植物学考研必备核心知识点

植物学考研必备核心知识点
植物学考研必备核心知识点

植物学考研必备核心知识点

绪论

一、植物界的类群及多样性

(一)、地球生命的起源

1-创世说;

2-自然发生说;

3-天外起源说。目前被普遍接受的是通过“前生命的化学进化”过程,由非生命物质产生,并经长期进化延续至今,即“生命的进化起源说”。

(二)、生物界的划分

对于生物界划分出现如下系统:

1〉两界系统:

18世纪瑞典植物学家林奈(C.Linnaeus)根据能运动还是固着生活、吞食还是自养把生物界划分为两界。

两界系统动物界(Animalis)(能运动,异养);

植物界(Plantae)(固着,具细胞壁,自养)。

2〉三界系统:

19世纪前后,由于显微镜的广泛使用,人们发现有些生物兼具有动、植物的特征。据此1886年由赫克尔(E.Haeckel)提出三界系统,把具色素体、眼点、鞭毛、能游动的单细胞低等植物独立为一界,加入原生生物界。

原生生物界(Protista) 菌类、低等藻类、水绵

三界系统植物界

动物界

3〉魏泰克的四、五界系统

1959年美国的魏泰克(whittaker)将真菌从植物界中分离出来,提出了四界系统,

原生生物界

四界系统植物界

真菌界(Fungi)

动物界

1969年,美国的魏泰克(whittaker)将细菌和蓝藻从原生生物界中独立分出,而把生物界划分为五界系统:

原核生物界(Monera)(蓝藻,细菌)

原生生物界

五界系统植物界

真菌界

动物界

4〉六界系统:

1979年陈世骧根据生命进化的主要阶段,将生物分成3个总界的六界的新系统。

病毒

细菌界

六界系统蓝藻界

植物界

动物界

真菌界

(三)、植物界的六大类群(二界系统)

藻类、菌类、地衣、苔藓、蕨类、种子植物

种子植物是现今世界上种类最多,形态构造最复杂,和人类经济生活最密切、最进化的一类植物。全部树木和绝大多数经济植物都是种子植物,本课程的形态解剖部分将着重讨论种子植物的结构。(四)、植物的多样性

(1)种类繁多,数量浩瀚

(2)分布广泛

(3)形态结构多种多样

(4)营养方式多样

光和自养植物、化学自养植物、寄生植物、腐生植物

(5)生命周期差别很大

细菌为20-30min;草本类型多为一年、两年生植物;多年生种子植物,其中木本树龄可达成百上千年。如非洲的龙血树树龄可达8000年。

(五)、我国植物资源的丰富性

我国植物资源丰富,仅记载过的高等植物就约3万种,占世界高等植物的1/8,是植物种类最丰富的国家之一,仅次于马来西亚和巴西,居第三位。

二、植物在自然界中的作用及与人类的关系

(一)植物是自然界的第一生产力(光合作用)

1)有物质生成 2)有能量积蓄 3)有O2放出:

(二)植物在自然界物质循环与生态平衡中的作用

植物的合成和矿化作用使自然界的物质运动包括生命的延续和发展从而得以循环往复。

例如碳素循环(Carbon cycle)中通过光合作用使大气中的二氧化碳保持平衡;通过生物固氮作用(biological nitrogen fixation)维持氮素循环(nitrogen cycle )。

总之,在物质循环中,只有通过动物和植物等生物群体的共同参与才能使物质合成和分解、吸收和释放协调进行,维持生态上的平衡和正常发展。

(三)、植物界是植物种质保存的天然基因库

种质:决定植物“种性”并将其丰富的遗传信息从亲代传递给子代的遗传物质总体。大到一个遗传原种的集合体,小到控制个别遗传性状的某一基因片段。

全世界现有植物50多万种,高等植物23 万多种,经过人类驯化的约有2000多种。

值得一提的是种质资源的流失是很严重的。自地球形成至今90%以上的生物种类已经不存在了。(四)、植物对环境的保护作用

(1)植物具有净化大气、水体、土壤以及改善环境的作用

(2)植物对环境的监测(环保):通过利用某些植物对有毒气体的敏感性作为环境污染程度的指示。

(3)植物具有水土保持的作用:植被覆盖特别是森林植被具有涵养水源、水土保持、防风固沙的作用。

三、植物学的发展概况及分科

(一)、植物学发展简介

1、我国是研究植物最早的国家

a、早在四、五千年前就积累了有关植物的知识。春秋的《诗经》记载描述了200多种植物。

b、晋代嵇含的《南方草木状》是我国最古老的地方植物志。

c、明代李时珍著《本草纲目》,详细描述了1880种药物,其中一半以上是药用植物。

d、清代吴其濬《植物名实图考》记述了1714种栽培植物和野生植物,积累了丰富的植物学知识。

e 、十九世纪中叶,李善兰(1811—1882)与外人合作编译《植物学》一书,该书是根据英国林德勒(J.Lindley 1799—1865)的《植物学纲要》中的重要篇章编译而成,共八卷,为我国第一部植物学译本。

2、国外植物学的发展:

a、最早可追溯到古希腊亚里士多德首创欧洲的植物园和德奥弗拉斯(前370—前285)所著《植物的历史》和《植物本原》。

b、瑞典植物学家林奈(1753)发表了植物种志,创立了植物分类系统和双名法,为现代植物分类学奠定了基础。

c、19世纪德国植物学家施莱登和动物学家施旺(1808—1882)首次提出细胞学说,使生物学向微观世界推进。

d、英国博物学家达尔文(1809—1882)发表的《物种起源》一书,提出了生物进化论的观点,引导生物学向宏观世界发展。

从19世纪后期到20世纪以来,随着近代物理学、化学的发展,生物学正沿着微观和宏观的研究深入,形成了细胞生物学、分子生物学等许多新的分枝学科。近20年来,生命科学突飞猛进,宏观方面,采用先进的技术,如遥感技术,进一步揭示植物间的分布和演化规律,微观方面分子水平上对生命活动本质进行研究。

(二)植物学研究内容及分科

1、植物学定义:是研究植物界和植物体的生活和发展规律的科学。

2、植物学研究内容:植物的形态构造、生理机能;生长发育规律;植物与环境的相互关系以及植物分布的规律;植物的进化与分类和植物资源利用等方面。

3、植物学分科

a、植物形态学 plant morphology

植物细胞学plant cytology

植物解剖学 plant anatomy

植物胚胎学plant embryology

b、植物分类学 plant taxonomy

c、植物生理学 plant physiology

d、植物遗传学 plant Genetics

e、植物生态学plant ecology和地植物学 geobotany

随着物理学、数学、化学等学科的发展,电子显微镜、电子计算机、激光以及其他技术的应用,近年又形成许多新的分科。如,分子生物学、植物细胞生物学、植物发育生物学、分子植物学、分子遗传学。(三)植物学的研究方法

研究方法:描述、比较、实验

学习方法:预习—听讲—复习—实验—考试。

(四)植物学与专业的关系

植物学是一切以植物为生产或研究对象的专业的重要基础课,生物科学、生物工程、生物技术、林学、森保、园林、环境等专业以后还要学习植物生理学、生态学等,植物学是学好这些课程的基础。

第一章植物细胞

§1、1 关于植物细胞的认识

一、植物细胞是构成植物体的基本单位

二、细胞的研究史

1、细胞学的创立时期

1665年,英国人虎克发现细胞(Cell)

德国植物学家施莱登(1838)和动物学家施旺(1839)共同提出了细胞学说,细胞学说被称为十九世纪自然科学的三大发现之一。

2、细胞学的经典时期(1875 —1898 )

受精现象(1875)、动植物细胞有丝分裂(1880)、动植物减数分裂(1883、1886)、植物受精现象(1888)、线粒体( 1894 )、高尔基体( 1898 )、被子植物双受精现象相继发现。

3、实验细胞学时期(1898—1953)

1900年孟德尔遗传定律的(重新)发现(1865)

1924年孚尔根等首次介绍了DNA反应的方法。

1934年本斯米等用超速离心机将细胞内线粒体分离出来。

1953年,DNA双螺旋结构的模型发现,奠定了分子生物学基础。

4、分子/现代细胞学时期(1953—现在)

1961年,通过尼伦堡等人的研究,确立了每一种氨基酸的“密码”。

DNA双螺旋结构的阐明被认为是20世纪以来自然科学的重大突破之一,使细胞的研究进入一个新的现代细胞学阶段,使细胞的研究从超微水平发展到分子水平阶段,并相应产生许多新兴分枝学科如细胞分子生物学,细胞工程学以及带有综合特点的细胞生物学等。分子水平的研究,目的是认识讨论生命活动的本质和规律,从单纯观察发展到用实验方法来研究细胞,使人类进入有目的的改造细胞的阶段

三、细胞的多样性

1、形状多样(与其功能相适应)

游离的生长在疏松组织中的细胞---球形、椭圆形 (皮层细胞、髓);

起保护作用的细胞--- 多面体,彼此嵌合紧密(表皮细胞);

起支持和疏导作用的细胞---圆柱形、纺锤形(韧皮部、木质部细胞)。

2、细胞大小差异很大:

高等植物细胞直径:数μm—数十个μm,多数15—30 μm。

最小细胞,如枝原体,直径0.1—0.15 μm。

少数大细胞,如番茄果肉、西瓜瓤细胞直径可达1mm,肉眼可见,最长的棉花纤维细胞长可达650mm。

四、原核细胞(procaryotic cell)

(1)无核膜,仅有些比较集中的核区;

(2)核区内分布环状DNA丝;

(3)细胞质内无内质网、线粒体、高尔基体等细胞器的分化。

(4)细胞质内有游离的质粒(plasmid),是裸露的核外DNA,可遗传。

枝原体、细菌、放线菌、蓝藻等低等植物由原核细胞构成。

五、非细胞结构的生命—病毒(virus)

病毒:无细胞结构,有生命的特殊有机体

(1)大小:比细菌小,比Pr大,介于100—3000?之间。

(2)组成:Pr外壳包围着核酸芯子

(3)形状:在电镜下病毒的形状、大小差异很大。

(4)生活方式:不能在非生命物质上生长而需在活的有机体上生存,能感染细菌、动物和植物形成动植物病害。

因此,病毒是简单原始的生命形式,细胞是生物有机体发展到一定阶段的产物。

§1、2植物细胞的构造与功能

一、原生质及其理化性质

(一)原生质protoplasm —泛指细胞内有生命的物质,是细胞结构和生命活动的物质基础。(组成成分,名称)

(二)原生质的化学组成

(1)、水和无机盐

A、水结合态(结构部分)

游离态(溶剂)

一般旺盛生长的幼苗及嫩叶中含水量较高,(60-90%),衰老的叶子含水量低,休眠种子含水量最低,只占鲜重的10—14 %。

B、无机盐---植物生命活动中不可缺少的物质

Fe 、Mg—与叶绿素形成有关

S、N、P—与Pr的合成有关

(2)、蛋白质(Protein)(三级结构)

组成:Pr是以氨基酸为单位构成的长链分子,分子量很大,可从五千到百万以上。

Pr占原生质干重60 % 。

Pr按其功能分为三类:

①结合Pr:组成原生质的结构物质

②酶Pr:催化作用(专化性、高效性、多样性:植物中有2000多种)

③贮藏Pr:贮藏的营养物质

(3)核酸(nucleic acid)

组成:由小分子的单位一核苷酸相连形成的长链分子,

两种类型:脱氧核糖核酸 (DNA):分布于细胞核中

核糖核酸 (RNA):分布于细胞质中

功能作用:是遗传信息的携带者。

(4)脂类(lipid):甘油+脂肪酸

包括一大类不溶于水而溶于有机溶剂的脂肪性物质,如油、脂肪、磷脂、蜡、角质、栓质和固醇等,它们都是长链化合物,但分子链比核酸短的多。

功能作用:

①结构物质(如磷脂与Pr 结合构成生物膜系统)。

②形成角质、木栓质、蜡,参与细胞壁形成(脂类具疏水性,不透水)。

(5)糖类(saccharide)

组成:化学通式为(CH2O)n .

功能作用:

①是光和作用的产物,是细胞进行代谢活动的能源。

②同时也是构成原生质、细胞壁的主要物质

③合成其它有机物的原料

类型:单糖:核糖(五碳糖)、脱氧核糖(五碳糖)、葡萄糖(六碳糖)

双糖:蔗糖、麦芽糖

多糖:纤维素、淀粉、果胶物质

(6)其它生理活动物质:酶、维生素、激素、抗菌素

总之,组成原生质的化学元素:

大量元素:C、H、O、N占植物鲜重大,约99%以上,另外还有K、P、Ca、S、Fe等

微量元素:B、Cu、Mn、Zn、Na、Cl等十几种

(三)原生质的物理性质:

(1)无色半透明半流动状态的粘稠液体,比重比水大。

(2)是一种亲水胶体。

(3)原生质胶粒带有电荷,它使原生质具很大的吸水力及对物质的吸附作用, 如胶体破坏,原生质也就丧失活性,失去生命特性。

(四)原生质的生理特性:

具有生命现象,即具新陈代谢的能力(同化--光和;异化--呼吸)。

二、原生质体(protoplast )

——指活细胞中细胞壁以内各种结构的总称(结构名称)。

植物细胞在显微镜下可明显区分为:细胞质+细胞核

(一)细胞质:(cytoplasm)

1、质膜(plasmalemma;plasma membrane)

细胞质紧帖细胞壁的膜状结构,也叫细胞膜。

A、主要成分:磷脂(55—57%)和蛋白质,厚约80?

B、生理功能:

(1)使细胞与外环境隔离,保持相对稳定的细胞内环境;

(2)具选择吸收的功能;

(3)能量传递和信息传递;

(4)有大量的酶,生化反应的重要场所;

(5)协调细胞壁物质的合成与组装

2、胞基质(cytoplasmic matrix)

A、定义:在电子显微镜下,看不出特殊结构的细胞质部分称胞基质。

B、主要成分:水、无机盐等小分子;脂类、糖类、氨基酸、核苷酸等中等分子;Pr、脂蛋白、RNA、多酶等生物大分子。

C、在生活的细胞中,胞基质做有规律的持续流动:1)转动式运动2)循环式运动

3、细胞器(organelle):细胞质基质内具有一定形态、结构和功能的小单位。

1)、质体(plastid):

绿色植物特有的一类合成或积累同化产物的细胞器,被双层膜,由前质体(ptoplastid )发育而来。

A、白色体(l e u c o p l a s t):不含色素,多存在于幼嫩细胞、贮藏组织和一些植物表皮中,并根据贮藏物质的不同分为造粉体(amyloplast)造油体(elaioplast)和造蛋白体

(proteinoplast)。

B、有色体(c h r o m o p l a s t):内含大量胡萝卜素和叶绿素而呈现黄、红或橙色,这类质体常存在于花瓣、果实或一些植物的根(胡萝卜)中。

C、叶绿体(c h l o r o p l a s t):存在于植物绿色的薄壁细胞中、主要是叶肉细胞中。所含数量因细胞而异,从十多个到数百枚不等。

色素:叶绿素A(蓝绿)、叶绿素B(黄绿)

胡萝卜素(橙黄)、叶绿素(黄)这些色素都分布在内部片层上。

结构:叶绿体呈球形、卵形,其内有基粒(granum)及基质(stroma 或matrix)片层

功能:(1)光合作用 (2)合成自身的DNA、RNA、Pr (3)酶集中的场所

2)、线粒体(mitochondria )

形状:球形、棒形或细丝状颗粒。

结构特点:由双层膜包裹,其内膜向内折叠,形成嵴。

功能:进行呼吸作用,是细胞的“动力厂”,含自身的DNA,能独立合成Pr。

3)、内质网(endoplasmic reticulum)

结构:以各种形状沿伸、扩展,形成各种管、泡、腔交织的复杂网状管道系统。

分类:光面内质网:与脂类、糖类的合成关系密切。

粗面内质网:膜表面附着许多核糖体小颗粒,合成Pr酶。

生长点→突破皮层、表皮→形成侧根

③主根与侧根的生长存在一定的相关性:主根切断促进侧根生长。

(2)侧根的分布规律:

二原型———初生木质部辐射角两侧

三、四原型———正对初生木质部放射角

多原型———正对初生韧皮部

四、根的次生生长与次生构造

大多数单子叶植物,少数草本双子叶植物——根只有初生构造。

大多数双子叶植物和裸子植物

次生生长(增粗生长):由次生分生组织(维管形成层与木栓形成层)的活动产生。

(一)维管形成层的产生及其活动

来源:结合组织形成层

中柱鞘(部分)

转化过程::片断--→波状环--→圆环

次生韧皮部

维管形成层

次生木质部

维管射线木射线

韧皮射线

(二)木栓形成层的产生与活动

来源:中柱鞘细胞

(三)根的次生构造:

维管形成层次生维管组织根的次生构造

木栓形成层周皮

裸子植物根的特点:具树脂道、维管组织的简单性、原始性。

单子叶植物根的特点:以禾本科植物为例说明:

共同点:初生结构也分表皮、皮层、维管柱三部分。

区别:(1)根只具初生结构,没有次生分生组织,因此无次生结构。

(2)内皮层细胞常呈五面加厚,横切面呈马蹄形,常具通道细胞。

(3)中柱鞘较双子叶植物不活跃,只能产生侧根等。初生木质部为多原型,维管柱中央具发达的髓。

五、根瘤与菌根

高等植物根系与土壤微生物共生(symbiosis)关系有两种类型:

(一)根瘤(root nodule):由固氮细菌,放线菌侵染宿主根部而形成的瘤状共生物。

根瘤细菌由根毛侵入根的皮层→根瘤菌迅速繁殖、皮层薄壁cell增生形成

(二)菌根(mycorrhiza):高等植物根部与某些真菌形成的共生体,有三种类型:

A 、外生菌根(ectotrophic mycorrhiza )

B、内生菌根(endotrophic mycorrhiza):

C、内外生菌根(ectendotrophic mycorrhiza ):

六、根的变态

(一)贮藏根:越冬植物的一种适应(贮藏物供来年生长发育用)。

根据来源分为:肉质直根(fleshy tap root):由主根发育而成。如萝卜、胡萝卜、甜菜。

块根(root tuber):由不定根或侧根膨大而形成。如甘薯

(二)支柱根(p r o p r o o t):起支持作用的不定根。

红树、玉米,榕树,四树木的板根。

(三)呼吸根(r e s p i r a t o r y r o o t):暴露于空气中,起呼吸作用的根(支根)向上生长,根外有呼吸的孔,内有发达的通气组织,利于通气和贮存气体。如:红树、水松。

(四)气根(a e r i a l r o o t):生长在热带的兰科植物自茎部产生不定根悬垂在空气中称为气根。构造上缺乏根毛和表皮而由死cell构成的根被所代替。根被具吸水作用。

(五)攀援根(c l i m b i n g r o o t):常春藤、络石凌霄等的茎细长柔弱,不能直立,茎上产生不定根,攀援上升。

(六)寄生根(p a r a s i t i c r o o t):有些寄生植物,如桑寄生属、槲寄生属、菟丝子属的植物,借助于茎上形成的不定根伸入寄主组织内,吸取寄主体内的养料和水分,这种根称为寄生根,也称吸器

§4、2茎(s t e m)的功能与基本形态

(一)茎的功能:1)输导2)支持 3)贮藏 4)繁殖

(二)茎的基本形态和术语

(1)节(node)

(2)节间(internode)

(3)叶腋(leaf axil)

(4)顶芽(terminal bud)

(5)腋芽(axillary bud)

(6)叶痕(leaf scar)

(7)维管束痕(bundle scar)

(8)芽鳞痕(bud scale scar)

B、发育异形叶性:由于发育年龄不同而产生的异形叶性。

如桧柏:幼年叶→针形;蓝桉:嫩枝叶→卵形,无柄;

老年叶→鳞片状老枝叶→细长,披针形或镰形

二、叶的发生和生长

叶的各部分,在芽开放以前早已形成,它以各种方式折叠在芽内,随着芽的开放,由幼叶逐渐生长成成熟叶。

(1)叶的发生

(2)一般叶的生长期是有限的

三、叶的解剖构造

(一)双子叶植物叶的构造:

1、表皮上表皮气孔(stoma)少角质层厚、色深

下表皮气孔多角质层薄、色浅

一层生活的薄壁细胞,不含叶绿体,细胞排列紧密,无胞间隙,形成蜡被,各种表皮毛。

2、叶肉(mesophyll)

栅栏组织(palisade tissue)

海绵组织(spongy tissue)

异面叶(bifacial leaf):有栅栏组织与海绵组织分化的叶。

等面叶(isobilateral leaf):无栅栏组织与海绵组织分化的叶。

3、叶脉(vein):分布于叶肉中,是叶中的维管束,成网状排列。

功能:支持、运输

传递细胞(t r a n s f e r c e l l):细脉中与筛管分子和管状分子相连的一些薄壁细胞。

特点:1)薄壁细胞;2)细胞壁内突

3)具浓厚的细胞质,正常发育的细胞器

4)胞间连丝丰富,增加细胞间直接传递能力。

功能:对叶肉细胞与细脉之间水分蒸腾,溶质交换以及光合产物的短途运输有重要的作用。

(二)裸子植物的叶的构造

大多数常绿, 少数落叶如落叶松属、金线松属、银杏属

外形:针形、线形、鳞片状→针叶树

以松属叶的构造为例:

(1)外形:针状,2—5针成束生长在不发育的短枝上,整个束为圆柱形,单个针叶呈半圆形、三棱形。

(2)解剖结构:

A、表皮系统:表皮cell:一层、砖形、厚壁,腔小,外被发达的角质

下皮(hypodermis):一至多层,厚壁,转角处层数多。

气孔器:内陷气孔。由一对保卫cell及副卫cell组成,

B、叶肉:细胞壁内褶,含叶绿体的薄壁细胞,增加光合面积。

具树脂道(resin cannal)(外生、内生、中生、横生树脂道)

C、维管束:

内皮层:由厚壁组织组成,排列整齐,无胞间隙,成熟后细胞壁木化,径向壁上有明显的凯氏点。

维管束(1—2个)

木质部(近轴)管胞、薄壁细胞

韧皮部(远轴)筛胞、韧皮薄壁细胞。

转输组织:转输薄壁细胞、转输管胞

松柏类植物共性:有下皮、内陷气孔、内皮层、转输组织、内褶叶肉细胞。

(三)单子叶植物叶的构造

1、表皮:分上、下表皮,

A、表皮细胞长细胞长径沿叶的纵轴方向排列。

短细胞栓细胞(suberized cell)

硅细胞(silica cell)外突成刺状

B、泡状细胞(b u l l i f o r m c e l l)

C、气孔: 2保卫细胞:哑铃形+2副卫细胞:梭形

2、叶肉:形状不一,细胞壁内褶,

3、叶脉:平行脉

机械组织:厚壁纤维——增强叶片支持作用。

外层:薄壁细胞 C4植物(高光效)。

内层:厚壁细胞 C3植物(低光效)

维管束木质部,近轴面;韧皮部 ,远轴面

四、叶的形态构造与生态条件的关系

(一)、水分条件对叶的形态影响较大,水分适应分为:

旱生植物中生植物湿生植物水生植物

1、旱生植物(xerophyte)叶的特征:

A、硬叶类植物:夹竹桃、松树、铁树

1)叶片小而厚、硬,

2)角质层发达,表皮上常有腊被及各种表皮毛;或具副表皮

产生下皮层,气孔下陷,气孔窝。

3)栅栏组织多层,分布于叶两面,海绵组织和胞间隙不发达或

叶肉细胞壁内褶;

4)机械组织发达,维管束(叶脉)发达,保证水分及时供应。

B、肉质植物:翠宝、景天、芦荟、龙舌兰、马齿苋、猪毛菜

1)叶片肥厚,

2)叶肉细胞增多且肉质化、贮水,

3)叶肉细胞的细胞液度高,保水能力强。

仙人掌科植物:叶片退化成刺,茎肥厚多汁。

2、湿生植物叶结构特点:

1)叶片大而薄,

2)角质层不发达或没有,一般无蜡被和毛状物;

3)海绵组织发达或无栅栏组织与海绵组织区别;

4)叶脉的机械组织不发达,胞间隙大。

3、水生植物(hydrophyte)结构特点:

1)叶片大而薄,,沉水植物叶片成丝状细裂;

2)表皮上无角质层或很薄

3)叶肉层数少,无栅栏组织与海绵组织分化,形成发达的通气组织;4)叶脉少,输导组织、机械组织退化。

阳地植物(sun plant):在充足的光照下才能生长好,不能忍受蔽荫的环境。

阳叶(sun leaf)→旱生结构特点,如松、桦、山杨等。

阴地植物(shade plant):适应在弱光条件下生长,不能忍受强光照射。

阴叶(shade leaf)→湿生结构特点:叶大、薄,栅栏与海绵组织分化,胞间隙发达。

五、叶的寿命与落叶

(一)叶的寿命:

因树种而异

1、落叶树(d e c i d u o u s t r e e):叶的寿命只有一个生长季。如杨、柳、槐、榆。

2、常绿树(e v e r g r e e n t r e e):叶的寿命为1年以上至多年。如松、柏、荔枝。

裸子植物多松属2—5年冷杉5—10年

双子叶植物少女贞—3年

(二)落叶

1、原因:①矿物质积累过多,引起生理机能的衰老而死亡;

②生理干旱,落叶是维持水分的平衡的一种适应。

2、过程:①离区(abscission layer)的产生

②形成保护层(protective layer)

六、叶的变态

(一)苞叶与总苞(有的可作为区别种属的特征)

苞叶(bracteal leaf) :一朵花下面的一种特殊的叶,保护花和果实。

总苞(involucre):一个花序下面由苞叶集生而成,如向日葵。

(二)鳞叶(s c a l e l e a f):叶的功能特化或退化成鳞片状。

A、鳞芽外的鳞叶,称芽鳞(bud scale)

两种 B、地下茎:肉质:洋葱、百合的鳞叶

膜质:球茎(荸荠、慈菇)

(三)叶刺(l e a f t h o r n):叶的一部或全部变成刺,如小檗(三棵针)、洋槐。

叶刺发生于枝条的下方,叶刺腋中有腋芽,以后发展成短枝。

刺槐的托叶变成刺——→托叶刺。

仙人掌科植物叶——→刺。

(四)叶卷须(l e a f t e n d r i l):由叶的一部分变成卷须状,用以攀援,常由复叶的叶轴、叶柄或托叶转变而成。

叶卷须——与枝条之腋间有腋芽。

茎卷须——与枝条之腋间无腋芽。

(五)叶状柄(p h y l l o d e):

叶柄转变成扁平的片状,并具叶的功能,称叶状柄。

如台湾相思树:幼苗→羽状复叶。后→小叶片退化,叶柄扁平→叶状柄。

澳大利亚干旱区的一些合欢属植物:初生叶→羽状复叶,后产生的叶→仅具叶状柄。

(六)捕虫叶(l e a f i n s e c t i v o r o u s a p p a r a t u s):

有些植物具有能捕食小虫的变态叶,称捕虫叶。捕虫叶有的呈瓶状(如猪笼草)、有的为囊状(如狸藻)、有的呈盘状(茅膏菜)。

(七)、同功器官与同源器官

A、同功器官(a n a l o g o u s o r g a n):来源不同,但功能、形态构造相同的器官变态。如:茎刺与叶刺,茎卷须与叶卷须。

B、同源器官(h o m o l o g o u s o r g a n):来源相同,功能不同、形态构造不同的器官变态。如叶卷须、叶刺、鳞叶、捕虫叶都是叶的变态。

第五章种子植物繁殖器官的形态构造及生殖过程

繁殖(r e p r o d u c t i o n)有三种方式:A、营养繁殖(v e g e t a t i v e r e p r o d u c t i o n):自身营养体的一部分从母体分离形成新个体的方式。B、无性繁殖(孢子繁殖)(a s e x u a l r e p r o d u c t i o n):植物产生具有繁殖能力的特化细胞——孢子,由孢子发育成新的个体。C、有性繁殖(s e x u a l r e p r o d u c t i o n):形成特殊的生殖细胞——配子,配子融合形成合子,由合子发育成新的个体。同配异配卵式生殖

§5.1被子植物的繁殖器官

一、花的形态结构及发育

(一)花的组成

1、花梗(pedicel):

2、花托(receptacle):

3、花被(perianth ):两被花(dichlamydeous flower)

单被花(monochlamydeous flower)

无被花(achlamydeous flower)

A、花萼(calyx):若干萼片(sepal)组成,常绿色(光合)

分离→离萼;连合→合萼;

B、花冠(corolla):若干花瓣(petal)组成,排成一轮或多轮,鲜艳.

离瓣花(choripetale):桃、梨,辐射对称

合瓣花(synpetal):牵牛、丁香。两侧对称

4、雄蕊群(androecium):雄蕊总称,花被内方,在花柱上呈螺旋或轮状排列。

花药(anther)——囊状物(里形成花粉粒)

花丝(filament)

根据花丝长短、雄蕊数目、分离、连合可分为:离生雄蕊、单体雄蕊、二体雄蕊、多体雄蕊、聚药雄蕊、二强雄蕊、四强雄蕊、冠生雄蕊。

花药成熟后开裂方式:纵裂、瓣裂、孔裂。

5、雌蕊群(gynoecium):所有雌蕊总称,位于花中央。

柱头(stigma) :

花柱 (style) :

子房壁(ovary wall)

子房子房室(locule)

胚珠(ovule)(着生在胎座上)

单雌蕊:单心皮构成。

离生雌蕊:多心皮构成,其中各个心皮分离。

合生雌蕊:多心皮连合组成一个雌蕊。

从起源上讲,雌蕊是一至数个变态的叶——心皮卷合而成

(二)花的组成部分的变化及花序

完全花(complete flower):

不完全花(incomplete flower):如:无被花、单被花花

单生花(solitary flower):在枝顶或叶腋处只着生一朵花称为单生花

花序(inflorescence ):在枝顶或叶腋处着生许多花,并在花轴上按一定的顺序着生。

花序的类型:无限花序(indefinite inflorescence)

有限花序(definite inflorescence )

(三)花芽分化

A、分化顺序:

B、花芽形态:随植物而异,一般比叶芽肥大

C、分化时间:

落叶树:前一年夏季花芽分化→休眠→第二年春天继续发育至开花

春夏开花的常绿树:冬季或早春花芽分化如柑桔。

秋季开花的常绿树:当年夏天花芽分化,如油茶。

二、雄蕊的发育与构造

(一)花药的发育、构造与花粉粒的形成

a雄蕊的构造:

b、花药的发育(百合花药)

(二)花粉粒(p o l l e n g r a i n)的形成与构造

花粉粒细胞壁:外壁(exine):厚,具纹饰、萌发孔。

主要成份:孢粉素、纤维素、类胡萝卜素、Pr、类黄酮素、脂类、

内壁(intine):较薄

主要成份:纤维素、果胶质、半纤维素、Pr

内外壁中的识别蛋白与雌蕊组织之间的识别反应决定花粉是否萌发以及亲和性和不亲和性。

(三)花粉生活力:大多数存活几小时、几天或几个星期

花粉败育(a b o r t i o n):有些植物散出的花粉发育不正常不能起到生殖作用的现象。

雄性不育(m a l e s t e r i l i t y):由于遗传和生理原因或外界环境的影响,花中的雄蕊得不到正常发育,使花药发育畸形或完全退化的现象。

三、雌蕊的发育与构造

(一)雌蕊的构造

(1)柱头:

(2)柱头:

(3)子房:子房壁:腹逢线:两个小维管束

背逢线:一较大维管束

胎座:腹缝线上胚珠着生的地方

珠心(nucellus)

珠被(integument)

胚珠珠孔(micropyle)

合点(chalaza)

珠柄(funiculus)

(二)、胚珠发育过程:

蓼型(Polygonum type)胚囊(embryo-sac)的发育过程:

珠心→孢原细胞→胚囊母细胞→四分体→单核胚囊→二核胚囊→四核胚囊→八核胚囊四、开花与传粉(一)开花(a n t h e s i s):

1、开花:当雄蕊中的花粉粒和雌蕊中的胚囊(或二者之一)已经成熟时,花萼和花冠即行开放,露出雄蕊和雌蕊的现象。

2、开花的年龄:竹子、1-2年生植物几个月即可开花,一生只开一次。多年生植物到达开花年龄后,每年按时开花延续多年。

3、开花的季节:受环境(光周期、温度、水分)和植物内在因素影响。杨柳、连翘早春开花;山茶深秋或初冬开花。

4、开花期(b l o o m i n g s t a g e):一株植物从始花到末花所经历的时间。(每朵花开放时间长短各种植物亦不同)

(二)传粉(p o l l i n a t i o n):

1、传粉(授粉):成熟花粉粒借外力传到雌蕊的柱头上的过程。

2、传粉方式:自花传粉和异花传粉:

A、自花传粉(s e l f-p o l l i n a t i o n):成熟花粉粒传到同一朵花的雌蕊柱头上的过程。生产上常将同株异花传粉或同品种异株传粉也称为自花传粉。

闭花受精(cleistogamy) :花尚未开放,已完成受精作用的现象。

B、异花传粉(c r o s s-p o l l i n a t i o n):一朵花的花粉粒传到另一朵花的柱头上的过程。可发生在同株各花间,同一品种间和同种内不同品种间。

从生物学意义上讲,异花传粉有益,自花传粉有害。

3、植物对异花传粉的适应:

A、适应方式:单性花:

雌雄蕊异熟:

雌雄蕊异长:

雌雄蕊异位:

自花不孕:

B、异花传粉媒介:

风媒植物(anemophilous flower)—风媒花:花被小,无颜色或无蜜腺及香味,花粉粒小、光滑、干燥而轻,早春开花。

虫媒植物(entomophilous flower)——虫媒花,具鲜艳美丽的花瓣,具蜜腺及香味,花粉粒大,粘集成块,以便粘附在昆虫体上。

五、受精(f e r t i l i z a t i o n):

雌雄性细胞,即卵细胞和精细胞相互融合形成合子的过程。

(一)花粉粒的萌发和花粉管的形成1、花粉粒的萌发:花粉粒落在柱头上,经过识别(recognition),亲和的花粉粒则从柱头上吸水,内压增加,花粉粒的内壁穿过外壁上的萌发孔向外突出,形成花粉管。

2、花粉管的生长:花粉管穿过柱头组织,通过花柱,到达子房。从珠孔穿过珠心进入胚囊。

(二)被子植物的双受精(d o u b l e f e r t i l i z a t i o n):

精子+卵――→合子(zygot)(2N)

精子+2极核→初生胚乳核(3N)

(三)受精的选择性

只有在遗传性上差异既不过大,也不过小的亲本之间才能实现受精。大多数植物广泛表现为种内异花受精。

(四)双受精作用的生物学和实践意义

1、父母本具有差异遗传物质的单倍体的雌、雄配子融合成一个二倍体的合子,恢复了各种植物原有的染色体数目,保持了物种遗传的相对稳定性。

2、同时又出现新的遗传性,产生出有一定变异的后代。即遗传性的变异。

3、三倍体的初生胚乳核产生三倍体的胚乳,作为胚发育的营养物质,使子代变异性更强。

六、种子和果实

(一)种子的形成

(1)胚(e m b r y o)的发育(以荠菜为例)

双子叶植物的胚:顶端分裂分化形成两对称子叶

基细胞:膨大成泡状不再分裂或膨大成泡状分裂参加胚柄(suspensor)

合子

顶细胞:原胚→球形原胚→心形胚→鱼雷胚→成熟胚

(2)多胚现象(p o l y e m b r y o n y)与无融合生殖(a p o m i x i s)

A、无融合生殖——不经受精而产生胚的生殖过程。

卵(n)---------------------→孤雌生殖(parthenogenesis)→胚(n)常不发育

反足细胞(n)/助细胞(n)-----→无配子生殖(apogamy)-------→胚(n)常不发育

珠心(2n)/珠被(2n)---------→无孢子生殖(apospory)------→胚(2n)可育

B、多胚现象:有些植物种子里含有两个或两个以上的胚。

来源:

①经受精的细胞形成多胚如合子分裂产生多胚;裸子植物、百合助细胞受精形成多胚

②胚囊内的细胞、助细胞、反足细胞不经受精发育形成胚,只具母体特性、不育。

③由珠心、珠被分裂形成多胚,称不定胚(adventive embryony),具母本特性。

(3)胚乳的发育

(二)果实的形成

果皮分为外、中、内果皮三层:

外果皮(e x o c a r p):一般薄,1—2层细胞,通常具角质层和气孔,有时还有蜡粉和毛。

中果皮(m e s o c a r p):很厚,占整个果皮的大部分,结构上着异很大。

肉质:苹果

革质:豌豆

维管束发达:柑桔

内果皮(e n d o c a r p):坚硬或浆状。

单性结实(p a r t h e n o c a r p y):不经受精,子房也能长大发育果实,所以成的果实无种子,称无子果实如香蕉、柑桔、柠檬。

营养单性结实:子房不需要传粉或任何刺激。

刺激单性结实:子房虽不需受精,但仍需受粉,需的刺激。

果实的类型

(一)单果(s i m p l e f r u i t),是一朵花中只有一个雌蕊形成的果实。

干果:裂果(d e h i s c e n t f r u i t):蓇葖果(f o l l i c l e)、荚果(l e g u m e)、

角果(长s i l i q u e;短s i l i c l e)、蒴果(c a p s u l e)、

闭果(a c h e n o c a r p):瘦果(a c h e n e)、坚果(n u t)、颖果(c a r y o p s i s)、

翅果(s a m a r a)、分果(s c h i z o c a r p)

肉质果(f l e s h y f r u i t):浆果(b e r r y)、核果(d r u p e)、柑果(h e s p e r i d i u m)、

梨果(p o m e)、瓠果(p e p o)

(二)聚合果(a g g r e g a t e f r u i t),由一朵花的若干离生心皮雌蕊形成,每个心皮形成一个小果。

聚合瘦果:草莓聚合坚果:莲

聚合核果:悬钩子聚合蓇葖果果:八角、玉兰

(三)聚花果(c o l l e c t i v e f r u i t)(复果m u l t i p l e f r u i t):整个花序形成果实,如桑椹、凤梨(菠萝)、无花果等。

(四)果实与种子的传播

(1)借风力传播

(2)借果实裂开时的弹力和自落传播

(3)借人和动物的活动传播

(4)借水传播

§5.2 裸子植物的繁殖器官及其生殖过程

以松属植物为例:

一、大、小孢子叶球的构造和发育

(一)小孢子叶球:春季,在当年生枝条的基部形成。

中轴

螺旋排列于

小孢子叶:下面并列两个小孢子囊(花粉囊)囊壁:数层细胞

造孢细胞(核大、质浓)--→小孢子母细胞--→四分体--→四个小孢子

(二)大孢子叶球:春季,在新枝顶端形成,由木质鳞片状的大孢子叶(珠鳞)和不

育的膜质苞片成对螺旋状排列在一长轴上组成。

中轴珠被

大孢子叶(珠鳞、木质)-→大孢子囊-→珠心-→大孢子母细胞-→四分体-→大孢子可育

苞片(膜质)珠孔(远离珠孔端)

二、雌、雄配子体的结构和发育

(一)雄配子体:小孢子是雄配子体的第一个细胞,发育形成雄配子体(成熟花粉粒)。

单核小孢子--→第一原叶细胞(消失)

胚性细胞--→第二原叶细胞(消失)

精子器原始细胞--→粉管细胞

生殖细胞

(二)雌配子体:胚乳+颈卵器(archegonium)

近珠孔处

大孢子—→游离核—→雌配子体(胚乳)→形成3—5

个颈卵器--→中央细胞--→卵细胞

颈细胞腹沟细胞

三、传粉与受精

柄细胞——被吸收

生殖细胞精子(消失)

(花粉管里)体细胞

精子

破裂颈细胞消失合子(2N)

释放颈卵器腹沟细胞

精子卵细胞

裸子植物从传粉到受精之间的时间间隔一般较长,一般在第二年夏季完成受精过程。

四、胚与胚乳的发育和种子的形成

(一)胚与胚乳的发育

多胚现象

(二)种子及球果的形成

大孢子叶球------------------------------------------→球果(c o n e)

珠鳞---------------------------------------------→种鳞(cone scale)←

颈卵器----------→胚(2N)裸露于

珠心-----→雌配子体种子--- 大孢子囊胚乳------------→胚乳(N)

珠被------------------------------------→种皮

松属植物从开始产生大、小孢子叶球到种子形成,约需二年的时间。

引言

一、两种分类系统:

人为分类系统:不是根据植物的自然性质,也没有考察彼此间在演化上的亲疏关系,就一、两个特点或应用价值进行分类。

自然分类系统:利用现代自然科学的先进手段,从比较形态学、比较解剖学、古生物学、植物化学、植物生态学等不同角度,反映植物界自然演化过程及彼此间亲缘关系进行分类。

将植物界50万种以上植物分为16个门

二、植物分类的阶层系统和命名

(一)植物界的分类单位(taxa):

界、门、纲、目、科、属、种(species)、亚种(Subspecies)、变种(Varietas)、变型(Forma)、种(Species)是生物分类的基本单位,是有一定的自然分布区和一定的生理、形态特征的生理类群,同种个体具有相同的遗传性状,而且彼此杂交可以产生后代。

种群(Population):在一个分布区的所有种内植物个体的总和称为种群。

(二)植物界分类的依据:

1 形态学依据:依据形态结构特征分类。优点是:直观、简便。

2 细胞学依据:以植物细胞中染色体的数目和性质来作为植物分类的依据。

3.化学依据:植物的化学组成随种类而异,因而化学成分可以作为分类的一项重要指标,如植物碱、酚、萜、糖、蛋白质、DNA等等。常用的有血清学方法和电泳分析法。

4.分子生物学依据:在染色体DNA结构上寻求分子水平差异,作为分类的依据。

5. 超微结构和微形态学依据:利用电镜技术研究植物在超微结构的差异作为分类依据。(三)植物命名法

每种植物都有自己的名字,但在命名上十分混乱,往往存在同物异名的现象,如番茄,南方称为番茄,北方称为西红柿,英语称tomato ;马铃薯,南方称为洋芋,北方叫土豆,英语叫potato,此外还有同名异物的现象,如黄瓜香,可能是荚果蕨,也可能是地榆(蔷薇科)。

双名法(binomial nomenclature):1753年,瑞典植物学家林奈在巨著?植物种志?中,提出了为植物命名的双名法。双名法由两个拉丁词或拉丁化的词为植物命名。

属名 + 种加词 + 命名人缩写

属名:一般为拉丁名词,词首大写。

种加词:一般是形容词,也可以是名词,形容词一般与属名在性、数、格上一致,开头字母小写。命名原则:

1、优先律原则:植物新种名称的发表有优先权,符合法规的最早发表的名称为正确名词。

2、单一原则:每种植物只有一个合法的正确名称。

第一章藻类植物Alage

第一节藻类概述

一、藻类植物的共同特征

1.具有进行光和作用的色素

2.原植体植物,形态差异较大

3.生殖器官多数为单细胞

4.合子不形成胚,直接发育为个体

5.主要生活于水中,适应性强;深海、高山、温泉、等均有分布

二、藻类的起源及演化:

藻类植物出现在35—33亿年前,最早出现蓝藻, 地球上大约有三万种藻类,一般分为八个门。

第二节蓝藻门Cyanophyta

一、蓝藻门的主要特征

(一)形态构造中央质(中心质):细胞中央,含有核质, 有遗传物质

原生质体

结周质(色素质):含有叶绿素a、藻蓝素、藻红素等,在电镜下可见一些片层,是

光合作用场所。

构胶质鞘

细胞壁

内层:纤维素形态:单细胞、群体、丝状体

异形胞(heterocyst):在蓝藻的藻丝上常含有特殊的细胞,由营养细胞形成,比营养细胞大,细胞内是空的,称异形胞。

(二)繁殖

营养繁殖:单细胞类型:分裂繁殖

丝状体:藻殖段(homogonium)

无性繁殖:在丝状体上产生厚壁孢子(由营养细胞形成,营养物质积累,细胞壁加厚)萌发或休眠丝状体(三)分布:分布很广,从两极到赤道均有分布

水华:蓝藻在水面或营养丰富的水体中大量聚集。

二、蓝藻的代表植物

颤藻属:(Oscillatoria):颤藻念珠藻属:(Nostoc):丝状体,分布于胶质鞘内,细胞排列成念珠状,如:念珠藻,发菜,地木耳。

螺旋藻属(Spirulina):螺旋藻

三、作用:

固氮、食用、饲料

Euglenophyta一. 裸藻门的一般特征

形态构造:无细胞壁,有鞭毛,外部为质膜,膜内是由蛋白质构成的周质体。其中有细胞核、载色体、眼点、伸缩泡等结构。

二. 繁殖方式:

细胞纵裂繁殖,无性繁殖和有性繁殖

着生鞭毛一端凹陷,核进行有丝分裂,鞭毛、眼点分裂,然后细胞本身纵裂,一个子细胞保留原来鞭毛,另一个生出新的鞭毛。

三分布:

绝大部分生活于海水或淡水中。第四节金藻门 Chrysophyta一、金藻门的一般特征:

1、有单细胞、群体、丝状体等类型;

2、有或无鞭毛;

3、细胞壁由两个相互套合的半片组成,壁内有硅质沉淀,含有叶绿素a , ?胡萝卜素和叶黄素,藻体呈现黄色和金黄色。

二、繁殖:

无性繁殖:游动孢子、静孢子

有性繁殖:同配、异配和卵式

第五节硅藻门Bacillariophyta一、硅藻类(Diatoms)为例

1.形态结构:

细胞壁是两个套合半片组成,半片为瓣,外面半片为上壳,里面的半片为下壳,侧面为环带,上、下壳均由果胶质和硅质组成。有的种类瓣面上有花纹。细胞中央有液泡,紧帖细胞壁有一层原生质,其中有数个载色体。有运动能力的硅藻背部有脊缝,运动方向是沿着纵轴的方向前进和后退。

2. 繁殖:分裂繁殖:分裂时,上、下壳分开,原生质体膨大,核进行有丝分裂,然后原生质体沿与瓣面平行方向分开,一个子原生质位于母体上壳内,另一个位于下壳内,最后,各自分泌出另一半细胞壁,新半片始终位于子细胞的下壳。子细胞缩小到一定程度后,以形成复大孢子的方式来恢复大小。

第六节绿藻门 Chlorophyta

一、绿藻门的一般特征

(一)形态结构:

形态:单细胞、群体、丝状体和叶状体,少数类型有鞭毛,多数类型只在繁殖期间产生带鞭毛的孢子或配子。

构造:

细胞壁:内层:纤维素

外层:果胶质,粘液化

细胞核(一至多个)

原生质细胞质:有载色体,含有叶绿素a、液泡

(二)繁殖:营养繁殖、无性繁殖、有性生殖

(三)分布:淡水和海水,其中淡水产量占90%,海水产量占10%

二、绿藻的代表植物

(一)衣藻属(Chlamydomonas):

单细胞,体前端有一条顶生鞭毛,细胞壁2层,厚底杯状载色体,基部有蛋白核,细胞中央一个核,鞭毛基部有两个伸缩泡,为排泄器官,体前端有红色眼点。繁殖:无性繁殖有性繁殖

(二)团藻属(Volvox)

由数百至上万个细胞排列成一层空心球体,球内充满胶质和水,细胞形态和衣藻相同,彼此间有原生质丝相连。

生殖胞:群体后端有些细胞失去鞭毛,比普通的营养细胞大十倍或十倍以上。

无性繁殖:生殖胞纵分裂形成。

有性繁殖(卵式生殖):由群体中少数生殖细胞产生卵子和精子。

团藻为多个细胞组成群体,细胞之间无分工,而且当环境恶劣时,群体可以分开为个体,因此团藻是从单细胞向多细胞生物进化的中间类型。

(三)石莼属(Ulva)

植物体是大型多细胞片状体,两层细胞构成,大部分具有无色的假根丝。细胞间排列不规则但紧密,细胞单核。

石莼属有两种植物体:孢子体和配子体。

异宗同配:两个配子在外形上相同,但来自不同的配子体,

配子体世代:从游动孢子开始,经配子体到配子结合前,细胞染色体为单倍的,称为配子体世代。

孢子体世代:从结合的合子起,经孢子体到孢子母细胞,细胞中染色体为双倍的,称孢子体世代.二倍体的孢子体世代和单倍体的配子体世代互相更替,称为世代交替。形态构造上基本相同的两种植物体,互相交替循环的生活史,叫同型世代交替。

(四)水绵属(Spirogyra)植物体为一系列不分枝的丝状体,细胞壁两层,外为果胶质,内为纤维素,带状载色体螺旋状绕于原生质中,有多数蛋白核。有大液泡,单核。

接合生殖:生殖时,两条丝状体平行靠近,在两细胞相对的一侧相互发生突起,突起渐伸长而接触,壁消失,连接成管,称为接合管。细胞内原生质体放出部分水分,收缩形成配子,一条丝状体中的配子以变形虫式运动,通过结合管移至相对的另一条丝状体中,与细胞中配子结合成合子。梯状接合:两条接合的丝状体和它们所形成的接合管,外观同梯子一样,这种接合叫梯状结合。侧面接合:同一条丝状

体上相邻两个细胞间形成接合管,或两个细胞之间的横壁上开一孔道,进行原生质体融合。三、绿藻门在植物界的地位:

绿藻和高等植物有许多相似之处,许多学者认为绿藻是高等植物的祖先。绿藻门在植物界的系统发育中,居主干地位。

第七节红藻门 Rhodophyta

一、红藻门的一般特征:

(一)形态构造:多数为多细胞,少数为单细胞,丝状体和叶状体。

细胞壁两层外层果胶质

内层纤维素

原生质体细胞核

载色体(颗粒状):叶绿素a,d,?胡卜素、藻红素、藻蓝素、红藻淀粉

(二)繁殖:无性繁殖:静孢子

有性繁殖:卵式生殖(三) 分布:绝大多数分布于海水中。

二、红藻的代表植物 (生活史):

紫菜属(Porphyra):叶状体,边缘有皱褶,基部有固着器,藻体薄,紫红色、紫色或紫兰色。

三、红藻门在植物界中的地位:

红藻较为古老,和蓝藻有很多相同的特征。

第八节褐藻门Phaeophyta

一、褐藻门的一般特征

(一)形态构造:形态:多细胞、分枝的丝状体、分枝的丝状体相互结合形成假薄壁组织

结构细胞壁内层:纤维素

外层:藻胶、褐藻糖胶

原生质体细胞核

载色体:叶绿素a c ,?胡萝卜素,叶黄素褐藻淀粉和甘露醇

(二)繁殖:营养繁殖:断裂

无性繁殖:游动孢子和静孢子

有性繁殖:卵式、同配、异配

(三)生活史:多数为孢子体发达的异型世代交替。

第九节藻类植物小结

藻类植物各门之间和各门之内的进化关系,都是按着由单细胞到多细胞,由简单到复杂,由低级到高级的规律演发展。

(一)藻类细胞的演化

(二)藻类植物体的演化

(三)繁殖及生活史演化

(四)藻类的经济意义

(1)藻类是水生生态系统中的初级生产者

(2)固氮作用:已知固氮蓝藻约有150余种。

(3)赤潮与水华

(4)水质监测与水质净化

可根据藻类的存在和数量来鉴定水质,测定水源清洁的程度。

可利用藻类的光合作用及对重金属或N、P等的吸收富集作用净化水质。

(5)经济价值

有些藻类可食用、有些藻类是工业上和医药上的主要原料。

有些藻类可作饲料和绿肥。

第二章菌类植物F u n g i

菌类概述主要特点:

(1)、无根、茎、叶的分化;

(2)、无叶绿素,不能进行光合作用,属异养植物。

第一节细菌门 Bacteriophyta

一、细菌的一般特征:

单细胞,原核生物,多数异养,分裂繁殖,分布广泛。

二、细菌的形态和构造:

形态:球菌(coccus)、杆菌(bacillus)、螺旋菌(spirillum)

构造:细胞壁

细胞膜

核质

内含物

三、细菌的繁殖:

繁殖多为分裂繁殖:细菌中部凹入原生质,被向内生长的新壁一分为二,形成两个新细菌;繁殖速度快,20—30min分裂一次,形成新的一代。不良环境下,产生芽孢(gemma)。

四、细菌在自然界作用和经济意义

1.分解者

2.农业方面:固氮

3.工业发酵:制革、造纸、炼糖等

4.医药卫生:大肠杆菌等

第二节粘菌门 Myxomycota

一、粘菌的一般特征:

营养期为无细胞壁、多核的原生质团,繁殖期可产生具有纤维素细胞壁的孢子,所以粘菌兼有动、植物的特征。

二、生境:

生于森林中阴暗和潮湿的地方,在腐木上、落叶上或其他湿润的有机物上。

三、常见种类:

发网菌(Stemonitis)

第三节真菌门Eumycota

一、真菌的一般特征:

细胞不含有叶绿素,也没有质体,异养生物,贮存养分是肝糖,少量蛋白质和脂肪,有细胞壁,多为丝状或多细胞的有机体。

植物学资料( 重点整理)

三、名词解释(15分) 柑果(举例):由复雄蕊(1分)形成,外果皮革质(0.5分)中果皮较蔬松(0.5分),内果皮膜质(0.5分),内表皮囊状突起,例:桔、橙(0.5分)。ddd 有胚植物:在生活史中,出现胚的植物的总称(2分),如苔藓,蕨类,种子植物等。 十字形花冠:花瓣4片,排成十字形,称十字形花冠,为十字花科植物花的花冠。dddd 合轴分枝:顶芽生长活动(1分)一段时间以后,或者死亡或分化为花芽(0.5分),而靠近顶芽(0.5分)的一个腋芽(0.5分)迅速发育为新枝,代替主茎(0.5分)。ddd 小穗:由颖片和1至数朵小花组合而成的结构(2.5分)。如在禾本科和莎草科植物。ddd 颈卵器:形如瓶状的多细胞的雌性生殖器官(2分),由颈部和腹部组成(0.5分)。其中,有颈沟,腹沟和卵细胞。 地衣:藻类和真菌两类植物共同生活,而形成的共生体。ddddd 单性结实(举例):不通过受精(1分),子房就发育形成果实(1分),例如,香焦ddd 侧膜胎座:单室(0.5分)复子房(0.5分)或假数室子房(0.5分),胚珠着生于心皮边缘(0.5分)相连的腹缝线上(1分)。dd 单身复叶:仅有1枚小叶的复叶(1分),原为三出复叶的,2枚侧生小叶退化而形成(1分),小叶与叶柄间具关节,叶轴常具翅(1分)。如柑橘叶。; dd 聚药雄蕊(举例):花药合生成筒状(1分),花丝分离(1分),如向日葵(1分)。dddd 菌丝体:真菌的分枝或不分枝的无色菌丝的营养体。 浆果(举例):外果皮薄(1分),中果皮(0.5分)、内果皮(0.5分)均肉质化,并充满汁液。例番茄 学名:拉丁文(0.5分)属名(1分首字母大写为名词)+种加词(1分全大写为形容词)+定名人(0.5分首字大写),如:Oryza sativa L; ddd 藻类:是一类含光合色素的低等自养植物的总称,如蓝藻,绿藻,红藻,褐藻。 菌类:菌类是一类不含光合色素的低等异养植物的统称(2分)。如细菌,粘菌,真菌等 假果:除子房外,还有花托(0.5分),花萼(0.5分),甚至整个花序(0.5分)都参与形成的果实,称为假果。举例:梨(1分) 合蕊柱:兰科植物(1分)的雄蕊与花柱,柱头完全愈合成的圆柱状结构即是合蕊柱。 角果(举例):两心皮组成(1分),具假隔膜(1分),成熟时从两腹缝线裂开(0.5分),例如,油菜、青菜 梯形接合:水绵两条丝状体相对处的细胞壁向外突起伸长并相接触,接触处的细胞壁溶解,形成接合管(2分),细胞的原生质体缩成一团,形成合子(0.5分)丝状体多处产生接合管(0.5分),形如“梯子”而得名的。 低等植物:植物体无根,茎,叶的分化(1分),雌性生殖结构由单细胞构成(1分),生活史中不出现胚(1分)。例如:细菌,藻类,地衣等。 头状花序:许多无柄花(0.5分),着生于极度缩短(1分),膨大平展(1分)的花序轴上,各苞片常密集成总苞(0.5分),花排列成头状。 世代交替:从无性世代的孢子体产生有性世代的配子体,又从有性世代的配子体产生无性世代的孢子体,有规律地轮回更替现象称世代交替。dd 聚花果(举例):由整个花序(2分)形成的果实,例如桑椹、菠萝。(1分) 假二叉分枝:顶芽(0.5分)长出一段枝条,停止发育或为花芽(0.5分),顶芽两侧对生的侧芽(1分)同时发育为新枝,新枝的顶牙和侧芽生长活动与母枝相同(1分)。 个体发育:植物从生命活动中的某一个阶段(孢子,合子,种子)开始,经过形态,结构和生殖上的一系列发育变化,然后再出现当初这一阶段的全过程。 种子植物:在生活史中产生种子,胚被种子的外部结构很好的保护(2.5分)。如裸子植物和

药用植物学,植物识别口诀

药用植物学,植物识别口诀 枝有环痕雌雄多,聚合蓇葖木兰科。单叶聚生星形果,八角香味八角科。雄蕊多轮药瓣裂,体具樟香是樟科。材身网纹雄蕊4,山龙眼科单花被。天料木科点线明,侧膜胎座花萼存。单互无托具锯齿,茶科朔果轴宿存。龙脑香科雄蕊多,单互羽脉多坚果。桃金娘科边脉清,单叶无托油点明。单对无托黄胶液,山竹子科单性杂。掌状叶脉星状毛,雄蕊多数椴树科。红叶迟落药孔裂,瓣顶撕裂杜英科。星毛柄大纤维多,单性雄蕊梧桐科。单体雄蕊药一室,两重花萼锦葵科。乳汁腺体花单性,花盘常在大戟科。蔷薇科,花样多,十字花科蔬菜多。体具乳汁花单性,桑科聚花隐头果。叶具油点有香气,花盘上房芸香科。木本复互脂核果,橄榄气味橄榄科。木本复互蒴浆核,花丝合生是楝科。木本复互丝分离,无患子科多水果。叶对无托双翅果,子房三2槭树科。木本互生有树脂,漆树科里全核果。叶对无托雄蕊2,合瓣上房木犀科。叶对有托花整齐,合瓣下房茜草科。单叶无托冠2唇,蒴果有萼玄参科。紫葳科,复对多,合瓣上房花左右。马鞭草科雄蕊4,叶对无托枝四方。单对无托叶全缘,夹竹桃科具乳汁。 种子植物科特征歌 苏铁科 常绿木本棕榈状,树干直立不分枝。叶片螺旋生干顶,羽状深裂柄宿存。雌雄异株花单性,大小孢子叶不同。种子无被核果状,种皮三层多胚乳。银杏科 单属单种古孑遗,落叶乔木茎直立。枝分长短叶扇形,长枝互生短簇生。叶脉平行端二歧,雌雄异株分公母。雄花具梗葇荑状,雌花长梗端二叉。 松科 高大乔木稀草本,常有树脂枝轮生。线形叶扁互或簇,也有235成束。雌雄同株花单性,裸子代表花球形。雄蕊螺旋相互生,雌花珠鳞两胚珠。球果成熟常开裂,种子具翅胚乳多。 杉科 乔木常有树脂生,皮富纤维长条脱。螺旋生叶似对生,雌雄同株花单性。雄花顶生或腋生,螺旋交叉花药多。雌花仅在枝顶长,苞鳞珠鳞紧密合。单年球果熟时裂,拥有孑遗好木材。 柏科 乔木灌木叶常绿,鳞片针刺叶两型。雄球花小雄蕊多,苞鳞珠鳞有结合。球果种子数不定,子叶2枚或更多。常伴清香易成活,木材枝叶用处多。 罗汉松科 常绿高大为木本,叶形多变常互生。雄花穗状生腋顶,雌花具苞独自生。胚珠倒生12枚,种子包于套被中。肉质种托有无柄,子叶2枚胚乳丰。成熟种子挂枝头,恰似念经罗汉僧。

植物学重点内容

植物学重点内容 一、种子和幼苗 1.胚的概念及组成。 胚是新一代植物体的原始体,胚由胚芽、胚根、胚轴、子叶四部分组成。 2.子叶出土和子叶留土幼苗的概念。 子叶出土:在萌发时,胚根首先伸入土中形成主根,接着下胚轴伸长,将子叶和胚芽推出土面。 子叶留土:种子萌发时,下胚轴并不伸长,子叶留在土中,上胚轴、中胚轴和胚芽伸出土面。 二、植物细胞和组织 1.胞间连丝:侵填体细胞周期内质网的概念。 胞间连丝:是穿过细胞壁的细胞质细丝,是连接相邻细胞间的原生质体。 侵填体:原生质和细胞核随着细胞壁的突进而流入其中,后来则常为丹宁,树脂等物质所填充。这种堵塞导管的囊状突起称为侵填体。 细胞周期:持续分裂的细胞,从结束一次分裂开始,到下一次分裂完成为止的整个过程。 内质网:由封闭膜系统以及互相沟通的膜腔而形成的网状结构。分为:光滑型内质网和粗糙型内质网。 2.细胞壁的分类:胞间层、初生壁、次生壁。 3.保护组织的两种类型:表皮━初生保护组织,周皮━次生保护组织。 4.传递细胞的概念及特点,通道细胞的概念。 传递细胞:特化的薄壁细胞,具有胞壁向内生长的特性,行使物质短途运输的生理功能。 特点:其细胞壁向内突起,壁上有丰富的胞间连丝穿过,细胞内有较多的线粒体。 通道细胞:夹杂在厚壁的内皮层细胞中的薄壁组织细胞,往往与原生木质部相对。 5.淀粉粒类型:单粒、复粒、半复粒。 6.分生组织的类型 (1).按来源分类:原生分生组织、初生分生组织、侧生分生组织。 (2).按位置分类:顶端分生组织、侧生分生组织、居间分生组织。 三、植物的根 1.外始式凯氏带的概念。 外始式:由外方发育开始并逐渐向内方发育的形式。 凯氏带:内层细胞的部分次生壁上常木栓化或增厚呈带状,环绕在细胞壁的横向壁和纵向壁上。 2.根与茎的初生结构的组成及特点。 组成:表皮皮层维管柱。 特点:(1).表皮:根的表皮上面具有根毛;而茎的表皮上面具有气孔器的结构。 (2).皮层:①根的皮层占根的比例大;而茎的表皮占茎的比例不大。 ②根具有内皮层,内皮层具有凯氏带;茎一般无内皮层,部分具有淀粉鞘结构。 (3).维管柱:①根具有中柱鞘;而茎无。 ②根的木质部与韧皮部都是外始式;而茎的木质部是内始式,韧皮部是外始式。 ③根的维管束排列是辐射状的;而茎的维管束是开放型的。 四、植物的茎 1.内始式:由内部发育开始并逐渐向外部发育的形式。 2.芽:尚未发育成长的枝或花的原始体。 3.茎的分枝方式:单轴分枝、合轴分枝、假二叉分枝。 4.小麦茎及玉米茎的维管束示意图。(P130) 5.顶端优势:顶芽对腋芽生长的抑制作用,称为顶端优势。 五、植物的叶 1.叶肉组织的分化:栅栏组织、海绵组织。 2.叶序概念:叶在茎上按一定规律排列的方式。类型:对生、互生、轮生、簇生。 六、营养器官的变态

高等数学考研知识点总结

高等数学考研知识点总结 一、考试要求 1、理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形,了解初等函数的概念。 5、理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。 6、掌握(了解)极限的性质,掌握四则运算法则。 7、掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。 8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。1

1、掌握(会)用洛必达法则求未定式极限的方法。 二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系、(2)复合函数: y=f(u), u=,重点:确定复合关系并会求复合函数的定义域、(3)分段函数: 注意,为分段函数、(4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。(5)函数的特性:单调性、有界性、奇偶性和周期性* 注: 1、可导奇(偶)函数的导函数为偶(奇)函数。特别:若为偶函数且存在,则 2、若为偶函数,则为奇函数;若为奇函数,则为偶函数; 3、可导周期函数的导函数为周期函数。特别:设以为周期且存在,则。 4、若f(x+T)=f(x), 且,则仍为以T为周期的周期函数、 5、设是以为周期的连续函数,则, 6、若为奇函数,则;若为偶函数,则 7、设在内连续且存在,则在内有界。 2、极限 (1) 数列的极限: (2) 函数在一点的极限的定义: (3)

植物学复习资料汇总

一、名词解释 3.外始式分化: 答案:根的初生木质成熟方式从外至内渐次发育成熟,称为外始式分化。 4.分化: 答案:细胞在结构和功能上的特化。 5.组织: 答案:来源相同,形态结构相似,执行一定生理功能的细胞群,称为组织。 6.花: 答案:花是适应生殖功能的变态短枝。 7.茎: 答案:来源于胚芽,是植物地上部分的轴状体。 8.变态: 答案:植物器官为了适应某一特殊的环境,改变了原有的功能和形态,这种变化能够遗传下去,称为变态。 9.保护组织: 答案:覆盖于植物体表起保护作用的组织,例如表皮。 10.芯皮: 答案:芯皮是组成雌蕊的基本单位,由叶变态而成。 15.边缘胎座: 答案:单子房,一室,胚珠着生在腹缝线上。 18.休眠: 答案:种子成熟后,在适宜的环境下也不立即萌发,必须经过一段相对静止的时间,才能萌发,这一特性叫种子的休眠。 19.胚珠: 答案:胚珠是芯皮腹缝线上的卵形突起,发育成熟后由珠被、珠心、珠柄、珠孔、合点等部分构成。珠心组织内产生胚囊母细胞,并由其发育成配囊。 20.侵填体: 答案:进入导管内部的瘤状后含物,称为侵填体。 21.双受精: 答案:被子植物受精过程中,进入胚囊的两个精子,一个与卵结合成合子,进一步发育成胚;一个与两个极核结合成三倍体的胚乳核,并进一步发育成胚乳,这一特殊的受精方式,称为双受精。 22.分生组织: 答案:在根尖、茎尖和形成层中,具有持久分生能力的细胞群,称为分生组织。 23.次生保护组织: 答案:由木栓形成层(侧生分生组织)及其衍生细胞形成的具有保护功能的组织。 25.凯氏带: 答案:双子叶植物内皮层细胞的径向壁和上下端壁的栓质带状加厚,称为凯氏带。 26.泡状细胞: 答案:单子叶植物叶片上表皮中,呈扇形分布的某些薄壁细胞,称为泡状细胞。这些细胞失水时,能引起叶片卷曲,防止叶片舒展而进一步失水。 27.内起源: 答案:侧根发生时,由内皮层以内的中柱鞘细胞恢复分生能力,形成侧根源基,进一步突破外面的组织而成,这种起源方式称为内起源。

药用植物学习题A卷(有答案)

精心整理 药用植物学试题(A卷) 2009年药学专业考试题 (请将答案写在答题册上,标好题号)2009-9-25 一、选择题(共30分) A 1 2 3 4 C.质体、液胞、叶绿体 D.液胞、细胞壁、叶绿体 5.十字花科植物的所特有的果实为() A.蓇葖果 B.荚果 C.角果 D.蒴果 6.豆科植物花的雄蕊为()

A.二体雄蕊 B.离生雄蕊 C.二强雄蕊 D.聚药雄蕊 7.光学显微镜下呈现出的细胞结构称(? ) A、亚细胞结构? B、亚显微结构?? C、超微结构?? D、显微结构8.侧根发生在根的()部位 9 10 11 12 13 14 15.菠萝果实的食用部分主要是(? )。 A、花托?? B、花序轴? C、花被?? D、果皮和种皮 16.八角茴香的果实属于(? )。 A、干果?? B、蓇葖果?? C、裂果?? D、以上均是 17.韧皮纤维属于()。

A、薄壁组织? B、分生组织? C、保护组织? D、机械组织18.苹果的果实属于(? )。 A、假果?? B、梨果?? C、肉果?? D、单果?? E、以上均是19荚果,是()科的主要特征 A、伞形科 B、蔷薇科 C、十字花科 D、豆科 20 B 21 22 23 24 25 26 27.细胞壁木栓化( C) 28.细胞壁矿质化( D) A.周皮 B形成层以外 C韧皮部 D皮层以外 29.植物学皮部是指( A ) 30.药用部位为皮部是指( B) 二、填空题(每空1分,共10分)

1.质体可分为三种,分别是叶绿体、有色体、白色 体。 2.输导组织中运输水和无机盐的组织主要存在木质部,蕨类植物、裸子植物的输导组织多为管胞,种子植物的输导组织多为导管。 3.双子叶植物的保护组织其初生构造与次生构造不同,初生构造称为表 四 (?B )10.根的初生韧皮部成熟方式为外始式,而在茎中则为内始式。 四、名词解释(每题2分,共10分) 1.凯氏点 2.纹孔 3.聚合果

考研数学知识点总结

考研数学考点与题型归类分析总结 1高数部分 1.1高数第一章《函数、极限、连续》 求极限题最常用的解题方向: 1.利用等价无穷小; 2.利用洛必达法则 型和 ∞ ∞ 型直接用洛必达法则 ∞ 0、0∞、∞1型先转化为 型或 ∞ ∞ 型,再使用洛比达法则; 3.利用重要极限,包括1 sin lim = → x x x 、e x x x = + → 1 ) 1( lim、e x x x = + ∞ → ) 1(1 lim; 4.夹逼定理。 1.2高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第三章《不定积分》提醒:不定积分?+ =C x F dx x f) ( ) (中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样加深印象:定积分?dx x f) (的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是?+ =C x F dx x f) ( ) (中的那个C,漏掉了C也就漏掉了这1分。 第四章《定积分及广义积分》解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章: 对于?-a a dx x f) (型定积分,若f(x)是奇函数则有?-a a dx x f) (=0; 若f(x)为偶函数则有?-a a dx x f) (=2?a dx x f ) (; 对于?20)( π dx x f型积分,f(x)一般含三角函数,此时用x t- = 2 π 的代换是常用方法。 所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质0 = ?-a a奇函数、? ?= - a a a0 2偶函数 偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3高数第五章《中值定理的证明技巧》 用以下逻辑公式来作模型:假如有逻辑推导公式A?E、(A B)?C、(C D E)?F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。 正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的A?E就可能有A?H、A?(I K)、(A B) ?M等等公式同时存在,

植物学知识点汇总

植物学 第一章绪论 一.1.植物:一般有叶绿素,自养;无神经系统,无感觉,固着不动。 2.植物界被子植物 种子植物雌蕊植物维管束植物 裸子植物高等植物 蕨类植物 苔藓植物颈卵器植物 真菌 细菌菌类植物 卵菌 黏菌 孢子植物地衣地衣植物 褐藻 红藻非维管束植物 蓝藻低等植物 绿藻 黄藻藻类植物 金藻 甲藻 硅藻 裸藻 轮藻 3.生物界的分。

○1二界系统:植物界(光合,固着)、动物界(运动,吞食); ○2三界系统:植物界、动物界、原生生物界(变形虫,具鞭毛,能游动的单细胞群体); ○3四界系统:植物界、动物界、原生生物界、原核生物界(原始核); ○4五界系统:植物界、动物界、原生生物界、原核生物界、菌物界; ○5六界系统:植物界、动物界、原生生物界、原核生物界、菌物界、非细胞生物界(病毒、类病毒) 区别:原生生物界与原核生物界 4.植物作用 □1植物在自然界中的生态系统功能 ◇1合成作用(光合作用): 6CO2+6H2O→C6H12O6+6O2(三大宇宙作用)○1无机物转化为有机物; ○2将光能转化为可贮存的化学能; ○3补充大气中的氧。 ◇2分解作用(矿化作用) 复杂有机物→简单无机物 意义:a、补充光合作用消耗的原料 b、使自然界的物质得以循环 □2植物与环境 ○1净化作用:对大气、水域及土壤的污染具有净化作用,其途径是吸收,吸附,分解或富集。 ○2监测作用:监测植物-对有毒气体敏感的植物。 ○3植物对水土保持、调节气候的作用。 ○4美化环境。

○5其它:杀菌(散发杀菌素);减低噪音等等。 □3植物与人类 人类的衣、食、住、行、医药及工业原料等都直接或间接大部分与植物有关; 第二章植物细胞与组织 一.1.细胞概念 细胞(cell) 是构成植物和动物有机体的形态结构和生命活动的基本单位。 2.细胞学说的内容 ○1植物与动物的组织由细胞构成 ○2所有的细胞由细胞分裂或融合而成 ○3卵细胞和精子都是细胞 ○4单个细胞可以分裂形成组织 病毒是目前已知最小的生命单位,仅由蛋白质外壳包围核酸芯所组成 二.原生质(化学和生命基础) 原生质是细胞活动的物质基础,可以新陈代谢。原生质有着相似的基本成分。 1.水和无机物:原生质含有大量的水,一般占全重的60-90%。原生质中还含有 无机盐及许多呈离子状态的元素,如铁、锌、锰、镁、钾、钠、氯等。 2.有机化合物 ○1蛋白质:蛋白质分子由20多种氨基酸组成;结构蛋白、活性蛋白、储藏蛋白; ○2核酸:含有核糖的核糖核酸(RNA),含有脱氧核糖的脱氧核糖(DNA); ○3脂类:经水解后产生脂肪酸的物质,单纯脂、复合脂、结合脂等; ○4糖类:单糖(葡萄糖、核糖), 双糖(蔗糖、麦芽糖),多糖(纤维素、淀粉) --酶、维生素、激素、抗菌素等。

药用植物学重点总结

药用植物学考试重点总结 1.被子植物特征??? (1)具有真正的花(2)胚珠包在子房内(3)双受精现象(4)孢子体高度发达 2.单双子叶的特征区别??? (1)根:双子叶为直根系,单子叶为须根系子 (2)茎:双子叶维管束环列具形成层,单叶维管束散生不具形成层 (3)叶:双子叶具网状脉,单子叶具平行脉 (4)花:双子叶5或4基数,单子叶3基数 (5)花粉粒:双子叶3个萌发孔,单子叶单个萌发孔 (6)胚:双子叶具两片子叶,单子叶具一片子叶 3. 花冠的类型??? (1)十字形花冠(2)蝶形花冠(3)唇形花冠(4)筒状花冠(5)舌状花冠 (6)漏斗状花冠(7)钟状花冠(8)坛状花冠(9)高脚碟形花冠(10)轮状花冠 4.雄蕊的类型??? (1)离生雄蕊(2)二强雄蕊(3)四强雄蕊(4)单体雄蕊(5)二体雄蕊(6)多体雄蕊(7)聚药雄蕊 5.无限花序??? (1)单花序:总状花序、穗状花序、柔荑花序、肉穗花序、伞房花序、伞形花序、 头状花序、隐头花序 (2)复花序:复总状花序、复穗状花序、复伞形花序、复伞房花序、复头状花序 6.有限花序??? 单歧聚伞花序、二歧聚伞花序、多歧聚伞花序、轮伞花序 7.浆果:由单心皮或合生心皮雌蕊发育而成,外果皮薄,中果皮和内果皮不易区分,肉质多汁,内含一至多粒种子。如葡萄、番茄、枸杞、茄 8.荚果:由单心皮发育形成,成熟时沿腹缝线和背缝线同时裂开成两片,为豆科植物所特有,如扁豆、绿豆、豌豆等 9.原叶体:蕨类植物孢子成熟后,在适宜的条件下萌发形成绿色叶状体,称原叶体 人参Panax ginseng C.A.Meyer 罂粟Papaver somniferum L. 冬虫夏草Cerdyceps sinensis(Berk)Sacc 银杏Ginkgo biloba L. 桑Morus alba L. 何首乌Polygonum multiflerum Thunb 牛膝Achyranthes bibentata B1. 黄连Coptis chinensis Franch 乌头Aconitum carmichaeli Debx 厚朴Magnolia offcinalis Rehd. et Wils. 肉桂Cinnamomum cassia Presl 延胡索Corydalis yanhusuo W.T.Wang 杜仲Eucommia ulmoides Oliv. 决明Cassia tora L. 橘Citrus reticulate Blanco 当归Angelica sinensis(Oliv)Diels

考研数学知识点总结(不看后悔)

考研英语作文万能模板考研英语作文万能模板函数 极限数列的极限特殊——函数的极限一般 极限的本质是通过已知某一个量自变量的变化趋势去研究和探索另外一个量因变量的变化趋势 由极限可以推得的一些性质局部有界性、局部保号性……应当注意到由极限所得到的性质通常都是只在局部范围内成立 在提出极限概念的时候并未涉及到函数在该点的具体情况所以函数在某点的极限与函数在该点的取值并无必然联系连续函数在某点的极限等于函数在该点的取值 连续的本质自变量无限接近因变量无限接近导数的概念 本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限更简单的说法是变化率 微分的概念函数增量的线性主要部分这个说法有两层意思一、微分是一个线性近似二、这个线性近似带来的误差是足够小的实际上任何函数的增量我们都可以线性关系去近似它但是当误差不够小时近似的程度就不够好这时就不能说该函数可微分了不定积分导数的逆运算什么样的函数有不定积分 定积分由具体例子引出本质是先分割、再综合其中分割的作用是把不规则的整体划作规则的许多个小的部分然后再综合最后求极限当极限存在时近似成为精确 什么样的函数有定积分 求不定积分定积分的若干典型方法换元、分部分部积分中考虑放到积分号后面的部分不同类型的函数有不同的优先级别按反对幂三指的顺序来记忆 定积分的几何应用和物理应用高等数学里最重要的数学思想方法微元法 微分和导数的应用判断函数的单调性和凹凸性 微分中值定理可从几何意义去加深理解 泰勒定理本质是用多项式来逼近连续函数。要学好这部分内容需要考虑两个问题一、这些多项式的系数如何求二、即使求出了这些多项式的系数如何去评估这个多项式逼近连续函数的精确程度即还需要求出误差余项当余项随着项数的增多趋向于零时这种近似的精确度就是足够好的考研英语作文万能模板考研英语作文万能模板多元函数的微积分将上册的一元函数微积分的概念拓展到多元函数 最典型的是二元函数 极限二元函数与一元函数要注意的区别二元函数中两点无限接近的方式有无限多种一元函数只能沿直线接近所以二元函数存在的要求更高即自变量无论以任何方式接近于一定点函数值都要有确定的变化趋势 连续二元函数和一元函数一样同样是考虑在某点的极限和在某点的函数值是否相等导数上册中已经说过导数反映的是函数在某点处的变化率变化情况在二元函数中一点处函数的变化情况与从该点出发所选择的方向有关有可能沿不同方向会有不同的变化率这样引出方向导数的概念 沿坐标轴方向的导数若存?诔浦际?通过研究发现方向导数与偏导数存在一定关系可用偏导数和所选定的方向来表示即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续则求导次序可交换 微分微分是函数增量的线性主要部分这一本质对一元函数或多元函数来说都一样。只不过若是二元函数所选取的线性近似部分应该是两个方向自变量增量的线性组合然后再考虑误差是否是自变量增量的高阶无穷小若是则微分存在 仅仅有偏导数存在不能推出用线性关系近似表示函数增量后带来的误差足够小即偏导数存在不一定有微分存在若偏导数存在且连续则微分一定存在 极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂 极值若函数在一点取极值且在该点导数偏导数存在则此导数偏导数必为零

植物学整理笔记

植物学整理笔记 第四章种子植物营养器官的形态、构造和功能 ?种子植物根据其胚胎是否有包被,又可分为裸子植物和被子植物两类。P68 ?种子植物的植物体在构造上一般具有根、茎、叶、花、果实和种子六种器官,其中前3种称为营养器官, 后3种称为繁殖器官。P68 第二节种子萌发与营养器官的发生 ?种子一般由种皮、胚和胚乳三部分组成。P68 ?所谓假种皮,严格地说是指从胚珠基部向外突起,发育形成包裹在种子外面、色泽鲜艳的一种结构(如荔 枝、龙眼)。P69 ?成熟的种子,种皮上一般还有种脐、种孔、种脊,种脐和种孔是每种植物都具有的构造。P69 ?胚包括胚芽、胚根、胚轴和子叶四个部分。P70 ?根据子叶的数目,种子植物可分为三大类:具有两个子叶的植物称为双子叶植物,具有一个子叶的植物称 为单子叶植物,裸子植物的子叶数目不定,通常都是两个以上。P70 ?种子的类型P70 1.无胚乳种子:这类种子只有种皮和胚两部分,子叶肥厚、贮藏大量的营养物质,代替了胚乳的 功能。许多双子叶植物,如刺槐、梨、板栗、油茶、核桃等都是无胚乳种子。 2.有胚乳种子:这类种子由胚、胚乳和种皮三部分组成,胚乳占种子大部分,胚较小,如油桐、 橡胶树、松、稻、麦等。许多双子叶植物,大多数单子叶植物和全部裸子植物的种子,都是有 胚乳种子。 ?种子萌发必须具备的三个条件:充足的水分、适宜的温度、充足的氧气。P72 ?幼苗类型分为两种:子叶出土的幼苗和子叶留土的幼苗。P73 第三节根 ?根是种子植物的重要营养器官,它的主要功能室吸收土壤中的水分以及溶于水中的无机盐类,并通过根的 维管组织输送到地上部分,根的另一个重要作用是具有合成的功能,此外还有固定支撑作用、输导作用、贮藏作用和繁殖作用(营养繁殖)。P75 ?定根(主根、侧根)和不定根P75 1.由种子中的胚根萌发而形成的根,称为定根,包括主根和从主根产生的侧根。 2.有些植物的根还可以从茎、叶、胚轴等部位产生,与胚根无关,称为不定根。蕨类、种子植物 扦插、单子叶植物等的根。不定根也能再产生侧根。 ?根系类型及其在土壤中的分布。P76 1.由主根及其产生的侧根构成的根的总和,称为直根系,有粗大的主根和发达的侧根。通常是深 根性的。因而比较耐干旱。如裸子植物和部分双子叶植物。 2.由不定根形成的根的总和,称为须根系,没有明显的主根,各根粗细和长短一致,侧根很少。 通常是浅根性,因而不太耐旱。如蕨类植物、单子叶植物、部分双子叶植物。常常因为胚根萌 发不久就死亡,而由胚轴上长出的不定根构成。 ?根的生长的三向性:向地性、向肥性、向水性及其应用。 ?树种的根系特征也是选择造林树种的依据之一。选择防护林带的树种,一般应选深根性树种,才具有较强 的抗风力;营造水土保持林,一般宜用侧根发达,固土能力强的树种;营造混交林时,除考虑地上部分的 相互关系外,要选择深根性和浅根性树种合理配置,以利于根系的发育及水分养分的吸收利用。P77 ?植物根系分布在土壤中,它们和根际微生物(细菌、放线菌、真菌、藻类、原生植物等)有着密切的关系, 即高等植物与微生物之间形成了一种互利共生关系,称为共生。根瘤和菌根是高等植物根系和土壤微生物 之间共生关系的两种类型。P89 ?根瘤常见科属:除豆科外,桦木科、木麻黄科、鼠李科、胡颓子科、杨梅科、蔷薇科、苏铁科、罗汉松科

药用植物学知识点重点整理

1.定根和不定根凡有一定生长部位的根,称为定根,包括主根和侧根两种。在主根和主根所产生的侧根以外的部分,如茎、叶、老根或胚轴上生出的根,因其着生位置不固定,故称不定根。块根和块茎 2.小鳞茎和鳞茎小鳞茎:有些植物在叶腋或花序处由腋芽或花芽形成小鳞茎。鳞茎:球形或扁球形,茎极度缩短称鳞茎盘,被肉质肥厚的鳞叶包围;顶端有顶芽,叶腋有腋芽,基部生不定根 3.单身复叶和复叶单身复叶单身复叶是一种特殊形态的复叶。其复叶中也有一个叶轴,但只有一个叶片,叶轴与小叶之间具有关节。如柑、橙等植物的叶。单身复叶可能是三出复叶中的两个侧生小叶退化,仅留一顶生小叶所形成。复叶每一叶柄上有两个以上的叶片叫做复叶。复叶的叶柄称叶轴或总叶柄,叶轴上的叶称为小叶,小叶的叶柄称小叶柄。由于叶片排列方式不同,复叶可分为羽状复叶,掌状复叶和三出复叶三类。 4.二强雄蕊和四强雄蕊四强雄蕊一朵花中具六枚离生雄蕊,两轮着生。外轮两枚花丝较短,内轮四枚花丝较长。这种四长二短的雄蕊称为四强雄蕊。如十字花科植物的雄蕊。 5.无限花序和有限花序无限花序又称总状类花序或向心花序,其开花的顺序是花轴下部的花先开,渐及上部,或由边缘开向中心,如油菜的总状花序。有限花序又称聚伞类花序或离心花序,它的特点与无限花序相反,花序中最顶点或最中心的花先开,渐及下边或周围,如番茄的聚伞花序6.荚果和角果角果:由2心皮合生的子房发育而成,内具假隔膜,种子生于假隔膜上,成熟时两侧腹缝线同时开裂,分为长角果和短角果。荚果;由单心皮发育而成,成熟时沿腹、背缝线同时开裂,为豆科植物特有的果实。 7.圆锥花序和总状花序(圆锥花序:花序轴产生许多分枝,每一分枝各成一总状花序,整个花序似圆锥状,又称援助花序。总状花序:花序轴细长,其上着生许多花梗近等长的小花。) 8.隐头花序和头状花序(隐头花序:花序轴肉质膨大而下凹成中空的球状体,其凹陷的内壁上着生许多五梗的单性小花,顶端仅有1小孔与外界相通,如无花果。 9.聚合果与聚花果一朵花中有许多离生雌蕊,以后每一雌蕊形成一个小果,相聚在同一花托之上,称为聚合果,如白玉兰、莲、草莓的果。如果果实是由整个花序发育而来,花序也参与果实的组成部分,这称为聚花果或称为花序果、复果,如桑、凤梨、无花果等植物的果。核果和坚果10.髓射线髓射线是茎中维管束间的薄壁组织,也称初生射线,由基本分生组织产生。在次生生长中,其长度加长,形成部分次生结构。髓射线位于皮层和髓之间,有横向运输的作用,也是茎内贮藏营养物质的组织11.双受精花粉管到达胚囊后,其末端破裂,释放出的两个精子,一个与

最新植物学复习提纲 含答案

1、植物细胞在结构上与动物细胞的区别? 植物细胞:细胞壁,液泡。 动物细胞:中心体(低等植物细胞也有)。 2、了解植物根和茎的初生生长概念。 根尖的顶端分生组织经过细胞分裂、生长和分化形成成熟的根,这种植物体的生长,直接来自顶端分生组织的衍生细胞的增生和成熟,这种生长过程称为根的初生生长,在初生生长过程中产生的各种成熟组织属于初生组织,它们共同组成根的结构,称为根的初生结构。 茎的顶端分生组织中的初生分生组织所衍生的细胞,经过分裂、生长、分化而形成的组织,称为初生组织,由这种组织形成了茎的初生结构。 3、根和茎的初生结构由外至内可分为哪三部分? 表皮 皮层外皮层 皮层薄壁组织 内皮层(凯氏带) 维管柱中柱鞘原生木质部 初生木质部(外始式) 初生维管组织后生木质部 原生韧皮部 初生韧皮部(外始式) 后生韧皮部 薄壁组织或厚壁组织 表皮 皮层初生木质部 维管柱维管束初生韧皮部 维管形成层 髓和髓射线

4、双子叶植物茎维管形成层的组成及起源。 出现在初生韧皮部和初生木质部之间,是原形成层在初生维管束的分化过程中留下的潜在的分生组织,在以后茎的生长,特别是木质茎的增粗中将其主要作用。 5、凯氏带的概念和作用? 内皮层细胞的部分初生壁上,常有栓质化和木质化增厚成带状的壁结构,环绕在细胞的径向壁和横向壁上,成一整圈,称凯氏带。对水分和溶质有着障碍或限制作用。 6、根毛的形成及利于吸收水分和矿物质的特征。 根毛是由表皮细胞外壁延伸而成,是根的特有结构。 外壁上存在着粘液和果胶质,加强了与土壤的接触,有利于根毛的吸收和固着作用,使根毛对控制土壤侵蚀比根的其他部分可能更为重要和有效。 根毛生长速度较快,但寿命较短,随着分生区衍生细胞的不断增大和分化,以及伸长区细胞不断地向前衍伸,新的根毛也就连续地出现替代枯死的根毛,随着根毛的生长,向前推移,进入新的土壤区域。 7、典型的细胞水势包括哪四个部分? ψw =ψs +ψp+ψg+ψm ψw 为细胞水势,ψs 为溶质势(渗透式),ψp为压力势,ψg为重力势,ψm为衬托势。 8、植物的吐水现象是由什么引起的? 吐水由根压所引起。在自然条件下,当植物吸水大于蒸腾时,或夜晚气孔关闭,水从叶片上散发量减少,即土壤湿度大,根系仍强烈吸水使得植物吸水大于蒸腾,往往可以看到吐水现象。 9、光反应和碳反应的部位?

植物学资料整理汇总

一、细胞壁的结构 1、胞间层(中层):主要成分为果胶质。 2、初生壁(主要成分为纤维素及少量的果胶质、半纤维素):初生壁一般薄而柔软,可塑性大;同时可透水分和溶质 3、次生壁:(形成于细胞停止生长以后,主要成分为纤维素及木质。):较厚,坚硬;分为外、中、内三层;次生壁强烈加厚的cell多数是死细胞。 4、纹孔:细胞壁增厚时,并非全面均匀增厚,其中常留有不增厚的部分称纹孔。实际上并 非真正的孔,而是一些薄壁的区域。分为具缘纹孔(底>口,发生在次生壁强烈加厚 的细胞间。)、单纹孔、半具缘纹孔 5、胞间连丝:在相邻的生活细胞之间,细胞质常以极细的细胞质丝穿过细胞壁而彼此相互 联系,这些穿过细胞壁的细胞质丝叫胞间连丝。 二、分生组织(也称形成组织) 1、原分生组织(顶端分生组织) 位置:根尖、茎尖的先端 细胞特点:1)形小、壁薄、质浓、核大、无或仅具小液泡,排列整齐,无胞间隙;2)终身保持分裂能力。 2、初生分生组织(顶端分生组织) 位置:根、茎前最幼嫩部位,位于原分生组织之后。 特点:一方面cell仍能分裂;一方面cell开始初步分化 3、次生分生组织:仅见于裸子植物和双子叶植物。(侧生分生组织) 位置:根、茎中轴的侧面。 来源:成熟cell脱分化而成。 两类形成层→使根茎增粗。木栓形成层→形成周皮 4、居间分生组织 基本组织、)三、薄壁组织(营养组织分布:较广,6种器官均有。 特点:(1)都是活cell、壁薄、核小、形大、液泡大、细胞间隙大;(2)cell分化程度浅,具潜在的转化能力,具较大的可塑性。 类型:同化组织、贮藏组织、储水组织、吸收组织、通气组织、传递cell 四、输导组织 木质部:由几种不同类型的细胞构成的一种复合组织,包括管胞和导管分子、纤维、薄壁细胞等。 韧皮部:复合组织,包含筛管分子或筛胞、伴胞、薄壁细胞、纤维等不同类型的细胞。 1、导管分子与管胞位于木质部(死细胞)

最新药用植物学重点汇总

知识点***:熟悉植物细胞的基本结构 原生质体和非生命物质 知识点***:原生质体主要包括哪些部分? 细胞质、细胞核(核膜、核液、核仁、染色质)、质体、线粒体、高尔基体、核糖体、溶酶体 知识点****:植物药的有效成分大多存在于液泡中 知识点***: 1)后含物为什么是生药显微鉴定和理化鉴定的重要依据之一? 后含物种类很多,其形态和性质往往随物种的不同而异,因而后含物是生药显微鉴定和理化鉴定的重要依据之一 2)淀粉粒类型和典型植物 单粒淀粉、复粒淀粉、半复粒淀粉 知识点****:草酸钙结晶类型和典型生药 单晶、针晶、簇晶、砂晶、柱晶 知识点***:植物细胞区别于动物细胞的特征有哪些? 液泡、质体、细胞壁 知识点****:如何观察特化的细胞壁 知识点*:农业上常利用减数分裂的特性进行农作物品种间的杂交来培育新品种。 知识点*:可以采用细胞培养的方法获得新植株或代谢产物,也可以通过将优良性状的目的基因或次生代谢产物关键酶基因转入植物细胞,获得优良品系或高含量的药用成分。 知识点**:植物组织的概念 来源、功能相同,形态构造相似,彼此密切联系的细胞群 知识点***:熟悉植物保护组织的类型和特点 初生保护组织(表皮):通常不含叶绿体,外壁常角质化,并在表面形成连续的角质层,防止水分散失 次生保护组织(周皮):木栓层、木栓形成层、栓内层 知识点***:熟悉植物分泌组织的类型和特点 外部分泌组织、内部分泌组织 知识点***:熟悉植物机械组织的类型和特点 厚角组织、厚壁组织

知识点***:熟悉植物输导组织的类型和特点 管胞和导管、筛管、伴胞和筛胞 知识点**:熟悉植物维管束类型 知识点***:植物的器官分哪几部分 根、茎、叶、花、果实、种子 知识点**:植物根的特性 植物体生长在地下的营养器官,具有向地向湿和背光的特性,水分和无机盐通过根进入植株各个部分 知识点***:根的概念区分 主根和侧根,定根和不定根,直根系和须根系 知识点***:变态根的类型及典型药材 贮藏根:圆锥状:白芷、桔梗 圆柱状:菘蓝、丹参 圆球状:芜菁 块根:何首乌、天门冬 支柱根:薏苡、玉米、甘蔗 攀援根:常春藤 气生根:石斛、榕树 呼吸根:水松、红树 水生根:浮萍、睡莲 寄生根:菟丝子、桑寄生 知识点***:茎的外部形态 通常呈圆柱形,也有一些呈方形,三棱形,扁平形,一般为实心,也有空心,茎上生叶的部分称节,两节之间的部分为节间,茎顶端和节处叶腋都生有芽。 知识点***:茎上用于鉴别物种、生长年龄的特征 叶痕、托叶痕、芽鳞、皮孔 知识点***:茎的本质特征及与根的区别 茎上有节和节间 地下茎和根类似,但其上有节和节间,并具有退化鳞叶及顶芽、侧芽等,可与根区别 知识点***:变态茎中典型的药材 根茎:白茅、人参、三七 块茎:半夏、天麻 球茎:慈菇 鳞茎:百合、贝母、洋葱

2020年考研政治重要知识点总结

2020年考研政治重要知识点总结 一、和谐世界理念的内涵 和谐世界是继走和平发展道路之后,我国在国际上提出的一个重要理念。XX年4月,******参加亚非峰会时第一次提出这个理念。同年7月,******出访莫斯科,“和谐的世界”被写入《中俄关于21世纪国际秩序的联合声明》。XX年9月,******在出席联合国成立60周年首脑会议时,系统阐述了和谐世界的理念。在他发表的题为《努力建设持久和平、共同繁荣的和谐世界》的重要讲话中,对建立和谐世界提出四点基本主张。此后“和谐世界”这个新名词,频频出现在重大国际场合,得到越来越多国家的理解和赞同。 和谐世界理念的内涵主要包括: (1)政治上,不同社会制度和发展模式相互借鉴,建设各国和谐共处、公正、民主的世界。 (2)经济上,提倡进行互利合作,实现全球经济和谐发展。 (3)文明方面,提倡不同文明开展对话、取长补短,倡导开放、包容的精神。 (4)安全方面,提出实行全球新安全观,建立和平、稳定的世界。 二、和谐世界理念的依据 1.建立和谐世界符合人类进步的时代潮流 进入新世界“要和平、促发展、谋合作是时代的主旋律。”国际局势总体稳定,经济全球化的深化促进了生产要素在全球范围内流动的加快。为中国走和平发展道路提供了机遇,也建立和谐世界提供了条件。我国提出走和平发展的道路,就是要争取和抓住世界和平与发展自己,又以自己的发展来促进世界和平。 2.推动建立和谐世界,是为了适应世界和平与发展面临的挑战 进入新世纪,和平与发展遇到了新问题,不稳定不确定因素在增多,新挑战新威胁在增加。面对当今纷繁复杂的世界,我们应该重视和谐,强调和谐,促进和谐。 3.和谐世界是和谐社会在外交领域的延伸 我国在建设高水平小康社会的过程中,遇到了一系列问题。在经济领域国内生

植物学大一整理~!!资料

植物学1.植物的分类 (1)自然分类法:恩格勒哈钦松克朗奎斯系统(2)人为分类法:科属种 2.依据景观特征用途分类 行道树: 香樟樟科,樟属 无患子无患子科,无患子属银杏银杏科,银杏属 枫树槭树科,槭树属 合欢豆科,合欢属 垂柳杨柳科,柳属 榕树桑科,榕属 蒲葵棕榈科,蒲葵属 广玉兰木兰科,木兰属 苦楝楝科,楝属梧桐梧桐科,梧桐属 构树桑科,构属 南洋杉南洋杉科,南洋杉属 圆柏柏科,圆柏属 广玉兰木兰科,木兰属 鹅掌楸木兰科,鹅掌楸属 毛白杨杨柳科,杨属 二球悬铃木(英桐)悬铃木科,悬铃木 属(PS:一球美桐三球法桐) 绿篱植物: 黄杨黄杨科,黄杨属 大叶黄杨卫矛科,卫矛属小叶黄杨黄杨科,黄杨属侧柏柏科,侧柏属 木槿锦葵科,木槿属 金叶女贞木犀科,女贞属卫矛卫矛科,卫矛属 贴梗海棠蔷薇科,木瓜属法国冬青忍冬科,荚迷属 紫叶小檗小檗科,小檗属 枸骨冬青科,冬青属 火棘蔷薇科,火棘属 罗汉松罗汉松科,罗汉松属红花檵木金缕梅科,檵木属珊瑚树忍冬科,荚迷属 攀缘植物: 牵牛旋花科,牵牛属 紫藤豆科,紫藤属 葡萄葡萄科,葡萄属 爬山虎葡萄科,爬山虎属扶芳藤卫矛科,卫矛属木香蔷薇科,蔷薇属 野蔷薇蔷薇科,蔷薇属凌霄紫葳科,凌霄属 绿萝天南星科,绿萝属金银花忍冬科,忍冬属花叶蔓长春夹竹桃科,蔓长春花属络石夹竹桃科,络石属 木通木通科,木通属 探春木犀科,素馨属 丝瓜葫芦科,丝瓜属 吊兰百合科,吊兰属 过路黄报春花科,珍珠菜属 虎耳草虎耳草科,虎耳草属 垂盆草景天科,佛甲草属 铁线莲毛茛科,铁线莲属 花坛,盆栽花卉: 菊花菊科,菊属 非洲菊菊科,大丁草属月季蔷薇科,蔷薇属百合百合科,百合属 唐菖蒲鸢尾科,唐菖薄属鹤望兰旅人蕉科,鹤望兰属

药用植物学知识点梳理

《药用植物学》知识点梳理 绪论 药用植物学的研究内容及任务 凡能治疗、预防疾病和对人体有保健功能的植物称为药用植物。药用植物学是利用植物学知识、方法来研究和应用药用植物的一门科学。药用植物学的主要研究内容和任务是: (1)鉴定中药的原植物种类,确保药材来源的准确。 (2)调查研究药用植物资源,为扩大利用和保护资源奠定基础。 (3)利用学科规律寻找及开发新的药物资源。 第一章植物的细胞 1、原生质体 原生质体是细胞内有生命的物资的总称,包括细胞质、细胞核、质体、线粒体、高尔基体、核糖体、溶酶体等。 细胞质 细胞质为半透明、半流动、无固定结构的基质,位于细胞壁与细胞核之间,是原生质体的基本组成部分。 细胞质膜(质膜)的功能: (1)选择透性;(2)渗透现象;(3)调节代谢的作用 细胞器 细胞器是细胞质内具有一定形态结构、成分和特定功能的微小器官,也称拟器官。 细胞核包括核膜、核仁、核液、染色质。 质体包括叶绿体、有色体和白色体;叶绿体主要由蛋白质、类脂、核糖核酸和色素所组成,其所含的色素有叶绿素甲、叶绿素乙、胡萝卜素和叶黄素。 线粒体是细胞中碳水化合物、脂肪和蛋白质等物质进行氧化的场所,其对物质的合成和盐类的积累等起着很大的作用。 液泡是植物细胞所特有的结构,也是万微细胞和动物细胞在结构上的明艳区别之一。 内质网可分为两种类型:一种是膜的表面附着许多核糖核蛋白(核糖体)的小颗粒,称粗糙内质网,其主要功能是合成输出蛋白(分泌蛋白);另一种是内质网上没有核糖核蛋白的小颗粒,这种内质网称光滑内质网,主要功能是多样的,如合成、运输等。2.细胞后含物 后含物一般是指细胞原生质体在代谢过程中产生的非生命物质。其中包括淀粉、菊糖、蛋白质、脂肪和晶体。 晶体:(1)草酸钙结晶,包括单晶、针晶、簇晶、砂晶、拄晶;(2)碳酸钙结晶。 两者的区别是碳酸钙结晶加醋酸或稀盐酸则溶解,有二氧化碳旗袍产生,而草酸钙结晶则没有。 生理活性物质 生理活性物质是一类能对细胞内的生化反应和生理活动起调节作用的物质的总称,包括酶、维生素、植物激素和抗生素等。 3.细胞壁 细胞壁是包围在原生质体外面的具有一定硬度和弹性的薄层,是由原生质体分泌的非生命物质(纤维素、果胶质和半纤维素)形成的。

相关文档
最新文档