费 …………

然后,在“项目分类”中定义“成本核算”的项目大类;在“成本核算”下定义“主要产品”的项目分类;在“产品成本”的项目分类下定义以下项目目录(档案): 项目编码项目名称 2003甲产品 2004乙产品 2005丙产品 …………

显微镜基础知识

显微镜基础知识 第一章:显微镜简史 随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。 显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。 第二章显微镜的基本光学原理 一.折射和折射率 光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。 二.透镜的性能 透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。 当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称“焦点”,通过交点并垂直光轴的平面,称“焦平面”。焦点有两个,在物方空间的焦点,称“物方焦点”,该处的焦平面,称“物方焦平面”;反之,在像方空间的焦点,称“像方焦点”,该处的焦平面,称“像方焦平面”。 光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。 三.影响成像的关键因素—像差 由于客观条件,任何光学系统都不能生成理论上理想的像,各种像差的存在影响了成像质量。下面分别简要介绍各种像差。 1.色差(Chromatic aberration) 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色

变速器同步器工作原理

变速器 一、变速器概述 变速器功用: (1)改变传动比,满足不同行驶条件对牵引力的需要,使发动机尽量工作在有利的工况下,满足可能的行驶速度要求。 (2)实现倒车行驶,用来满足汽车倒退行驶的需要。 (3)中断动力传递,在发动机起动,怠速运转,汽车换档或需要停车进行动力输出时,中断向驱动轮的动力传递。 变速器分类: (1)按传动比的变化方式划分,变速器可分为有级式、无级式和综合式三种。 (a)有级式变速器:有几个可选择的固定传动比,采用齿轮传动。又可分为:齿轮轴线固定的普通齿轮变速器和部分齿轮(行星齿轮)轴线旋转的行星齿轮变速器两种。 (b)无级式变速器:传动比可在一定范围内连续变化,常见的有液力式,机械式和电力式等。 (c)综合式变速器:由有级式变速器和无级式变速器共同组成的,其传动比可以在最大值与最小值之间几个分段的范围内作无级变化。 (2)按操纵方式划分,变速器可以分为强制操纵式,自动操纵式和半自动操纵式三种。 (a)强制操纵式变速器:靠驾驶员直接操纵变速杆换档。 (b)自动操纵式变速器:传动比的选择和换档是自动进行的。驾驶员只需操纵加速踏板,变速器就可以根据发动机的负荷信号和车速信号来控制执行元件,实现档位的变换。 (c)半自动操纵式变速器:可分为两类,一类是部分档位自动换档,部分档位手动(强制)换档;另一类是预先用按钮选定档位,在采下离合器踏板或松开加速踏板时,由执行机构自行换档。 二、普通齿轮变速器 普通齿轮变速器主要分为三轴变速器和两轴变速器两种。它们的特点将在下面的变速器传动机构中介绍。 变速器传动机构: (1)三轴变速器这类变速器的前进档主要由输入(第一)轴、中间轴和输出(第二)轴组成。 (2)两轴变速器这类变速器的前进档主要由输入和输出两根轴组成。 三轴五档变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输

现场总线综述及应用实例.

现场总线技术综述 一.概述 现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。现场总线控制系统(FCS)的出现引起了传统的PLC 和DCS控制系统基本结构的革命性变化。现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。现场总线控制系统技术已成为工业控制领域中的一个热点。 1.现场总线的特点 现场总线技术实际上是采用串行数据传输和连接方式代替传统的并联信号传输和连接方式的方法,它依次实现了控制层和现场总线设备层之间的数据传输,同时在保证传输实时性的情况下实现信息的可靠性和开放性。一般的现场总线具有以下几个特点:(1)布线简单(2)开放性(3)实时性(4)可靠性2.现场总线的优点 由于现场总线以上的特点,特别是现场总线系统结构的简化,使控制系统的设计,安装,投运到正常生产运行以及检修维护,都体现出优越性。 1.节省硬件数量与投资, 2.节省安装费用 3.节省维护开销 4.用户具有高度的系统集成主动权 5.提高了系统的准确性与可靠性 3.现场总线的应用领域 目前现场总线技术的应用主要集中在冶金、电力、水处理、乳品饮料、烟草、水泥、石化、矿山以及OEM用户等各个行业,同时还有道路无人监控、楼宇自动化、智能家居等新技术领域。

二.现场总线的标准 1.IEC61158的制定 1984年IEC提出现场总线国际标准的草案。1993年才通过了物理层的标准IEC1158-2,并且在数据链路层的投票过程中几经反复。 发展61158现场总线的本意是“排他的和联合的”,各自独立的“现场总线”将给用户带来许多头疼的技术问题,牺牲的是用户的利益。在现场总线领域里,德国派(ISP,Interoperable System Project,可互操作系统规划,是一个以Profibus 为基础制定的现场总线国际组织)和法国派(WORLD FIP)的对持十分激烈,互不相让,以至于IEC无法通过国际标准。1994年6月在国际上要求联合强烈的呼声和用户的压力下,ISP 和World FIP成立了FF(Fieldbus Foundation,现场总线基金会), 推出了FF现场总线。IEC投票的文本就是以FF为蓝本的方案。这是现场总线发展的主流方向。 由于FF的目标是致力于建立统一的国际标准,它的成立实质上意味着工业界将摒弃ISP(含PROFIBUS)和WORLD FIP。它的成立导致了德国派ISP 立即解散;法国派(WORLD FIP)已经明确表示不反对IEC的方案,并且可以友好地与IEC方案互联,甚至提出了与FF“无缝连接”方案;而剩下的德国派PROFIBUS因为与FF的方案和技术途径不同,过渡将是非常困难,因此强烈反对IEC方案以保住市场份额。但是PROFIBUS提出的技术理由仅仅是一些支节问题,于是一些评论认为它是出于商业利益的驱动去反对FF,国际上的现场总线之争已经演变成为PROFIBUS的德国派与以FF为代表的“联合派”竞争。有趣的是工业国家的大公司往往“脚踏几条船”加入各种现场总线以获得更多的商业 利益,如最能说明问题的是最主要的反对者西门子公司(PROFIBUS主要成员)也参加了FF。这种具有特殊意义事实已经说明了PROFIBUS要与FF对抗在技术上处于明显的劣势。 在现场总线国际标准IEC61158中,采用了一带七的类型,即: 类型1 原IEC61158技术报告(即FF -H1) 类型2 Control Net(美国Rockwell)公司支持 类型3 Profibus(德国SIEMENS公司支持) 类型4 P-Net(丹麦Process Data公司支持)

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

显微镜的原理和

显微镜的原理和使用方法

显微镜的原理和使用方法-装片的制作 显微镜的结构和使用 (2)显微镜的成像 ①光源(天然光或人工光源)→反光镜→光圈→物体→物镜(凸透镜)→在镜筒内形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大 ②显微镜放大倍数=物镜放大倍数×目镜放大倍数 (3)高倍显微镜的使用 ①用低倍显微镜观察 取镜与安放: a. 右手握镜臂,左手托镜座。

b. 显微镜放在实验台的前方稍偏左。 对光: a. 转动转换器,使低倍物镜对准通光孔。 b. 选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒内,通过目镜,可能看到自亮的视野。 低倍镜观察: a. 把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心。 b. 转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞)。

c. 左眼看目镜内,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰。 ②高倍镜观察 a. 移动装片,在低倍镜下使需要放大观察的部分移动到视野中央。 b. 转动转换器,移走低倍物镜,转换为高倍物镜。 c. 调节光圈,使视野亮度适宜。 d. 缓缓调节细准焦螺旋,使物像清晰 ③注意事项 a. 使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行。 b. 下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片。否则会压碎装片和损坏物镜(l0x物镜的工作距离为0. 5-1 cm)。 c. 有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜。因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分。

03-项目管理机构设置及管理职能

第三章项目管理机构设置及管理职能 3.1项目管理机构设置 为圆满完成施工任务,我公司任命优秀的项目经理出任本工程项目经理,聘任有类似项目施工经验的管理人员组成项目部。项目部在公司指挥部领导下,实行项目经理目标责任制,项目经理作为项目管理的组织机构的主要负责人,全面负责本项目从开工到竣工全过程的施工技术、工程质量、安全生产、施工进度、文明施工等统筹安排。 3.2项目经理部管理体系及人员配置

3.2.2主要施工管理人员配置 3.3项目经理部主要管理人员职能 项目部人员的职责分工如下: 3.3.1项目经理 1)全面负责管理项目经理部的施工运行,认真履行工程承包合同,确保项目顺利施工。

2)严格执行公司的质量方针,实现工程质量目标。 3)负责监督、协调现场的施工、物资供应、财务等各方面的工作。 4)负责与业主、分承包商等的联系与协商。 5)负责每月向业主、监理等提供合同要求的一些报告。 3.3.2项目总工程师 1)在项目经理领导下,主持项目质量保证体系的建立,并进行质量职 能分配,落实质量责任制。 2)全面负责项目技术质量日常管理,协调施工技术管理工作,解决工程施工过程中出现的技术问题。 3)负责施工过程中的全面质量监控、组织,主持质量检查复核和自我验收。 4)加强施工过程监控,对各分项技术复核,隐蔽工程验收认真把关,发现问题及时解决,确保符合要求后方能进行后道工序施工。 5)参加施工图的会审工作,提出施工图中的问题,进行技术核定工作。 6)主持编制施工组织设计、分部分项施工方案的细则,并组织有关人员进行技术交底。 7)主持编制专项安全技术方案并组织交底。 7)对工程中所采用的新技术、新工艺、新材料推广应用,并做好技术统计工作。 3.3.3项目副经理 1)全面组织管理施工现场的生产活动,合理调配劳动力资源。负责使

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

感应同步器的工作原理

感应同步器的工作原理 直线式感应同步器和圆盘式感应同步器的工作原理基本相同,都是利用电 磁感应原理工作。下面以直线式感应同步器为例介绍其工作原理。直线式 感应同步器由两个磁耦合部件组成,其工作原理类似于一个多极对的正余弦旋 转变压器。感应同步器的定尺和滑尺相互平行放置,其间有一定的气隙,一般 应保持在0.25±0.05mm范围内,如图12.2.4 所示。图12.2.4 直线式感应同步器的工作原理 当滑尺上的正弦绕组和余弦绕组分别以1~10kHz 的正弦电压激磁时, 将产生同频率的交变磁通;该交变磁通与定尺绕组耦合,在定尺绕组上将产生 同频率的感应电势。感应电势的大小除了与激磁频率、激磁电流和两绕组之间 的间隙有关外,还与两绕组的相对位置有关。如果在滑尺的余弦绕组上单独施 加正弦激磁电压,感应同步器定尺的感应电势与两绕组相对位置的关系如图 12.2.5 所示。当滑尺处于A 点时,余弦绕组C 和定尺绕组位置相差1/4 节距,即在定尺绕组内产生的感应电势为零。随着滑尺的移动,感应电势逐渐增大,直到B 点时,即滑尺的余弦绕组C 和定尺绕组位置重合时(1/4 节距位置),耦合磁通最大,感应电势也最大。滑尺继续右移,定尺绕组的感应电势随耦合 磁通减小而减小,直至移动到C 点时(1/2 节距处),又回到与初始位置完全相 同的耦合状态,感应电势变为零。滑尺再继续右移到D 点时(3/4 节距处),定 尺中感应电势达到负的最大值。在移动一个整节距(E 点)时,两绕组的耦合 状态又回到初始位置,定尺感应电势又为零。定尺上的感应电势随滑尺相对定 尺的移动呈现周期性变化(如图12.2.5 中的曲线1)。同理,如果在滑尺正弦绕组上单独施加余弦激磁电压,则定尺的感应电势如图12.2.5 中的曲线2 所示。 一般选用激磁电压为1~2V,过大的激磁电压将引起大的激磁电流,导致温升

项目管理:配置管理是一个过程

项目管理:配置管理是一个过程 做了一年多的开发,然后转过来做配置管理,看了一段时间的书,结合理论上的东西,再回头看看以前做过的项目,对配置管理有了一点自己的看法。在这里写下来,不知道对不对,不对之处还请大家指正。 个人认为作配置管理,不要只把自己定位在一个狭隘的空间里。一天围着工具写写清单,管管权限就足之够已。 配置管理是一个过程,这个过程不是靠一两个"所谓的"配制管理员对着工具忙忙碌碌的不断操作就能够保证的。当然,工具的使用对过程的帮助是巨大的,但是对于这个过程,一个真正的配置管理者更多的应该是想着怎么去完善她以适应项目,这是一种思想。这就需要我们看得广一点,远一点。所以对于这个过程中的每一个角色,每一个职责,配置管理员都应该深入的去了解。 之前看到一篇帖子,讨论配置管理员需不需要技术做铺垫,我觉得技术是一方面,倒是开发经验还是有帮助的。技术的掌握有助于我们更好的对工具进行定制,而开发经验就有助于我们更好的对一个过程进行制定和理解。当我们向项目组提出方案时,我们首先会去思考要怎样说服他们来遵循这个过程,但是我觉得更重要的事情是,在想着怎样说服他们之前,思考一下自己定出来的过程是否正确,是否能真正的帮助项目。要做到这一点,我觉得应该有一点开发经验的积累还比较好。 但也不否认可以直接跳过开发作配置管理,毕竟学一门就需要精一门,当你真正选择了做配置管理的话,就需要把大量的精力都投入到对配置管理的学习中,学习开发方面的知识肯定少之又少。不过在管理的过程中,应该经常接触项目,体会项目相关人员的疾苦,这样才能为项目量身定做一套好的"衣服"。古时候不是经常有皇帝微服私访,体会民间疾苦吗?呵呵,当然这个比喻不太恰当,公司上上下下,里里外外大家都是兄弟姐妹嘛。 对于配置管理所处的位置,我觉得应该从两个方面去考虑她。 首先,请注意是"首先",我们是为项目服务的。当然这个服务肯定没有贬低配置管理的意思。我只是觉得我们制定出来的东西是为了项目更加稳定,更加舒服的进行下去--看菜吃饭,量体裁衣嘛。一件产品从开发到完成,始终都是在缝缝补补的过程中达到用户预期效果的。和开发一样,出于项目的复杂性和可变性,还有自身的经验和能力,我们制定出来的过程也不可能真正的针对某个项目就那么的合身,所以在项目的进行过程中,我们还需要对过程进行调整或修改。 然后,我们又是执法者。在之前,我们已经确保了过程对项目的保障,之后就需要过程的参与者严格来执行。虽说无规矩不成方圆,但人又是一种很"灵活"的动物。不同的人,思想也不尽相同的,稍微偏执一点的人可能就会固执的按照自己的思想去做事。这就造成了千古以来都难以解决的冲突----共性与个性的问题。但是不管是谁,处在哪个位置,需要要记住的一点就是项目一个团队的,不是一个人的。我们制定过程也就是想让过程中的所有人都能很轻松把项目做好----这是一个共性问题,共性与个性在某些时候某些情景下是需要做出选择的,就像老妈和老婆同时掉水后你会先救谁一样。不过在项目中的选择要比选择先救谁要简单得多----当然不会让个性颠覆掉共性,这里还是需要延续一下毛主席的少数服从多数的原则。 这里说得有点散,毕竟刚接触配置管理也不久。很多不足的地方还请大家指正。

显微镜的原理和使用方法

显微镜的原理和使用方法-装片的制作 显微镜的结构和使用 (2)显微镜的成像 ①光源(天然光或人工光源)→反光镜→光圈→物体→物镜(凸透镜)→在镜筒形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大 ②显微镜放大倍数=物镜放大倍数×目镜放大倍数 (3)高倍显微镜的使用 ①用低倍显微镜观察 取镜与安放: a. 右手握镜臂,左手托镜座。 b. 显微镜放在实验台的前方稍偏左。 对光: a. 转动转换器,使低倍物镜对准通光孔。 b. 选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒,通过目镜,可能看到自亮的视野。 低倍镜观察: a. 把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心。 b. 转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞)。 c. 左眼看目镜,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰。 ②高倍镜观察 a. 移动装片,在低倍镜下使需要放大观察的部分移动到视野中央。

b. 转动转换器,移走低倍物镜,转换为高倍物镜。 c. 调节光圈,使视野亮度适宜。 d. 缓缓调节细准焦螺旋,使物像清晰 ③注意事项 a. 使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行。 b. 下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片。否则会压碎装片和损坏物镜(l0x物镜的工作距离为0. 5-1 cm)。 c. 有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜。因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分。 d. 换高倍物镜时,千万不可将镜筒升高,正确的做法是直接转动转换器,换上高倍物镜即可。 e. 使用高倍物镜之后,透镜与装片之间的距离很近,使用粗准焦螺旋容易压碎玻片和损坏透镜,或者由于物像一闪而过,找不到要观察的目标.因此,必须用细准焦螺旋调焦,细准焦螺旋只在调节图像清晰度时使用。 ④原理说明 1. 识别镜头:(1)目镜:装在镜筒的上端,通常备有2-3个,上面刻有5×、10×或15×符号以表示其放大倍数,一般装的是10×的目镜。放大倍数越大镜筒越短。(2)物镜:装在镜筒下端的转换器上,一般有2-3个物镜,其中最短的刻有“10×”符号的为低倍镜,较长的刻有“40×”符号的为高倍镜,放大倍数越大镜筒越长 2. 放大倍数:显微镜的放大倍数是物镜的放大倍数与目镜的放大倍数的乘积,如物镜为10×,目镜为10×,其放大倍数就为10×10=100。放大的是物体的直线长度和宽度而不是面积。 3. 工作距离:是指显微镜处于工作状态(物象调节清楚)时物镜的下表面与盖玻片(盖玻片的厚度一般为0.17mm)上表面之间的距离,物镜的放大倍数愈大,它的工作距离愈小。如物镜是10×的工作距离比物镜是40×的工作距离大。 4. 明暗程度:(1)显微镜用光源,自然光和灯光都可以,以灯光较好,因光色和强度都容易控制。(2)反光镜它有平、凹两面,再经通光孔照至标本。可向任意方向转动,凹面镜聚光作用强,适于光线较弱时使用,平面镜聚光作用弱,适于光线较强时使用。(3)光圈或遮光器在通光孔下方,光圈由十几金属薄片组成,其外侧伸出一柄,推动它可调节其开孔的大小,以调节进光量;遮光器由几个直径大小不同的孔组成,选择某一孔以确定进光量。 5. 物像:镜下见到的是完全的倒像,即标本位于玻片右上角时在镜下的左下角位置出现,移动的规律是物象在镜下的左下角时将玻片向左下角移动可以将物象移到视野的中央来。但是物体的运动方向不变,即标本中细胞质是顺时针方向流动的,镜下仍为顺时针流动。 6. 污物的位置:在视野中常看到污物,要明确污物不会在反光镜上,因为反光镜的作用是将光源光线反射到玻片标本上;确定污物的位置首先移动玻片如污物随之移动即污物在玻片上;如污物不动,再转动目镜污物也随之转动即污物在目镜上;否则在物镜上。 7. 普通光学显微镜下可以见到的细胞结构有:细胞壁、细胞核、液泡、叶绿体、线粒体、核仁,在质壁分离时可见到细胞膜,有丝分裂时可见到染色体。 8. 玻片标本:必须是透明的,要使光线能透过标本部。常用的种类有切片(洋葱根尖纵切片);装片(洋葱表皮临时装片);压片(洋葱根尖临时压片观察有丝分裂);涂片(血涂片、自生固氮菌的临时涂片)。 ⑤相关原理例析

现场总线概述

现场总线概述 现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。现场总线控制系统(FCS)的出现引起了传统的PLC和DCS控制系统基本结构的革命性变化。现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。现场总线控制系统技术已成为工业控制领域中的一个热点。 1 现场总线的发展 计算机控制系统的早期,采用一台小型机控制几十条控制回路,目的是降低每条回路的成本。但由于计算机的故障将导致所有控制回路失效,所以后来发展成分布式控制(DCS),即由多台微机进行数据采集和控制,微机间用局域网(LAN)连接起来成为一个统一系统。DCS沿用了二十多年,其优点和缺点均充分显露。最主要的问题仍然是可靠性:一台微机坏了,该微机管辖下的所有功能都失效;一块AD板上的模/数转换器坏了,该板上的所有通道(8或16个)全部失效。曾有过采用双机双I/O等冗余设计,但这又增加了成本,增加了系统的复杂性。为了克服系统可靠性、成本和复杂性之间的矛盾,更为了适应广大用户要求的系统开放性、互操作性要求,实现控制系统的网络化,一种新型控制技术──现场总线控制系统(FCS)正迅速发展起来。 1.1 什么是现场总线 从名词定义来讲,现场总线是用于现场电器、现场仪表及现场设备与控制室主机系统之间的一种开放的、全数字化、双向、多站的通信系统。而现场总线标准规定某个控制系统中一定数量的现场设备之间如何交换数据。数据的传输介质可以是电线电缆、光缆、电话线、无线电等等。 通俗地讲,现场总线是用在现场的总线技术。传统控制系统的接线方式是一种并联接线方式,从PLC控制各个电器元件,对应每一个元件有一个I/O口,两者之间需用两根线进行连接,作为控制和/或电源。当PLC所控制的电器元件数量达到数十个甚至数百个时,整个系统的接线就显得十分复杂,容易搞错,施工和维护都十分不便。为此,人们考虑怎样把那么多的导线合并到一起,用一根导线来连接所有设备,所有的数据和信号都在这根线上流通,同时设备之间的控制和通信可任意设置。因而这根线自然而然地称为了总线,就如计算机内部的总线概念一样。由于控制对象都在工矿现场,不同于计算机通常用于室内,所以这种总线被称为现场的总线,简称现场总线。

光学显微镜的工作原理

光学显微镜的工作原理 显微镜就是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们瞧到了过去瞧不到的许多微小生物与构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏就是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜与聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片与载玻片等。 (一)、物镜 物镜就是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜与浸液物镜;其中浸液物镜又可分为水浸物镜与油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)与复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径与工作距离。 ①、放大倍数就是指眼睛瞧到像的大小与对应标本大小的比值。它指的就是长度的比值而不就是面积的比值。例:放大倍数为100×,指的就是长度就是1μm的标本,放大后像的长度就是100μm,要就是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜与目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,就是物镜与聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0、05-0、95,油浸物镜(香柏油)的数值孔径为1、25。 ③、工作距离就是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物

项目管理机构设置及管理人员配置暂行规定(修订)

项目管理机构设置及管 理人员配置暂行规定 (修订) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

陕西建工集团第十一建筑工程有限公司 项目管理机构设置及管理人员配置暂行规定(修订) 第一章总则 第一条为了提高项目管理水平,促进项目管理机构设置及管理人员配置的科学化、规范化,制定本规定。 第二条项目经理部是公司设置的项目管理机构,全面履行公司与建设单位签订的合同,承担项目实施管理任务和目标实现的全面责任。 第三条项目经理部直属项目经理的领导,接受公司及责任管理单位职能部门的指导、监督、检查、服务和考核,并负责对项目资源进行合理使用和动态管理。 第四条项目经理部应在项目启动前建立,并在项目竣工验收后或按合同约定解体。 第二章项目经理的选择与任命 第五条项目经理的选择根据工程项目规模的大小,采取以下方法确定:(一)基层推荐公司任命:适用于基层自身承揽或公司分配的中、小型规模的项目,项目经理任命需由基层单位填写项目经理任命申请书(见附件一),报公司劳人部,经公司批准后任命。 (二)公司直接任命:适用于公司直管的项目或基层单位管理的大型项目、施工管理难度较大及社会影响较大的项目(符合此条件的项目,公司将以适当方式告知责任管理单位),先由公司及有关方面充分酝酿并提名,经公司批准后任命。 (三)竞聘:为解决公司项目经理不足,增强项目经理的竞争意识和责任心,可采取竞聘方式选择项目经理。由公司劳人部组织,邀请有关部门参加,择优选择,经公司批准后任命。

第六条项目经理由法定代表人任命,并根据法定代表人授权的范围、期限和内容,履行管理职责,并对项目实施全过程、全面管理。 第三章项目经理部机构设置及人员配备 第七条项目经理部机构设置执行公司“管理体系”相关规定,详见附件二。 第八条项目经理部应设项目经理、生产副经理、技术副经理(项目总工)、行政副经理、安装副经理;技术质量组(员)(质量员、资料员、试验工、测量工);生产组(员)(施工员、计划统计员或预算员);安全组(员)(安全员);材料动力组(员)(材料员、机械管理员);安装组(员)(专业施工员、专业质量员);行政后勤组(员)(总务员);财务劳资组(员)(会计员、劳资员)等。 第九条项目经理部人员配置应符合下表规定:

感应同步器的组成和原理

感应同步器的组成和原理 2009年10月22日 感应同步器分为直线型和旋转型两大类,直线型由定子和滑尺组成,用于检测直线位移,旋转型由定子和转子组成,用于检测旋转角度。本节仅介绍直线型感应同步器的组成和原理: 如图3 15所示,直线型感应同步器由定尺和滑尺组成。其定尺是单向均匀感应绕组,绕组节距2 τ通常为2mm。滑尺上有两组励磁绕组,一组称为正弦绕组,另一组为余弦绕组,两个绕组的节距与定子相同,在空间上相互错开1/4节距,于是两个励磁绕组之间相差90°电角度。滑尺安装在被测的移动部件上,滑尺与定尺相互平行,并保持一定的距离,约0.2~0.3mm向滑尺通以交流励磁电压,在滑尺中产生勋磁电流,绕组周围便产生按正弦规律变化的磁场。由电磁感应在定尺绕组上产生感应电压,当滑尺和定尺间产生相对位移时,由于电磁磁耦合强度的变化,就使定尺上的感应电压随位移的变化而变化。 一、感应同步器种类和特点

l感应同步器的种类 感应同步器有测量长度用的直线式和测量旋转角度用的旋转式两种。下面着重介绍直线式.. (1)标准式:是直线式中精度最高的一种,使用最广,在数控系统和数显装置中大量应用:常用型号为GZD一1和GZH一1型。 (2)窄长式:其定尺的宽度比标准式窄,用于精度较低或机床上安装位置窄小且安装面难以加工的情况。 (3)三重式:它的滑尺和定尺上均有粗、中、细:套绕组.定尺上粗中绕组相对位移垂直方向倾斜不同角度,细绕组和标准式的一样。滑尺上的粗、中、细三套绕组组成:个独立的电气通道,粗、中、细的极距分别是4000、100和2mm三通道同时使用即可组成一套绝对坐标测量系统,测量范围为0.002~2000mm在此测量范围内测量系统只有一个绝对零点。单块定尺的长度有200和300mm两种,它特别适用于大型机床、。 (4)带子式:它的定尺绕组是印制在I.8m长的不锈钢带上,其两端固定在机床床身上(一端用弹性固定)滑尺像计算尺的游框那样跨在带状定尺上,可以简化安装,减少安装面,而且能使定尺随机床床身热变形而变形。 (5)感应组件:是将标准式的定、滑尺封装在匣里的感应组件(定尺经调整接长而成组合式定尺),而且将励磁变压器和前置放大器也装在里面,便于安装与使用。 2感应同步器的特点 (1)精度高:感应同步器的极对数多,平均效应所产牛的测量精度要比制造精度高,且输出信号是由滑尺和定尺之间相对移动产生的中间无机械转换环节,所以测量结果只受本身精度的影响。 (2)测量长度不受限制:当测量长度大于250ram时,可以采用多块定尺接长,相邻定尺间隔呵用块规或激光测长仪进行调整,使总长度上的累积误差不大于单块定尺的最火偏差。 (3)对环境的适应性较强:因为感应同步器金属基板和床身铸铁的热胀系数相近,当温度变化时还能获得较高的重复精度.另外它是利用电磁感应产生信号.对尺面防护要求较低。 使用时还需要注意下列影响。 1 。同步回路阻抗不对称列同步精度的影响(如励磁变压器的阻抗和同步器的正弦、余弦阻抗)。

项目管理软件PROJECT操作手册

项目管理软件PROJECT 2010操作实例 Project工具一般用来管理一个项目,制定项目的执行计划。项目的三要素到底是时间,成本和范围。如何使用Project,必须明确如下几项: A,做什么事? B,这些事的时间有什么要求? C,要做的事之间有什么关系? D,做这些事的人员有谁? E,人员有特别的时间要求? 下面举一个具体例子,了解一下项目管理软件的操作过程。 项目名称:电石炉主体安装工程 项目的开始日期:2016年2月1日 项目的结束日期:2016年6月11日 日程排定方法:从项目的开始之日起 项目日历:标准日历 工作时间:每周工作7天,每天8小时 项目目标:确保设备按期投产。 可衡量结果:达到业主产量要求。 一、任务清单列表:

二、资源可使用情况: 资源名称最大单位标准工资率每次使用成本成本累算方式 钳工 4 ¥工时按比例 电工 4 ¥工时按比例 管工 6 ¥工时按比例 电焊工12 ¥工时按比例 起重工 2 ¥工作日按比例 力工42 ¥工作日按比例 电动葫芦 卷扬机3¥ 自卸车1¥ 三、任务之间的相关性: 放线→设备机、电、液安装→调试→投产保驾→竣工验收→结束 四、具体操作步骤 (一)、启动阶段 1.新建项目文件 选择文件—新建,点击右下角的创建图标,或安装软件后直接点击文件图标 2.设置项目信息 自定义日历 菜单栏下的项目-更改工作时间,点击此按钮。 将周六、周日设置为工作时间。 在例外日期状态下,输入周末,在开始完成时间中按工程总工期调好,选

择右侧的“详细信息”按钮,将非工作日调整成工作日,选择下方的重复发生方式为每周,将周日、周六选上,点确定。项目工作日由5天变为7天。 确定项目信息 项目栏—项目信息——开始日期,调为项目的计划开始日期,如:2016年2月1日 (二)计划阶段 定义资源 视图——资源工作表中,输入资源的基本信息。 建立任务 回到任务栏的甘特图表,输入任务名称中建立任务。使用升级和降级的按钮设定任务级别,形成层次关系,从而展示任务分解结构,完整的项目见下图。 任务信息 双击任务名称,出现任务信息对话框,可调整任务工期、修改任务名称,设置前置任务,建立任务的限制条件、给任务分配资源等功能。 任务相关性 任务的相关性有完成-开始类型FS 开始-完成类型SF 开始-开始类型SS 完成-完成类型FF FS是最常用的任务相关性类型,是A任务完成后,B任务才能开始。 SF是任务B取决于任务A,A开始之后B才能完成。不要求B任务要在A

相关文档
最新文档