高三数学一轮复习 函数与导数解析版)

高三数学一轮复习 函数与导数解析版)
高三数学一轮复习 函数与导数解析版)

数 学

B 单元 函数与导数

B1 函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为

f (x )=?

????x (1-x ),0≤x ≤1,sin πx ,1

16+sin π6=5

16

. 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )

A .y =e -

x B .y =x 3 C .y =ln x D .y =|x |

2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.

(1)求p (100);

(2)当n ≤2014时,求F (n )的表达式;

(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.

21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以

恰好取到0的概率为p (100)=11

192

.

(2)F (n )=?????n ,1≤n ≤9,

2n -9,10≤n ≤99,

3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.

(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;

当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ????

?0,1≤n ≤9,

k ,n =10k +b ,11,n =100.

1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ?????0,1≤n ≤8,

k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *

,b ∈N ,

n -80,89≤n ≤98,

20,n =99,100.

由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.

当n =90时,p (90)=g (90)F (90)=9171=1

19

.

当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k

20k +9

关于k

单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8

169

.

又8169<119,所以当n ∈S 时,p (n )的最大值为119

. 3.[2014·山东卷] 函数f (x )=1

log 2x -1

的定义域为( )

A .(0,2)

B .(0,2]

C .(2,+∞)

D .[2,+∞)

3.C [解析] 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2.

B2 反函数

5.[2014·全国卷] 函数y =ln(3

x +1)(x >-1)的反函数是( ) A .y =(1-e x )3(x >-1) B .y =(e x -1)3(x >-1) C .y =(1-e x )3(x ∈R ) D .y =(e x -1)3(x ∈R )

5.D [解析] 因为y =ln(3

x +1),所以x =(e y -1)3.因为x >-1,所以y ∈R ,所以函数y =ln(3

x +1)(x >-1)的反函数是y =(e x -1)3(x ∈R ).

B3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )

A .y =e -

x B .y =x 3 C .y =ln x D .y =|x |

2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )

A .f (x )=1

x

2 B .f (x )=x 2+1

C .f (x )=x 3

D .f (x )=2-

x

4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.

19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -

x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.

(2)若关于x 的不等式mf (x )≤e -

x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.

(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)

0+3x 0)成立.试比较e a -1与a e -

1的大小,并证明你的结论.

19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -

x +e x =f (x ), 所以f (x )是R 上的偶函数.

(2)由条件知 m (e x +e -x -1)≤e -

x -1在(0,+∞)上恒成立.

令 t =e x (x >0),则 t >1,所以 m ≤-t -1

t 2-t +1

1

t -1+1

t -1

+ 1

对任意 t >1成立.

因为t -1+1

t -1

+ 1≥2

(t -1)·1t - 1

+1=3, 所以 -1t -1+1t -1

+ 1

≥-1

3,

当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是?

???-∞,-1

3. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1

e

x +3a (x 2-1).

当 x ≥1时,e x -1

e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调

递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -

1-2a .

由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,

当且仅当最小值g (1)<0, 故 e +e -1

-2a <0, 即 a >e +e -

12

.

令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1

x . 令 h ′(x )=0, 得x =e -1.

当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;

当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).

注意到h (1)=h (e)=0,所以当x ∈(1,e -1)?(0,e -1)时,h (e -1)≤h (x )

所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈???

?e +e

-1

2,e ?(1,e)时, h (a )<0,

即a -1<(e -1)ln a ,从而e a -

1

1;

②当a =e 时,e a -1=a e -

1;

③当a ∈(e ,+∞)?(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -

1.

综上所述,当a ∈????e +e -1

2,e 时,e a -1

1;当a ∈(e ,+∞)

时,e a -

1>a e -

1.

15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:

①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“?b ∈R ,?a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;

③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;

④若函数f (x )=a ln(x +2)+x

x 2+1

(x >-2,a ∈R )有最大值,则f (x )∈B .

其中的真命题有________.(写出所有真命题的序号)

15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.

取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值

域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.

当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0?[-M ,M ],故③正确.

对于f (x )=a ln(x +2)+x

x 2+1

(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使

得函数f (x )有最大值,只有a =0,此时f (x )=x

x 2+1

(x >-2).易知f (x )∈????-12,12,所以存在正数M =1

2,使得f (x )∈[-M ,M ],故④正确

21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.

(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.

21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].

当a ≤1

2

时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,

因此g (x )在[0,1]上的最小值是g (0)=1-b ;

当a ≥e

2

时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,

因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e

2

时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .

综上所述,当a ≤1

2

时,g (x )在[0,1]上的最小值是g (0)=1-b ;

当12<a <e

2

时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e

2

时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .

(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.

同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.

由(1)知,当a ≤1

2

时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;

当a ≥e

2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.

所以12<a <e 2

.

此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.

所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.

B4 函数的奇偶性与周期性 4.[2014·重庆卷] 下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+x

C .f (x )=2x -2-x

D .f (x )=2x +2-

x

4.D [解析] A 中,f (-x )=-x -1,f (x )为非奇非偶函数;B 中,f (-x )=(-x )2-x =x 2

-x ,f (x )为非奇非偶函数;C 中,f (-x )=2-x -2x =-(2x -2-

x )=-f (x ),f (x )为奇函数;D 中,

f (-x )=2-

x +2x =f (x ),f (x )为偶函数.故选D.

14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为

f (x )=?

????x (1-x ),0≤x ≤1,sin πx ,1

16+sin π6=5

16

. 5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -1

2x B .x 3sin x

C .2cos x +1

D .x 2+2x

5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-

x -2x

=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.

9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )

A .{1,3}

B .{-3,-1,1,3}

C .{2-7,1,3}

D .{-2-7,1,3}

9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;

当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )

A .f (x )=1

x

2 B .f (x )=x 2+1

C .f (x )=x 3

D .f (x )=2-

x

4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对. 15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.

15.-32

[解析] 由偶函数的定义可得f (-x )=f (x ),即ln(e -

3x +1)-ax =ln(e 3x +1)+ax ,

∴2ax =-ln e 3x =-3x ,∴a =-3

2

.

19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -

x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.

(2)若关于x 的不等式mf (x )≤e -

x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.

(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)

0+3x 0)成立.试比较e a -1与a e -

1的大小,并证明你的结论.

19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -

x +e x =f (x ),

所以f (x )是R 上的偶函数.

(2)由条件知 m (e x +e -x -1)≤e -

x -1在(0,+∞)上恒成立. 令 t =e x (x >0),则 t >1,所以 m ≤-t -1

t 2-t +1=

1

t -1+1

t -1

+ 1

对任意 t >1成立.

因为t -1+1

t -1

+ 1≥2

(t -1)·1t - 1

+1=3, 所以 -1t -1+1t -1

+ 1

≥-1

3,

当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是?

???-∞,-1

3. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1

e

x +3a (x 2-1).

当 x ≥1时,e x -1

e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调

递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -

1-2a .

由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,

当且仅当最小值g (1)<0, 故 e +e -1

-2a <0, 即 a >e +e -

12

.

令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1

x . 令 h ′(x )=0, 得x =e -1.

当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;

当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).

注意到h (1)=h (e)=0,所以当x ∈(1,e -1)?(0,e -1)时,h (e -1)≤h (x )

所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈???

?e +e

-1

2,e ?(1,e)时, h (a )<0,

即a -1<(e -1)ln a ,从而e a -

1

1;

②当a =e 时,e a -1=a e -

1;

③当a ∈(e ,+∞)?(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -

1.

综上所述,当a ∈????e +e -1

2,e 时,e a -1

1;当a ∈(e ,+∞)

时,e a -

1>a e -

1.

12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )

A .-2

B .-1

C .0

D .1

12.D [解析] 因为f (x +2)为偶函数,所以其对称轴为直线x =0,所以函数f (x )的图像的对称轴为直线x =2.又因为函数f (x )是奇函数,其定义域为R ,所以f (0)=0,所以f (8)=f (-

4)=-f (4)=-f (0)=0,故f (8)+f (9)=0+f (-5)=-f (5)=-f (-1)=f (1)=1.

15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.

15.3 [解析] 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3.

5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )

A .f (x )g (x )是偶函数

B .|f (x )|g (x )是奇函数

C .f (x )|g (x )|是奇函数

D .|f (x )g (x )|是奇函数

5.C [解析] 因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·

g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;

|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;

f (-x )|

g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 13.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=?

????-4x 2

+2,-1≤x <0,x , 0≤x <1,则f ????32=________. 13.1 [解析] 由题意可知,f ????32=f ????2-12f ????-12=-4????-122+2=1.

B5 二次函数 10.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.

10.?

??

?-

22,0 [解析] 因为f (x )=x 2

+mx -1是开口向上的二次函数,所以函数的最大值只能在区间端点处取到,所以对于任意x ∈[m ,m +1],都有f (x )<0,只需?

????f (m )<0,

f (m +1)<0,

解得?

??-

22<m <2

2,-3

2

<m <0,即m ∈????-2

2,0.

14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.

14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2????sin x -122+32,所以当sin x =12时函数y =cos 2x +2sin x 取得最大值,最大值为3

2

.

B6 指数与指数函数 5.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b

5.B [解析] 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c 0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )

图1-2

A B

C D 图1-3

8.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.

选项A 中的函数为y =????13x

,其函数图像不正确;选项B 中的函数为y =x 3

,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.

3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 121

3

,则( )

A .a >b >c

B .a >c >b

C .c >b >a

D .c >a >b

3.D [解析] 因为0

3

<0,

c =log 1213>log 121

2

=1,所以c >a >b .

15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=????

?e x -

1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取

值范围是________.

15.(-∞,8] [解析] 当x <1时,由e x -

1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,

综合可知x 的取值范围为x ≤8.

5.,[2014·山东卷] 已知实数x ,y 满足a x y 3 B .sin x >sin y

C .ln(x 2+1)>ln(y 2+1)

D.1x 2+1>1y 2+1

5.A [解析] 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A. 7.[2014·陕西卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( )

A .f (x )=x 3

B .f (x )=3x

C .f (x )=x 12

D .f (x )=????12x

7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=????

12x

为单调递减函数,所以排除选项D. 12.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.

12.10 [解析] 4a =2,即22a =2,可得a =12,所以lg x =12,所以x =101

2=10.

7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )

A .d =ac

B .a =cd

C .c =ad

D .d =a +c

7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.

9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )

A .[5,2 5 ]

B .[10,2 5 ]

C .[10,4 5 ]

D .[25,4 5 ]

9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,

所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,

所以|P A |+|PB |∈[10,2 5],故选B.

4.[2014·天津卷] 设a =log 2π,b =log 12

π,c =π-

2,则( )

A .a >b >c

B .b >a >c

C .a >c >b

D .c >b >a

4.C [解析] ∵a =log 2π>1,b =log 12π<0,c =1

π

2<1,

∴b

B7 对数与对数函数 12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________.

12.(-∞,0) [解析] 函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).

11.[2014·安徽卷] ????1681-3

4+log 354+log 345

=________.

11.278 [解析] 原式=????????23

4-34 +log 3????54×45=????23-3=278. 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )

A B

C D

图1-2

8.D [解析] 只有选项D 符合,此时0

8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )

图1-2

A B

C D 图1-3

8.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.

选项A 中的函数为y =????13x

,其函数图像不正确;选项B 中的函数为y =x 3

,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.

13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3

+log 2a 4+log 2a 5=________.

13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,

所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25

所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.

3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 121

3

,则( )

A .a >b >c

B .a >c >b

C .c >b >a

D .c >a >b

3.D [解析] 因为0

3

<0,

c =log 1213>log 121

2=1,所以c >a >b .

6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )

图1-1

A .a >1,x >1

B .a >1,0

C .01

D .0

6.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.

7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c

7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.

9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3

9.D [解析] 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3

b

=1,所以a +b =(a

+b )????4a +3b =7+4b a +3a b ≥7+2 4b a ·3a b =7+4 3,当且仅当4b a =3a b ,即a =4+2 3,b =2 3+3时等号成立,故其最小值是7+4 3.

B8 幂函数与函数的图像 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )

A B

C D

图1-2

8.D [解析] 只有选项D 符合,此时0

8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )

图1-2

A B

C D 图1-3

8.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.

选项A 中的函数为y =????13x

,其函数图像不正确;选项B 中的函数为y =x 3

,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.

15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若?x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.

15.????0,1

6 [解析] “?x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到

的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为???

?0,16.

13.、[2014·江苏卷] x ∈[0,3)时,f (x )=

?

???x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值

范围是________.

13.????0,12 [解析] 先画出y =x 2-2x +1

2在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的

图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.

函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈???

?0,12.

15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=????

?e -,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取

值范围是________.

15.(-∞,8] [解析] 当x <1时,由e x -

1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,

综合可知x 的取值范围为x ≤8.

6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )

图1-1

A .a >1,x >1

B .a >1,0

C .01

D .0

6.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.

B9 函数与方程

6.[2014·北京卷] 已知函数f (x )=6

x -log 2x ,在下列区间中,包含f (x )的零点的区间是

( )

A .(0,1)

B .(1,2)

C .(2,4)

D .(4,+∞)

6.C [解析] 方法一:对于函数f (x )=6

x -log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据

零点的存在性定理知选C.

方法二:在同一坐标系中作出函数h (x )=6

x 与g (x )=log 2x 的大致图像,如图所示,可得

f (x )的零点所在的区间为(2,4).

7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )

A .c ≤3

B .3<c ≤6

C .6<c ≤9

D .c >9

7.C [解析] 由f (-1)=f (-2)=f (-3)得?????-1+a -b +c =-8+4a -2b +c ,

-8+4a -2b +c =-27+9a -3b +c ?

?????-7+3a -b =0,19-5a +b =0??

????a =6,

b =11, 则f (x )=x 3+6x 2+11x +

c ,而0

10.[2014·重庆卷] 已知函数f (x )=?????1x +1-3,x ∈(-1,0],

x ,x ∈(0,1],

且g (x )=f (x )-mx -m 在

(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )

A.????-94,-2∪????0,12

B.????-114,-2∪????0,12

C.????-94,-2∪????0,23

D.????-114,-2∪???

?0,23 10.A [解析] 作出函数f (x )的图像,如图所示.函数g (x )=f (x )-mx -m 的零点为方程f (x )-mx -m =0的根,即为函数y =f (x )与函数y =m (x +1)图像的交点.而函数y =m (x +1)

的图像恒过定点P (-1,0),由图易知有两交点的边界有四条,其中k PO =0,k P A =1

2

,k PB =

-2,第四条为过P 点的曲线y =1x +1-3的切线PC .将y =m (x +1)(m ≠0)代入y =1

x +1

-3,

得mx 2+(2m +3)x +m +2=0,则由Δ=(2m +3)2-4m (m +2)=4m +9=0,得m =-9

4

,即k PC

=-9

4

,所以由图可知满足条件的实数m 的取值范围是????-94,-2∪????0,12.

15.[2014·福建卷] 函数f (x )=?

????x 2

-2,x ≤0,

2x -6+ln x ,x >0的零点个数是________.

15.2 [解析] 当x ≤0时,f (x )=x 2-2,

令x 2-2=0,得x =2(舍)或x =-2,

即在区间(-∞,0)上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x .

作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像,

则两函数图像只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上可知,函数f (x )的零点的个数是2. 9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )

A .{1,3}

B .{-3,-1,1,3}

C .{2-7,1,3}

D .{-2-7,1,3}

9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;

当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 13.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=

?

???x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值

范围是________.

13.????0,12 [解析] 先画出y =x 2-2x +1

2在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的

图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.

函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈???

?0,12.

4.[2014·江西卷] 已知函数f (x )=?

????2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )

A.14

B.1

2

C .1

D .2 4.A [解析] 因为f (-1)=21=2,f (2)=a ·22=4a =1,所以a =14

.

15.[2014·浙江卷] 设函数f (x )=?

???

?x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.

15.2 [解析] 令t =f (a ),若f (t )=2,则t 2+2t +2=2 满足条件,此时t =0或t =-2,

所以f (a )=0或f (a )=-2,只有-a 2=-2满足条件,故a = 2.

21.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;

(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.

21.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).

(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.

(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;

x 1=-1+1-a a ,x 2=-1-1-a a

.

若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),

(x 1,+∞)是增函数;

当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.

若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;

当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.

(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.

当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-5

4≤a <0.

综上,a 的取值范围是???

?-5

4,0∪(0,+∞). 14.[2014·天津卷] 已知函数f (x )=?

????|x 2

+5x +4|,x ≤0,

2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零

点,则实数a 的取值范围为________.

14.(1,2) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像

相切时,联立?

????-ax =-x 2

-5x -4,

a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-4×1×4

=0,解得a =1或a =9(舍去),∴当y =a |x |与y =f (x )的图像有四个交点时,有1

B10 函数模型及其应用 8.[2014·北京卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最

佳加工时间为( )

图1-2

A .3.50分钟

B .3.75分钟

C .4.00分钟

D .4.25分钟

8.B [解析] 由题意得?????0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得????

?a =-0.2,b =1.5,c =-2,

∴p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值.

10.[2014·陕西卷] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )

图1-2

A .y =12x 3-1

2x 2-x

B .y =12x 3+1

2x 2-3x

C .y =1

4x 3-x

D .y =14x 3+1

2

x 2-2x

10.A [解析] 由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解

析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-1

2,c =-1,∴y =f (x )

=12x 3-1

2

x 2-x .

B11 导数及其运算

21.、、[2014·陕西卷] 设函数f (x )=ln x +m

x ,m ∈R .

(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x

3

零点的个数;

(3)若对任意b >a >0,f (b )-f (a )

b -a <1恒成立,求m 的取值范围.

21.解:(1)由题设,当m =e 时,f (x )=ln x +e

x ,则f ′(x )=x -e x 2,

∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;

当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +e

e =2,

∴f (x )的极小值为2.

(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x

3(x >0),

令g (x )=0,得m =-1

3x 3+x (x >0),

设φ(x )=-1

3

x 3+x (x ≥0),

则φ′(x )=-x 2+1=-(x -1)(x +1),

当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;

当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.

∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=2

3

.

又φ(0)=0,结合y =φ(x )的图像(如图所示),可知

①当m >2

3

时,函数g (x )无零点;

②当m =2

3时,函数g (x )有且只有一个零点;

③当0

3时,函数g (x )有两个零点;

④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >2

3

时,函数g (x )无零点;

当m =2

3或m ≤0时,函数g (x )有且只有一个零点;

当0

3

时,函数g (x )有两个零点.

(3)对任意的b >a >0,f (b )-f (a )

b -a <1恒成立,

等价于f (b )-b

x -x (x >0),

∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -m

x 2-1≤0在(0,+∞)上恒成立,

得m ≥-x 2

+x =-????x -122

+1

4

(x >0)恒成立, ∴m ≥1

4????对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是????14,+∞.

20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;

(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.

令f ′(x )=0,得x 1=-1-4+3a

3,

x 2=-1+4+3a 3,且x 1

所以f ′(x )=-3(x -x 1)(x -x 2).

当x x 2时,f ′(x )<0; 当x 10.

故f (x )在? ????-∞,-1-4+3a 3和 ? ????

-1+4+3a 3,+∞内单调递减,

在?

??

??-1-4+3a 3,

-1+4+3a 3内单调递增.

(2)因为a >0,所以x 1<0,x 2>0,

①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.

②当0

因此f (x )在x =x 2=-1+4+3a

3

处取得最大值.又f (0)=1,f (1)=a ,

所以当0

当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1

(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;

(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)

20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.

令f ′(x )=0,得x =-

22或x =22

. 因为f (-2)=-10,f ?

???-

22=2,f ???

?2

2=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ?

??

?

22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),

则y 0=2x 3

0-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),

整理得4x 30-6x 2

0+t +3=0, 设g (x )=4x 3-6x 2+t +3,

则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).

当x 变化时,g (x )与g ′(x )的变化情况如下:

所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.

结合图像知,当g (x )有3个不同零点时,有?

????g (0)=t +3>0,

g (1)=t +1-0,解得-3

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

高考数学导数解法知识分享

高考中数学导数的解法 1、导数的背景: (1)切线的斜率;(2)瞬时速度. 如一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____(答:5米/秒) 2、导函数的概念:如果函数()f x 在开区间(a,b )内可导,对于开区间(a,b )内的每一个0x ,都对应着一个导数 ()0f x ' ,这样()f x 在开区间(a,b )内构成一个新的函数,这一新的函数叫做()f x 在开区间(a,b )内的导函数, 记作 ()0 lim x y f x y x ?→?'='=?()() lim x f x x f x x ?→+?-=?, 导函数也简称为导数。 提醒:导数的另一种形式0 0x x 0)()(lim )(0 x x x f x f x f y x x --='='→= 如(1)*?? ?>+≤== 1 1)(2 x b ax x x x f y 在1=x 处可导,则=a =b 解:?? ?>+≤==1 1)(2 x b ax x x x f y 在1=x 处可导,必连续1)(lim 1 =-→x f x b a x f x +=+ →)(lim 1 1)1(=f ∴ 1=+b a 2lim 0 =??- →?x y x a x y x =??+→?0lim ∴ 2=a 1-=b (2)*已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)h h a f h a f h 2) ()3(lim --+→?; (2)h a f h a f h ) ()(lim 20-+→? 分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。利用函数f(x)在a x =处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。 解:(1)h h a f h a f h 2) ()3(lim --+→

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

江苏省2015届高三数学一轮复习备考试题:导数及其应用

江苏省2015年高考一轮复习备考试题 导数及其应用 一、填空题 1、(2014年江苏高考)在平面直角坐标系xOy 中,若曲线),(y 2为常数b a x b ax +=过点)5,2(P -,且该曲线在点P 处的切线与直线0327x =++y 平行,则b a +的值是 ▲ . 2、(2013年江苏高考)抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界)。若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 。 3、(2015届江苏苏州高三9月调研)函数()321122132 f x ax ax ax a =+-++的图象经过四个象限的充要条件是 ▲ 4、(南京市2014届高三第三次模拟)设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对 任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2 a 2+c 2的最大值为 ▲ 5、(苏锡常镇四市2014届高三5月调研(二))直线y = kx 与曲线2e x y =相切,则实数k = ▲ 6、(南京、盐城市2014届高三第二次模拟(淮安三模))设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ 7、(江苏省南京市第一中学2014届高三12月月考)已知R 上的可导函数)(x f 的导函数)(x f '满足:)(x f '+)(x f 0>,且1)1(=f 则不等式>)(x f 11 -x e 的解是 . 8、(江苏省阜宁中学2014届高三第三次调研)若函数()32f x x ax bx c =+++有极值点12,x x ,且 ()11f x x =,则关于x 的方程()()()2320f x af x b ++=的不同实根个数是 ▲ . 9、(江苏省如东县掘港高级中学2014届高三第三次调研考试)函数12ln y x x =+的单调减区间为__________ 10、(江苏省睢宁县菁华高级中学2014届高三12月学情调研)已知函数()f x ,()g x 满足(1)2f =,(1)1f '=,(1)1g =,(1)1g '=,则函数()(()1)()F x f x g x =-?的图象在1x =处的切线方程为 ▲ . 11、曲线2(1)1()e (0)e 2 x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ .

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高三数学重点知识:导数及其应用

2019年高三数学重点知识:导数及其应用查字典数学网高中频道收集和整理了2019年高三数学重点知识:导数及其应用,以便高中生在高考备考过程中更好的梳理知识,轻松备战。祝大家暑假快乐。 一基础再现 考点87简单复合函数的导数 1.曲线在点处的切线方程为____________。 2.已知函数和的图象在处的切线互相平行,则=________. 3.(宁夏、海南卷)设函数 (Ⅰ)讨论的单调性;(Ⅱ)求在区间的最大值和最小值. 考点88定积分 4.计算 5.(1);(2) 6. 计算= 7.___________ 8.求由曲线y=x3,直线x=1,x=2及y=0所围成的曲边梯形的面积. 二感悟解答 1.答案: 2.答案:6 3.解:的定义域为. 当时,;当时,;当时,.

从而,分别在区间,单调增,在区间单调减. (Ⅱ)由(Ⅰ)知在区间的最小值为. 又. 所以在区间的最大值为. 4.答案:6 5.答案:(1) 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 (2)利用导数的几何意义:与x=0,x=2所围图形是以(0,0)为圆心,2为半径的四分之一个圆,其面积即为(图略) 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

相关文档
最新文档