基于MATLAB的光伏电池通用数学模型

基于MATLAB的光伏电池通用数学模型
基于MATLAB的光伏电池通用数学模型

 万方数据

 万方数据

 万方数据

 万方数据

基于MATLAB的光伏电池通用数学模型

作者:王长江, Wang Changjiang

作者单位:华北电力大学电气与电子工程学院,北京,102206

刊名:

电力科学与工程

英文刊名:ELECTRIC POWER SCIENCE AND ENGINEERING

年,卷(期):2009,25(4)

被引用次数:13次

参考文献(11条)

1.OMANH Space solar power development[外文期刊] 2000(02)

2.GOW J A;MANING C D Development ofa photovoltaic array model for use in power electronics simulation studies[外文期刊] 1999(2)

3.VIOREL B Dynamic model of a complex system including PV cells,electric battery,electrical motor and water pump[外文期刊] 2003(12)

4.YUSHAIZAD Y;SITI H S;MUHAMMAD A L Modeling and simulation of maximum power point tracker for photovoltaic system 2004

5.吴忠军;刘国海;廖志凌硅太阳电池工程用数学模型参数的优化设计[期刊论文]-电源技术 2007(11)

6.苏建徽;余世杰;赵为硅太阳电池工程用数学模型[期刊论文]-太阳能学报 2001(04)

7.崔容强;赵春江;吴达成并网型太阳能光伏发电系统 2007

8.赵争鸣太阳能光伏发电及其应用 2005

9.KOUTROULIS E;KALAITZAKIS K;NICHOLAS C Voulgris,Development of a Microcontroller-Based Photovoltaic Maximum Power Point Tracking Control System 2001(01)

10.张超;何湘宁短路电路结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[期刊论文]-中国电机工程学报 2006(26)

11.王正林;王胜开;陈国顺MATLAB/SIMULINK与控制系统仿真 2009

本文读者也读过(9条)

1.王越.王念春.时斌.WANG Yue.WANG Nian-chun.SHI Bin太阳能光伏电池阵列仿真模型的研究[期刊论文]-电工电气2009(10)

2.吴茜琼.常晓颖.WU Qian-qiong.LI Xiao-guang基于Matlab/Simulink的太阳能电池特性分析[期刊论文]-华北水利水电学院学报2010,31(5)

3.吴海涛.孔娟.夏东伟.WU Hai-tao.KONG Juan.XIA Dong-wei基于MATLAB/Simulink的光伏电池建模与仿真[期刊论文]-青岛大学学报(工程技术版)2006,21(4)

4.杜慧.林永君.张少伟太阳能光伏电池输出特性分析与仿真研究[会议论文]-2008

5.周德佳.赵争鸣.吴理博.袁立强.孙晓瑛.ZHOU Dejia.ZHAO Zhengming.WU Libo.YUAN Liqiang.SUN Xiaoying基于仿真模型的太阳能光伏电池阵列特性的分析[期刊论文]-清华大学学报(自然科学版)2007,47(7)

6.谢柱.郑连清.XIE Zhu.ZHENG Lianqing基于特性参数的太阳能电池和光伏阵列建模[期刊论文]-低压电器

2010(8)

7.胡义华.陈昊.沈春艳.张亚兰光伏电池阵列输出特性分析及其仿真[会议论文]-2008

8.刘翼.荆龙.童亦斌.LIU Yi.JING Long.TONG Yibin基于Simulink的光伏电池组件建模和MPPT仿真研究[期刊论文]-科技导报2010,28(18)

9.禹华军.潘俊民.YU Hua-jun.PAN Jun-Min光伏电池输出特性与最大功率跟踪的仿真分析[期刊论文]-计算机仿

真2005,22(6)

引证文献(23条)

1.杨文燮.胡仁杰.卢志伟光伏模拟器的设计及仿真验证[期刊论文]-半导体光电 2012(3)

2.费新华.陈正伟双模糊PI控制器在太阳能MPPT中的应用研究[期刊论文]-中国水运(下半月) 2012(10)

3.曹金虎.薛士龙.陈意惠.杨明.陈加敏基于自适应占空比扰动的MPPT算法研究[期刊论文]-佳木斯大学学报(自然科学版) 2011(1)

4.陈正伟.朱建华.裘君英.刘浏光伏阵列解析模型的研究[期刊论文]-浙江科技学院学报 2011(6)

5.于金良.俞万能太阳能游船电力系统能量管理控制策略[期刊论文]-集美大学学报:自然科学版 2012(5)

6.韦昊冰基于Matlab的独立光伏系统的研究[期刊论文]-通信电源技术 2010(6)

7.黄勤.赵靖.凌睿.石国飞.袁宇龙基于改进变步长电导增量法的MPPT控制[期刊论文]-计算机工程 2013(2)

8.符江升.肖大帅.杨钦超基于Matlab/Simulink的光伏电池仿真模型研究[期刊论文]-电子元器件应用 2012(2)

9.袁晓玲.范发靖.周素梅基于变结构模糊控制的MPPT控制策略[期刊论文]-可再生能源 2012(2)

10.杨文杰.曾德容光伏发电接入微网运行控制仿真研究[期刊论文]-电气开关 2011(1)

11.郭立.晁勤.袁铁江.吐尔逊.伊不拉音.袁建党基于工程模型的光伏建模与输出特性仿真[期刊论文]-四川电力技术 2011(5)

12.丁文俊.宋平岗光伏系统的定额输出功率控制研究[期刊论文]-大功率变流技术 2010(1)

13.廖红伟.林永君光伏发电系统孤岛的检测[期刊论文]-电力科学与工程 2010(11)

14.陈亚宁基于分布式发电的微网系统建模研究[期刊论文]-四川电力技术 2010(4)

15.杨洋.骆晓非.艾芊分布式电源接入对智能电网的影响[期刊论文]-低压电器 2011(1)

16.杨洋.骆晓非.艾芊分布式电源接入对智能电网的影响[期刊论文]-低压电器 2011(1)

17.王砥凡.张桦.刘勇超太阳能光伏电池工程近似模型与实测检验[期刊论文]-山东电力高等专科学校学报

2012(4)

18.彭乐乐.孙以泽.孟婥.陈玉洁光伏太阳能电池组件Matlab通用仿真模块[期刊论文]-东华大学学报(自然科学版) 2011(1)

19.郭立.晁勤.袁铁江.吐尔逊·伊不拉音.袁建党基于图形用户界面的光伏电气特性仿真[期刊论文]-华东电力2011(11)

20.易灵芝.刘珊.邓栋.姚哲之.周珍珍.龚会茹基于禁带宽度的太阳电池建模及智能预测技术研究[期刊论文]-太阳能学报 2012(11)

21.易灵芝.刘珊.邓栋.姚哲之.周珍珍.龚会茹基于禁带宽度的太阳电池建模及智能预测技术研究[期刊论文]-太阳能学报 2012(11)

22.王哲.王飞.刘力卿.郭佳基于多元回归分析的光伏电站太阳辐射曝辐量模型[期刊论文]-华北电力大学学报2011(5)

23.刘东冉.陈树勇.马敏.王皓怀.侯俊贤.马世英光伏发电系统模型综述[期刊论文]-电网技术 2011(8)

本文链接:https://www.360docs.net/doc/079378313.html,/Periodical_dlqb200904003.aspx

光伏串并联后的数学模型

1.光伏电池数学模型 单个光伏电池的I-U曲线是随光照强度,温度变化的非线性曲线,精确的等效电路模型如下: 由图1通过基尔霍夫定律可得 其中,等式右边第一项为恒流源,第二项为流过二极管的电流,第三项为并联电阻上的电流。R s 为光伏电池的内阻;R P 为光伏电池的并联电阻;I n为流过二极管的反向饱和漏电流;I SC为光伏电池的短路电流,在一定光照和温度下为一常量。 对公式求导

由公式可见,dI/dU <0 ,即在光伏电池的正常工作范围内,输出电流I随着输出电压U的增加而单调降低,具有一一对应关系,这是后面光伏电池组串并联特性分析的基础。 2.光伏电池的串并联 一般的光伏电池板东都是通过多块光伏电池以串并联的方式组成光伏阵列而工作。例如 假定光伏列阵各光伏电池的输出特性和内特性相同,则光伏阵列可看作:先由n个光伏电池并联成一组,然后再由相同特性的m个光伏电池组串联组成。 先考虑n个光伏并联的情况。并联的光伏电池具有相同的外工作电压,每一光伏电池的输出电流也是相同的,则总的输出电流为 由公式可见,多个光伏电池并联时的数学模型与单个光伏电池的相似,通过求导也可得出其总输出电流和输出电压的一一对应关系。

当m个光伏电池光伏电池串联而成光伏阵列时,由于每个光伏电池组具有相同的工作电流,则每组上的电压也相同。设总的输出电压为V,则得到总输出电流与输出电压的关系式 由此可见,光伏电池串并联后组成的光伏阵列也具有和单个光伏电池相似的输出数学模型,令D 则公式化为 一般的太阳能电池生产厂家都会给出一定温度下的开路电压,短路电流,最大功率点输出时的电流和电压等参数,则可以计算出I OD R1 R2 B等未知量。 多个太阳能电池板串联时,仍使用。 令V1=V+I0R1,则公式可化为 此公式是串并联光伏电池组的Matlab等效模型所依据的数学基础,其对应的串并联光伏电池组的等效电路图

MATLAB及在数学建模中的应用

第1讲MATLAB及 在数学建模中的应用 ? MatLab简介及基本运算?常用计算方法 ?应用实例

一、 MatLab简介及基本运算 1.1 MatLab简介 1.2 MatLab界面 1.3 MatLab基本数学运算 1.4 MatLab绘图

1.1 MatLab简介?MATLAB名字由MATrix和 LABoratory 两词组成。20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

?经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

?1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。 ?20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

?MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。以下为其几个特色: ①可靠的数值运算和符号计算。在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函 数可使用。 ②强大的绘图功能。 MATLAB可以绘制各种图形,包括二维和三维图形。 ③简单易学的语言体系。 ④为数众多的应用工具箱。

2太阳能电池的数学模型

2太阳能电池的数学模型 太阳能电池的数学模型是太阳能电池模拟器系统设计的基础,本章从太阳能电池的工作原理、等效电路出发,详细介绍了太阳能电池数学模型的建模过程,给出了太阳能电池的数学模型,并且对该数学模型进行了仿真,证明了该数学模型的正确性,为下文提出六折线模型拟合太阳能电池的I-V特性曲线奠定了基础。 2.1太阳能电池的工作原理 通常所说的太阳能电池指的是太阳能电池单体,太阳能电池单体是一种能够利用光伏效应将太阳能直接转换为电能的半导体装置,它的转换效率一般可达百分之十五左右。它通常是由大量的PN结串联而成的,整体结构一般是由一个P型半导体作为底座,在上面刻入N 型薄膜,并且通过金属导线把PN结的两端引出。太阳能电池单体是最小的光电转换单位,输出电压和输电电流都很小,一般不可以直接作为电源使用。通常都是将一定数量太阳能电池单体通过串联构成太阳能电池组件来使用。太阳能电池组件的输出电压一般达到24V左右,24V的电压可用来为蓄电池充电,能够应用在各个系统和领域中。当需要进行大功率光伏发电系统时,可以把这些太阳能电池组件通过一定的形式串联或并联起来,形成太阳能电池阵列。太阳能电池阵列能够产生较大的功率,可以用在各个领域中。 太阳能电池发电的原理主要是半导体的光生伏特效应,也称为光伏效应。硅半导体结构如图2-1 a)所示,在图中,硅原子用正电荷来表示,硅原子四周的四个电子用图中的负电荷来表示。当向晶体硅中掺入其他的杂质,如硼、磷等就会形成一个个很小的PN结。当向晶体中掺入硼时,含有杂质硼的晶体硅的内部电子排列如图2-1 (b)所示。图中,硅原子用正电荷来表示,硅原子四周的四个电子用负电荷表示,而图中黄色的就表示掺入的硼原子,由于硼原子的外部只有三个电子,就会吸引硅原子的一个电子过来,这样就会产生如图中蓝色的空穴,这个空穴又会因为没有足够的电子而去吸引别的电子,这样就形成了P ( positive)型半导体。 同样的原理,如图2-1 (c),当掺入的杂质为磷时,因为磷原子的周围有五个电子,磷原子与硅原子结合时就会多出来一个电子,多出来的这一个电子通常在晶体内部是很活跃的,这样就形成了N ( negative)型半导体。 如上面的分析,P型半导体内部含有多余的电子,而同时N型半导体内部含有多余的空穴,当这两种半导体材料结合在一起时,就会在交界处的区域内形成一个特殊的薄层,这个薄层就是PN结。PN结靠近P型半导体的这侧带负电,靠近N型半导体的这侧带正电。这是因为P型半导体内部含有多余的空穴,而N型半导体内部含有多余的电子,当二者结合在一起时就会出现电子和空穴的浓度差,这样就会出现P型半导体的空穴向N型半导体的这侧扩散,而N型半导体的电子向P型半导体这侧扩散,扩散的结果是P型半导体因为

数学建模matlab例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y =,2x y =,3 x y = ,3x y =,x y =的图象. 4. 画出3 2 3 2)1()1()(x x x f + +-=的图象,并根据图象特点指出函数)(x f 的奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象. 6. 画出3 21+=x y 及其反函数的图象.

练习2 函数极限 1.计算下列函数的极限. (1) x x x 4 cos 1 2 sin 1 lim 4 - + π → . 程序: sym x; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3) 2 2 ) 2 ( sin ln lim x x x - π π → . 程序: sym x; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = -1/8 (4) 2 1 2 lim x x e x →. 程序: x x x sec 3 2 ) cos 1( lim+ π →

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

光伏发电系统模型综述

光伏发电系统模型综述 摘要:为了对含光伏电源的电力系统进行各种仿真研究,必须建立准确的光伏发电系统数学模型。全面综述了包括光伏组件、逆变器及其控制系统的光伏系统数学模型,对整个光伏发电系统模型的研究现状进行了论述,总结了利用各元件模型建立系统模型的方法以及孤岛保护的研究现状及其建模方法,并对光伏发电系统模型的研究前景进行了展望。 关键词:光伏阵列;逆变器控制;最大功率点追踪;光伏发电系统;孤岛保护;光伏系统模型 0引言 准确的元件模型是进行电力系统仿真分析的基础。随着光伏电源接入系统比例的不断增加,光伏发电对电力系统的影响日益显现。因此,研究光伏发电对电力系统的影响日益迫切,建立能够准确反映并网光伏电源动态响应的模型是开展相关研究的基础。 并网光伏发电系统主要由光伏阵列、逆变器及其他并网环节组成,见图1。光伏阵列由光伏电池串并联组成,产生的电能通过逆变器和相应的滤波器输送到电网,在此过程中需要对逆变器和电能变换环节进行最大功率点追踪控制(maximum powerpoint tracking,MPPT)和逆变控制。MPPT控制的作用是保证光伏阵列始终工作在输出功率最大的状态,而逆变控制的目的是保证逆变器输出与电网电压同相的电流并尽量减小谐波输出。并网光伏发电系统出现孤岛状态时,即出现脱离了电网但仍可以向周围负载供电的状态,电网需令孤岛中的光伏发电系统退出运行,这就需要能够准确检测孤岛状态的保护系统。 本文分别对光伏阵列、MPPT控制、孤岛保护、逆变器控制以及整个光伏发电系统的模型进行分析,并对光伏发电系统模型研究进行展望。 1光伏阵列的建模 1.1光伏电池U-I特性模型 光伏电池的发电原理是光生伏打效应,一个光伏电池具有类似于二极管PN 结的结构。当光照射在电池上,PN结两端就会有电压产生,单独的光伏电池功率很小,所以光伏发电系统要将大量的光伏电池串并联,以构成光伏阵列。

matlab在数学建模中的应用

Matlab在数学建模中的应用 数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。 1 Matlab在数学建模中的应用 下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。 1.1 模型准备阶段 模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。 1.1.1 确定变量间关系 例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表 记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。 赋值: z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]' y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.9145 0.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.6342 1.7842 1.9514 2.0688]' 先观察x与z之间,y与z之间的散点图 plot(x,z,'*') plot(y,z,'*') 由散点图可以看出,投资额和国民生产总值与物价指数都近似呈

太阳能电池建模matlab

1.太阳能电池建模 1.1太阳能电池的等效电路图 1.2太阳能电池模型仿真图 sc I 为短路电流,oc U 为开路电压,mp I 、mp U 为最大功率点电流和电压,则当太阳能电池电 压为U ,其对应点电流为I :

21=1-(1))r oc U c U sc I I c e I -+?( 其中 21(1)m p oc U m p c U sc I c e I - =-, 2( 1)ln(1)m p m p oc sc U I c U I =--, ()r ref s U U T T R I β=+-+?, ()()ref sc ref I S T T I S S α?=-+-。 ref S 、ref T —太阳辐射和太阳能电池温度参考值,一般取为1kW/m 2 、25℃;α—在参考 日照下,电流变化温度系数(A mps /℃);β—在参考温度下,电压变化温度系数(V/℃);s R —太阳能电池的串联电阻(Ω),它由下面式子决定: ref m ref oc ref m ref sc ref m ref p ref s p s I V V I I A N N R N N R ,,,,,,/1ln ???? ??+-??? ? ??-== , 3 -+-= Lref cref Isc s ocref V cref ref I T N V T A oc μεμ。 其中,ε为材料带能,eV 12.1=ε。 r e f m I ,,ref m V ,:参考条件下,光伏阵列最大功率点电流跟电压; r e f sc I ,,ref oc V ,:参考条件下,光伏阵列短路电流与开路电压; sc I μ,oc V μ:参考条件下,光伏阵列短路电流与开路电压温度系数; s N :光伏阵列各模块的单元串联数; N :光伏阵列模块的串联数; p N :光伏阵列模块的并联数; cref T :参考条件下,光伏电池温度,一般设定为25℃。

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

光伏电池的仿真及其模型的应用研究

光伏电池的仿真及其模型的应用研究 Study on Simulation of Solar Cell and Its Application 陶海亮夏扬张宁扬州大学能源与动力工程学院,江苏扬州225127 不论是太阳能发电系统还是风光互补发电系统,熟悉光伏电池的输出特性是设计新能源发电系统的基础和前提。根据光伏电池输出特性关系式,利用MATLAB的Simulink模块搭建了参数和工况可调的光伏电池模型,并运用该模型建立了具有最大功率跟踪(MPPT)功能的光伏发电系统的仿真模型,通过仿真结果可以更好地把握光伏电池的特性,为发电系统的设计和优化打好基础。 光伏电池;数学模型;仿真;最大功率跟踪

当电池

率比较

@@[1]苏建徽,于世杰,赵为.硅太阳电池工程用数学模型[J].太阳能学报, 2001,22(4)@@[2]王阳元.绿色微纳电子学[M].北京:科学出版社,2010@@[3]林渭勋.现代电力电子技术[M]北京:机械工业出版社,2007 @@[4]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿 真,2006,23(6) 2011-09-21 @@[1]黄柯棣,张金槐,李剑川,等.系统仿真技术[M].长沙:国防科技大学 出版社,1998 @@[2]Joseph Nalepka,Thomas Dube,Glenn Williams et al. Transi tioning to PC-Based Simulation-One Perspective[R],2005,A IAA-2002-4863@@[3]The Mathworks Inc. Target Language Compiler Reference Guide[M].2004 @@[4]刘德贵,费景高.动力学系统数字仿真算法[M].北京:科学出版社, 2000 2011-08-25

光伏发电成本电价分析的数学模型

光伏发电成本电价分析的 数学模型 The Standardization Office was revised on the afternoon of December 13, 2020

光伏发电成本电价分析的数学模型 史珺 上海普罗新能源有限公司光伏技术研究所 摘要:光伏发电从2005年进入产业化以来,成本不断降低。目前,我国国家发改委制定了1元/度的光伏发电的上网标杆电价。但许多投资者对于光伏发电的成本却感到难以分析,而不敢贸然投资。本文给出了光伏发电成本的数学分析模型,讨论了影响光伏成本电价的因素,如装机成本、日照时间、贷款状况、预期的投资回收期、以及运营费用等。并根据该模型对现阶段光伏发电的投资效益进行了一个投资分析。计算结果表明,在我国西北地区,按照1元/度的上网电价,目前投资光伏电站的投资回收期为10年。 关键词:光伏发电;成本;投资效益;数学模型 中图分类号:TK51 文献标识码:A ...... (前略) 光伏发电的成本,也就是每度电多少钱,不能简单地根据装机成本分析,它与如下五大因素有关: 1)装机成本、2)日照条件(年满负荷发电时间)、3)贷款状况(贷款利息和贷款在总投资的比例)、4)投资回收期(折旧年限)、5)运营维护费用。由于这五大因素每个因素都有其独立的变化性,相互的影响也十分明显。例如,同样的装机成本放在不同的地域、或者同样地域、同样的装机成本、但投资采用了不同的贷款比例,或者采用不同的折旧年限,等等,都会带来截然不同的光伏发电成本价格。 为了进行准确的光伏发电成本的测算,需要对于光伏发电的成本进行详细而科学的分析,这里,给出了一个光伏发电的成本电价的数学分析模型。 1发电成本构成 装机成本C ivs 装机成本就是一个光伏电站的总投入,它也是光伏电站公司的财务报表上的固定资产。由如下式构成:

MATLAB及其在数学建模中的应用

Modeling and Simulation 建模与仿真, 2015, 4(3), 61-71 Published Online August 2015 in Hans. https://www.360docs.net/doc/079378313.html,/journal/mos https://www.360docs.net/doc/079378313.html,/10.12677/mos.2015.43008 Study of MATLAB and Its Application in Mathematical Modeling Chuanqi Qin, Ting Wang, Yuanfeng Jin School of Science, Yanbian University, Yanji Jilin Email: yfkim@https://www.360docs.net/doc/079378313.html, Received: Jul. 22nd, 2015; accepted: Aug. 11th, 2015; published: Aug. 18th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/079378313.html,/licenses/by/4.0/ Abstract This article firstly introduces the development and the features of MATLAB software. And then the concept and the process of mathematical modeling are explained. After, the article briefly intro-duces some MATLAB solution methods of mathematical modeling problems, giving several in-stances of some methods. At the last of this article, through a relatively complete example, it fo-cuses on the application of MATLAB in mathematical modeling. It has been found that the applica-tion of MATLAB in mathematical modeling can improve the efficiency and quality of mathematical modeling, enrich the means and methods of mathematical modeling, and play a very important role in the teaching of mathematical modeling course. Keywords MATLAB, Mathematical Modeling, Mathematic Model MATLAB及其在数学建模中的应用 秦川棋,王亭,金元峰 延边大学理学院,吉林延吉 Email: yfkim@https://www.360docs.net/doc/079378313.html, 收稿日期:2015年7月22日;录用日期:2015年8月11日;发布日期:2015年8月18日

数值建模与仿真-光伏电池

开发新能源和可再生清洁能源是21世纪世界经济发展中最具有决定 性影响的五项技术领域之一。充分开发利用太阳能是世界各国政府可持续 发展的能源战略决策,其中太阳能发电则最受瞩目。由于目前光伏电池板 转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文对光伏 发电进行最大功率跟踪显得尤为必要。 本文针对如何提高太阳能光伏发电系统的转换效率,分别从工程数学 模型、matlab建模仿真方面对外界环境影响因素就行分析,同时对具有最 大功率点跟踪(MPPT)的控制器的原理进行了研究,并分析比较各测量方 法的优缺点。 Keywords: 太阳能发电;转换效率;MPPT;matlab建模仿真 Abstract The development of new energy and renewable clean energy is one of the five technologies have the most decisive influence in the development of the world economy in twenty-first Century. The full development and utilization of solar energy is the energy strategy of the governments of the world sustainable development, where the solar power generation is the most popular. Due to the current solar photovoltaic conversion efficiency is low, in order to reduce the cost of system and the effective use of solar energy, the pho- tovoltaic maximum power point tracking is particularly necessary. This article base on how to improve the conversion efficiency of solar photovoltaic power generation system, from the aspects of MATLAB modeling and simulation calculation of measurement results

带MPPT功能的光伏电池建模

光伏电池的仿真建模 1、simulink模型 图1 光伏电池铭牌 图2 光伏阵列simulink仿真封装模型 如图2,“T”代表外界环境温度,“S”代表太阳辐射强度,“Vpv”代表光伏电池板的实际工作电压,“Iout”代表光伏电池板的实际工作电流,“Vm”代表光伏电池板在最大功率点时的输出电压。

图3 光伏阵列仿真模型用户参数设置界面 如图3所示,根据系统是否带有MPPT功能,输出电流可以是最大功率点时的Im(此时Iout即为Im)或者是对应Vpv的实际电流Iout。 2、光伏电池的特性曲线 仿真所用参数如图1所示,不进行最大功率跟踪(图3“最大功率跟踪”前 面的对号去掉)。

图4 光伏电池特性仿真模型 0.0.0.0.1.1.光伏电池板的输出电压(V ) 光伏电池板的输出电流(A ) 图5 温度变化时的光伏电池I-V 变化曲线

0.0.0.0.1.1.光伏电池板的输出电压(V ) 光伏电池板的输出电流(A ) 图6 辐射强度变化时的光伏电池I-V 变化曲线 光伏电池板的输出电压(V ) 光伏电池板的输出功率(W ) 图7 温度变化时的光伏电池P-V 变化曲线

光伏电池板的输出电压(V ) 光伏电池板的输出功率(W ) 图8 辐射强度变化时的光伏电池P-V 变化曲线 3、带有MPPT 功能的光伏电池仿真 图9 T 、S 变化时的光伏电池仿真 如图9所示,通过“Singal ”模块实现不同温度T1和T2、不同辐射强度S1和S2的选择。本次仿真取值T1 =25~30℃,T2=20~25℃,S1=800~1000w/m 2,S2=600~800w/m 2,

离网型光伏发电系统实验报告

新能源技术课程设计实验报告 姓名: 专业: 指导教师: 辅助教师: 完成日期:

一、 实验过程记录 1. 根据光伏电池的等效电路,利用仿真软件搭建光伏电池数学模型 (1)I ph 数学模型及参数设置 按照原理算式如下 ref ref ref S S T T I I ] [,sc ph )(-+=α (1) 在MATLAB 中建立模型,从Simulink 元件库中拉取inport 、sum 、gain 、product 、outport 等原件,并按照原理搭建合适模型并封装。如图1所示。 图1 I ph 数学模型图 通过参考实验时所运用的太阳能电池板的参数其中参数设置T ref =298K ,S sef =1000W/m 2,α=0.06/1,I sc,ref =8.30/1A 。 (2)U oc 数学模型及参数设置 根据原理中U oc =V oc,ref +β×(T -298)可在MATLAB 中建立模型,从Simulink 元件库中拉取inport 、constant 、sum 、gain 、outport 等原件,并按照原理搭建应有模型并封装。如图2所示。 图2 U oc 数学模型图 通过参考实验时所运用的太阳能电池板的参数其中参数设置:V oc,ref =29.5/1V ,β=-0.33/1。

(3)I d 数学模型及参数设置 可在gain 、product 、图3 I d 数学模型图 通过参考实验时所运用的太阳能电池板的参数其中参数设置:A =5,K =1.38×10-23J/K 。 (4)输出I 数学模型及参数设置 根据原理公式 ]1)) (( ex [ph -+-=AKT N IR V q p I N I N I s s O P p (3) 可在MATLAB 中将以上封装好的模块拼装成合适的仿真模型。如图4所示。 U I 图4输出I 数学模型图

光伏电池的建模与仿真

龙源期刊网 https://www.360docs.net/doc/079378313.html, 光伏电池的建模与仿真 作者:吴洋张嫒嫒侯奎 来源:《科技视界》2017年第09期 【摘要】本文在光伏电池的等效电路模型的基础之上,推导了光伏电池的数学模型,在 工程允许条件下,简化数学模型,建立了光伏电池的简化模型,基于MATLAB/Simulink仿真平台,搭建光伏电池的仿真模型,完成了在不光照条件和不同温度条件下的仿真实验,结果验证了光伏电池简化数学模型正确性和有效性。 【关键词】光伏电池;数学模型;Simulink仿真 【Abstract】Based on the equivalent circuit model of photovoltaic cells, this paper deduces the mathematical model of photovoltaic cells, simplifies the mathematical model under engineering allowable conditions, establishes a simplified model of photovoltaic cells. Based on MATLAB/Simulink simulation platform, The simulation model of the battery is completed and the simulation experiment under the condition of non-illumination and different temperature is completed. The results verify the correctness and validity of the simplified mathematical model of the photovoltaic cell. 【Key words】Photovoltaic cells; Mathematical model; Simulink simulation 0 前言 随着全球的能源问题的日益严峻,人们必须走一条可持续发展的道路[1]。一方面保护环 境使其不被破坏,避免温室效益带来的灾难,而另一方面又要满足人类对化石能源的需求,这俨然已经成为了摆在人们面前的一道难题,因此,大力研究和发展新型清洁能源和可再生能源成为了当今世界能源研究的热门,也是能源发展的必经之路。而太阳能光伏发电具有发电过程简单、没有机械转动部件、不消耗燃料,不排放包括温室气体在内的任何物质、无噪声和无污染的优点。因此,光伏发电成为了国内外的研究热点。其中光伏电池作为太阳能光伏发电的核心,研究光电池的建模具有重要的意义。 1 光伏电池的等效电路模型 通常基于光伏电池的简化电路模型来推导其数学模型,并依照其数学模型搭建仿真模型,光伏电池的等效电路如图1所示。其中Iph为光生电流。而光伏电池面积大小和太阳光的辐照度会影响着Iph值。但当光照强度为零的情况下,光伏电池类似于一个二极管。Id为暗电流。光伏电池输出电流为IL,Voc为开路电压,但需注意的是,开路电压与光照强度有关而与电池面积无关。RL为负载电阻,Rs为等效串联电阻,Rsh为等效旁路电阻。它们均为光伏电池固有内阻,在理想光伏电池参数的计算时可以忽略不计。

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

PSIM9.0光伏电池板模型的使用

PSIM9.0学习笔记1——光伏电池板模型的使用 今天看了看PSIM9.0里面的光伏板模型,顺带测试了一下,感觉非常简单实用,以后要做光伏这方面研究的童鞋就不用纠结怎么建光伏电池板的模型了,直接拿来用就可以了。1.光伏板模型就在PSIM9.0的elements-power-renewable energy里面,有两种,一种是物理模型的,一种是功能模块的,物理模型更接近于真实的板子,有两个输入,分别对应照度和温度,正负输出端,还有一个可以观测最大功率的接口,如下图所示 功能模块顾名思义就是只用来实现光伏板电池功能的模块了,只有正负端输出,只需要给定他的开路电压,短路电流,最大功率点电压和电流即可,那么在不要看光照温度影响的条件下可以简单的来用,如下图所示 我个人觉得要研究光伏电池特性,最大功率跟踪,以及更实际一点儿的研究的时候就用物理模块,而光伏板只是最为一个输入电压来看的话那就用功能模块应该就能满足了……当然我还没往后做,仅仅是感觉哈……

同时PSIM9.0里面还有一个计算光伏板物理参数的工具,叫solar module,可以通过电池板的参数,也就是一般电池板所提供的最大功率,开路电压那些参数,计算出那些光伏板等效电路里面的诸如串联电阻、饱和电流,温度系数之类的值,同时能够看到该参数下的电流电压和功率电压关系曲线,方便我们使用物理模块时对参数进行设置,如上图所示 那么基于以上,我把我用的电池板参数填上去,用物理模块测试,同时光强由400-1000每200变化一次做了一下仿真,以下就是测试电路和测试波形。 输出波形 以上就是我刚对PSIM9.0里面的光伏板做的学习,当然只是很简单的学习并且用了一下,各位大侠们看了之后不要鄙视哈……如果有有错的或者理解不对的地方还请各位大侠帮忙指正!~~ 后续继续做MPPT实验和逆变器的实验,慢慢做,然后再发上来大家一起讨论学习哈

基于计算机模拟技术的太阳能光伏发电系统数学模型的建立方法

基于计算机模拟技术的太阳能光伏发电系统数学模型的建立方法随着环境污染、能源危机等不断加剧,太阳能发电已日趋受到各国重视。本文利用计算机模拟技术对太阳能光伏发电系统仿真,提出太阳能光伏发电系统数学模型的建立方法。 1.太阳能光伏发电相关概述1.1 太阳能光伏发电定义阐释 太阳能光伏发电指的是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。 这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就构成光伏发电系统。太阳能是一种绿色无污染的清洁性能源,解决了火力发电的空气污染物排放问题。 1.2 太阳能光伏发电的发展 早在十九世纪四十年代,就出现了利用太阳能进行发电的方式。光伏电池也在二十世纪五十年代就出现,并在七十年代太阳能发电技术得到了广泛推行。在日本、美国等各发达国家,太阳能发电技术得到了应用推行,并在各国政策支持下进一步发展。目前中国也十分重视新能源领域,尤其是太阳能光伏发电的相关产业有些已经达到了国际先进水平。 1.3 太阳能光伏发电的特点 太阳能是可再生资源,从地理学角度来说,太阳能资源具有覆盖范围广泛的特点,并且能量巨大,相当于130万吨的煤进行燃烧所产生的能力。并且太阳目前正值活动旺盛时期,太阳能辐射时间据研究可持续十亿年之久。并且太阳能的利用方式简单,不需要进行采掘,直接收集辐射即可获取。太阳能在利用生产过程中不会产生多余污染,是一种绿色环保的新型能源。同时太阳能安全温和,不会导致工业事故发生。根据中国地理情况研究,在中西部地区接受阳光辐射量大,可利用太阳能进行光伏发电产业发展。 2.计算机模拟技术与太阳能光伏发电2.1 计算机模拟技术 计算机模拟是在科学研究中常采用的一种技术,特别是在科学试验环节,利用计算机模拟

相关文档
最新文档