文丘里流量计等的工作原理

文丘里流量计等的工作原理
文丘里流量计等的工作原理

文丘里流量计等的基本原理

文丘里流量计等的基本原理

充满文丘里流量计管道的流体,当它流经文丘里流量计管道内的节流件时,流速将在文丘里流量计节流件处形成局部收缩,因而流速增加,静压力降低,于是在文丘里流量计节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当文丘里流量计节流装置形式或文丘里流量计管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。

文丘里流量计等的流量方程

式中 qm--质量流量,kg/s;

qv--体积流量,m3/s;

C--流出系数;

ε--可膨胀性系数;

β--直径比,β=d/D;

d--工作条件下文丘里流量计节流件的孔径,m;

D--工作条件下上游文丘里流量计管道内径,m;

△P--差压,Pa;

ρ

--上游流体密度,kg/m3。

l

由上式可见,流量为C、ε、d、ρ、△P、β(D)6个参数的函数,此6个参数可分为实测量[d,ρ,△P,β(D)]和统计量(C、ε)两类。

(1)实测量

1)d、D 式(4.1)中d与流量为平方关系,其精确度对流量总精度影响较大,误差值一般应控制在±0.05%左右,还应计及工作温度对材料热膨胀的影响。标准规定管道内径D必须实测,需在上游管段的几个截面上进行多次测量求其平均值,误差不应大于±0.3%。除对数值测量精度要求较高外,还应考虑内径偏差会对节流件上游通道造成不正常节流现象所带来的严重影响。因此,当不是成套供应节流装置时,在现场配管应充分注意这个问题。

2)ρρ在流量方程中与△P是处于同等位置,亦就是说,当追求差压变送器高精度等级时,绝不要忘记ρ的测量精度亦应与之相匹配。否则△P的提高将会被ρ的降低所抵消。

3)△P 差压△P的精确测量不应只限于选用一台高精度差压变送器。实际上差压变送器能否接受到真实的差压值还决定于一系列因素,其中正确的取压孔及引压管线的制造、安装及使用是保证获得真实差压值的关键,这些影响因素很多是难以定量或定性确定的,只有加强制造及安装的规范化工作才能达到目的。

(2)统计量

1)C 统计量C是无法实测的量(指按标准设计制造安装,不经校准使用),在现场使用时最复杂的情况出现在实际的C值与标准确定的C值不相符合。它们的偏离是由设计、制造、安装及使用一系列因素造成的。应该明确,上述各环节全部严格遵循标准的规定,其实际值才会与标准确定的值相符合,现场是难以完全满足这种要求的。

应该指出,与标准条件的偏离,有的可定量估算(可进行修正),有的只能定性估计(不确定度的幅值与方向)。但是在现实中,有时不仅是一个条件偏离,这就带来非常复杂的情况,因为一般资料中只介绍某一条件偏离引起的误差。如果

许多条件同时偏离,则缺少相关的资料可查。

2)ε可膨胀性系数ε是对流体通过文丘里流量计节流件时密度发生变化而引起的流出系数变化的修正,它的误差由两部分组成:其一为常用流量下ε的误差,即标准确定值的误差;其二为由于流量变化ε值将随之波动带来的误差。一般在低静压高差压情况,ε值有不可忽略的误差。当△P/P≤0.04时,ε的误差可忽略不计。402951380

温压补偿气体涡轮流量计的工作原理

温压补偿气体涡轮流量计的工作原理 温压补偿气体涡轮流量计是气体涡轮流量计中的一种,它作为最通用的流量计具有高精度、重复性好等优点,广泛用于高压、高温、低温及微流量的测量中。 温压补偿气体涡轮流量计的工作原理,温压补偿气体涡轮流量计是一种速度式流量计,它是由涡轮、轴承、前置放大器、显示仪表组成。被测流体冲击涡轮叶片,使涡轮旋转,涡轮的转速随流量的变化而变化,即流量大,涡轮的转速也大,https://www.360docs.net/doc/0b12779572.html,再经磁电转换装置把涡轮的转速转换为相应频率的电脉冲,经前置放大器放大后,送入显示仪表进行计数和显示,根据单位时间内的脉冲数和累计脉冲数即可求出瞬时流量和累积流量。当流体沿着管道的轴线方向流动、并冲击涡轮叶片时,流经涡轮变送器的流体体积流量。 温压补偿气体涡轮流量计的硬件电路设计,温压补偿气体涡轮流量计以单片机为控制核心,温压补偿气体涡轮流量计包括流量信号采集模块、温度和压力信号采集模块、键盘以及显示模块5个部分。流量信号采集模块使用温压补偿气体涡轮流量计采集流量信号,经过外围电路处理后送入单片机,测量其频率,用于流量计算;温度和压力采集模块将采集到的温度和压力通过a/d转换后送入单片机,用于气体的密度计算,对气体流量进行补偿;键盘模块实现对仪表参数的设置、各显示内容之间的转换操作;显示模块实现瞬时流量、累积流量、温度和压力的显示。 温压补偿气体涡轮流量计吸取了国内外流量仪表先进技术优化

设计,综合了气体力学、流体力学、电磁学等理论而自行研制的集温度、压力、流量传感器和智能流量积算仪于一体的新一代高精度、高可靠性的气体精密计量仪表,广泛适用于天然气、煤制气、液化气、轻烃气体等气体的计量。

文丘里洗涤器工作原理

简介 文丘里洗涤器又称文丘里管除尘器。由文丘里管凝聚器和除雾器组成。除尘过程可分为雾化、凝聚和除雾等三个阶段,前二阶段在文丘里管内进行,后一阶段在除雾器内完成。文氏管是一种投资省、效率高的湿法净化设备。根据文氏管喉管供液方式的不同,可分为外喷文氏管和内喷文氏管。第一级文氏管的收缩管材质通常采用铸铁,喉管为铸铁或钢内衬石墨,扩张管为硬铅,也可以用硬PVC或钢内衬橡胶。第二级文氏管材质通常全部采用硬PVC。 工作原理 文丘里管包括收缩段、喉管和扩散段。含尘气体进入收缩段后,流速增大,进入喉管是达到最大值。洗涤液从收缩段或喉管加入,气液两相间相对流速很大,液滴在高速气流下雾化 文丘里洗涤器 ,气体湿度达到饱和,尘粒被水湿润。尘粒与液滴或尘粒之间发生激烈碰撞和凝聚。在扩散段,气液速度减小,压力回升,以尘粒为凝结核的凝聚作用加快,凝聚成直径较大的含尘液滴,进而在除雾器内被捕集。文丘里管构造有多种型式。按断面形状分为圆形和方形两种;按喉管直径的可调节性分为可调的和固定的两类;按液体雾化方式可分为预雾化型和非雾化型;按供水方式可分为径向内喷、径向外喷、轴向喷水和溢流供水等四类。适用于去除粒径0.1-100μm的尘粒,除尘效率为80-99%,压力损失范围为1.0-9.0kPa,液气比取值范围为0.3-1.5L/m3。对高温气体的降温效果良好,广泛用于高温烟气的除尘、降温,也能用作气体吸收器。 工艺参数 文氏管的主要工艺参数是炉气在喉管中的流速、液气比和压力降。其中最关键的参数是喉管气速,只要压力降允许,喉管气速以大于等于60m/s为宜。对于以捕集粒径较粗的尘为主 文丘里洗涤器 要目的的文氏管,宜采用较低的气速和压力降;对于捕集粒径较小的酸雾和As2O3为主要目的,则宜采用较高的气速和较高的压力降。

质量流量计工作原理的学习

质量流量计工作原理的学习 质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。质量流量计是一种重要的流量测量仪表。质量流量计是采用感热式测量。 流体的体积是流体温度和压力的函数,它是一个因变量,而流体的质量是一个不随时间、空间温度、压力的变化而变化的量。如前所述,常用的流量计中,如孔板流量计、涡轮流量计、涡街流量计、电磁流量计、转子流量计、超声波流量计和椭圆齿轮流量计等的流量测量值是流体的体积流量。在科学研究、生产过程控制、质量管理、经济核算和贸易交接等活动中所涉及的流体量一般多为质量。采用上述流量计仅仅测得流体的体积流量往往不能满足人们的要求,通常还需要设法获得流体的质量流量。以前只能在测量流体的温度、压力、密度和体积等参数后,通过修正、换算和补偿等方法间接地得到流体的质量。这种测量方法,中间环节多,质量流量测量的准确度难以得到保证和提高。随着现代科学技术的发展,相继出现了一些直接测量质量流量的计量方法和装置,从而推动了流量测量技术的进步。 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P ?正比于2 qρ,如图1所示,密度计 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为

文丘里洗涤器原理和作用

新型文丘里洗涤器 文丘里洗涤器的应用十分广泛———除尘、除沫、气体净化。传统的文丘里洗涤器由收缩管、喉管、扩散管组成。高压液体通过喷嘴形成大液滴喷入气流中,在喉管处较高的气速和剪切力的作用下雾化成细小的液滴,与气体中的尘粒接触使其分离。但是,最近国外设计的新型文丘里洗涤器却采用了与传统文丘里洗涤器大相径庭的结构形式。 新型文丘里洗涤器采用管缝隙作为气—液接 触区,其最大特点是,液体的雾化不是由高速气流产生的,而是由液体喷嘴形成的,喉部只是提供气—液间的密切接触。因此高除尘(雾)效率不是以高气体压降为代价的。最初的管—隙式文丘里洗 〓$/〓硫酸工业%00;年第$期 涤器见图!。 图!最初的管—隙式文丘里洗涤器 在一根垂直管内,上部装有两个高压液体喷 嘴,中部由两根水平细管构成一道狭窄的缝隙,水平细管下面装有一个柱形调节器,与之形成两道缝隙。洗涤液通过高压喷嘴雾化,在狭缝处与气体相接触,操作时,由一个传动装置上下移动调节器以改变缝隙宽度即喉部截面积大小,以在气体流量波动的情况下达到稳定的分离效果。设备的下游采 用离心式除沫器(旋风分离器)除去气流中夹带的雾沫。在管—隙式文丘里洗涤器的基础上又开发了复式喷嘴"#$%&'"%()*%&文丘里洗涤器,其结 构见图+。

图+"#$%&'"%()*%&文丘里洗涤器 "#$%&'"%()*%&文丘里洗涤器采用若干个 平行缝隙作为喉部,运行时无需调节缝隙宽度,从而进一步简化了结构。更重要的是,这种洗涤器采用了近年来国外开发的脉冲复式喷嘴,运行时以单式(只用洗涤液)和复式(同时采用压缩空气和洗涤液)的方式交互雾化。它在喷嘴的喷头中装有两个共振盒,自动产生共振。这种雾化技术的最大优点是,加速和减速交替出现,以诱发更剧烈地湍动,从而极大地提高分离效率。此外,脉冲可阻止尘粒在喉部沉降。缝隙和喷嘴的数量取决于流量的大小。由于在管缝隙处几乎没有气—液间的能量交换,所以这种洗涤器可以达到极高的分离效率,而气体压降却趋于零。 德国拜耳公司技术部曾于!,,,-./0中试装 置上测定了"#$%&'"%()*%&文丘里洗涤器的分 离效果。结果表明,对于,1!2!,!-直径的尘粒, 分离效率达到3+42!,,4,并且能耗低于其它文 丘里洗涤器。 与此同时,还进行了用氢氧化钠溶液吸收二氧 化硫的试验。试验气体流量为!,,,-./0、!(56 +) 分别为!,,和7,,-8/-.,采用9*值为!!17的氢 氧化钠溶液进行吸收。结果表明,复式喷嘴文丘里洗涤器的二氧化硫吸收率明显高于压力喷嘴文丘 里洗涤器,而两者压降相当,见图.。此外,零压降时复式喷嘴文丘里洗涤器所需的传质单元数为压 力喷嘴文丘里洗涤器的一半。 图.56 +吸收试验结果 !、.压力喷嘴,进气!(56 +)分别为7,,、!,,-8/-. +、:复式喷嘴,进气!(56 +)分别为7,,、!,,-8/-. 综上所述,复式喷嘴"#$&%'"%()*%&文丘 里洗涤器具有结构简单,分离效率高、能耗低、 可同时除尘和分离气体、操作弹性大、可靠性高、结构紧凑等优点,非常适合于现有装置的改造。(瑾)

浮子流量计的工作原理

浮子流量计的工作原理 1、浮子流量计简述 浮子流量计又称转子流量计,是将浮子垂直放在一个竖直的锥管内,流体在锥管内自下而上流过,使浮子在平衡位置上静止下来,按其平衡位置的高度来进行流量的测量。浮子流量计在测量过程中始终保持浮子前后的压降不变,通过改变流通面积来进行流量的测量,故它又被称为面积流量计或变面积流量计或恒压降流量计。 浮子流量计按其制造材料的不同,可分为玻璃管浮子流量计和金属管浮子流量计两大类。玻璃管浮子流量计结构简单,浮子的位置清晰可见,刻度直观,成本低廉,通常只用于常温常压下透明介质的流量测量。这种流量计一般只有就地指示,不能远传流量信号。金属管浮子流量计由于采用金属锥管,流量计工作时无法看到浮子的位置和工作情况,需要用间接的方法给出浮子的位置,因此按其传输信号的不同,又可分为远传型(电远传和气远传)和就地指示型两种。这种流量计常用于高温、高压、不透明及腐蚀性介质的流量测量,由于其具有很高的可靠性,因此常用于工业过程控制领域。 2、工作原理 浮子流量计的流量检测元件是由一只自下而上扩大的垂直锥形管和一个沿着锥管轴线上下移动的浮子所组成。工作原理如图所示,被测流体从下向上经过锥管和浮子形成环形流通面积(以下简称环通面积)时,浮子上下两端产生的压差形成浮子上升的力,当浮子所受上升力大于浸在流体中浮子的重量时,浮子便上升,环通面积随之增大,环通面积处流体流速下降,浮子上下两端压差降低,作用于浮子的上升力也随之减小,直到上升力等于浸在流体中浮子的重量时,浮子便稳

定在某一高度。浮子在锥管中的高度和通过的流量有一一对应的关系。浮子流量计的体积流量公式为 式中,α——浮子流量计的流量系数﹔ Df——零刻度处锥管的内径﹔ h———浮子高度﹔ φ——锥管的锥角﹔ Vf-—浮子的体积,m3; ρf———流体的密度,kg/ m3; ρf——浮子密度,kg/m3; Af--—浮子最大迎流面积,m2 流量qv,与浮子高度h之间为一一对应的近似线性关系。在进行稍大流量测量时,为达到必要的环通面积,减少φ角,势必要增加锥管的长度。因此,早期的金属管浮子流量计口径、长度不一,口径越大,长度也越大,达到500~600mm 长,非常笨重,制造和使用都不方便。现在已有多种方式进行线性化处理,各口径的金属管浮子流量计大都已统一制造成250mm长度的短管型流量计。 对于玻璃管浮子流量计,h-qv的对应关系直接刻度在流量计的锥管上。为使刻度均匀,制造时也将锥管的锥角减小一些,长度增大一些。 3、刻度换算 从上式可知,对于不同的流体,由于密度ρ不同,所以qv与h之间的对应关系也将不同,原来的流量刻度将不再适用。原则上浮子流量计应该用实际流体介质进行标定。但是,对于浮子流量计的制造厂家来说,由于受到标定设备的限制,不可能对所有的浮子流量计都根据用户的要求进行实际流体标定,所以浮子流量计用来测量非标定流体时,应该对浮子流量计的读数进行修正,这就是浮子流量计的刻度换算。这--过程可以由生产厂家按用户要求换算完成后直接刻度在浮子流量计的刻度盘上或玻璃锥管上。对于远传型浮子流量计,其远传信号也进行同样的刻度换算。

科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性 中国计量研究院流量室李旭 一、工作原理 如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在测量管上,在O点两边方向相反,大小相同,为: δFc = 2ωVδm 因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。 图1 科里奥利力的形成图2 早期科氏力质量流量计 二、结构 早期设计的科氏力质量流量计的结构如图2所示。将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。这种流量计只是在试验室中进行了试制。 在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。 我们常见的测量管的形式有以下几种:S形测量管、U形测量管、双J形测

量管、B形测量管、单直管形测量管、双直管形测量管、Ω形测量管、双环形测量管等,下面我们分别对其结构作一简单介绍。 1. S形测量管质量流量计 如图3所示,这种流量计的测量系统由两根平行的S形测量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。 图3 S形质量流量计结构 这种质量流量计的工作原理及工作过程,如图4所示。 图4 无流动时位移传感器的输出 当测量管中流体不流动时,两根测量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B 所示,由图中可以看出,两传感器测得的相位差为零。当测量管内流体以速度V 流动时,流体中任意值点的流速,可认为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx 保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动 速度Vx为零;

文丘里流量计等的工作原理

文丘里流量计等的基本原理 文丘里流量计等的基本原理 充满文丘里流量计管道的流体,当它流经文丘里流量计管道内的节流件时,流速将在文丘里流量计节流件处形成局部收缩,因而流速增加,静压力降低,于是在文丘里流量计节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当文丘里流量计节流装置形式或文丘里流量计管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。 文丘里流量计等的流量方程 式中 qm--质量流量,kg/s; qv--体积流量,m3/s; C--流出系数; ε--可膨胀性系数; β--直径比,β=d/D; d--工作条件下文丘里流量计节流件的孔径,m; D--工作条件下上游文丘里流量计管道内径,m; △P--差压,Pa; ρ --上游流体密度,kg/m3。 l 由上式可见,流量为C、ε、d、ρ、△P、β(D)6个参数的函数,此6个参数可分为实测量[d,ρ,△P,β(D)]和统计量(C、ε)两类。 (1)实测量 1)d、D 式(4.1)中d与流量为平方关系,其精确度对流量总精度影响较大,误差值一般应控制在±0.05%左右,还应计及工作温度对材料热膨胀的影响。标准规定管道内径D必须实测,需在上游管段的几个截面上进行多次测量求其平均值,误差不应大于±0.3%。除对数值测量精度要求较高外,还应考虑内径偏差会对节流件上游通道造成不正常节流现象所带来的严重影响。因此,当不是成套供应节流装置时,在现场配管应充分注意这个问题。 2)ρρ在流量方程中与△P是处于同等位置,亦就是说,当追求差压变送器高精度等级时,绝不要忘记ρ的测量精度亦应与之相匹配。否则△P的提高将会被ρ的降低所抵消。 3)△P 差压△P的精确测量不应只限于选用一台高精度差压变送器。实际上差压变送器能否接受到真实的差压值还决定于一系列因素,其中正确的取压孔及引压管线的制造、安装及使用是保证获得真实差压值的关键,这些影响因素很多是难以定量或定性确定的,只有加强制造及安装的规范化工作才能达到目的。 (2)统计量 1)C 统计量C是无法实测的量(指按标准设计制造安装,不经校准使用),在现场使用时最复杂的情况出现在实际的C值与标准确定的C值不相符合。它们的偏离是由设计、制造、安装及使用一系列因素造成的。应该明确,上述各环节全部严格遵循标准的规定,其实际值才会与标准确定的值相符合,现场是难以完全满足这种要求的。 应该指出,与标准条件的偏离,有的可定量估算(可进行修正),有的只能定性估计(不确定度的幅值与方向)。但是在现实中,有时不仅是一个条件偏离,这就带来非常复杂的情况,因为一般资料中只介绍某一条件偏离引起的误差。如果

转子流量计的原理及计算【最新版】

转子流量计的原理及计算 1概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1)

1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。 当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为Wf(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为Sf(m2),转子体积Vf(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密

涡轮流量计的工作原理与结构

1.涡轮流量计的工作原理 涡轮流量计的原理示意图如图3—1所示.在管道中心安放一个涡轮,两端由轴承支撑.当流体通过管道时,冲击涡轮叶片,对涡轮产生驱动力矩,使涡轮克服摩擦力矩和流体阻力矩而产生旋转.在一定的流量范围内,对一定的流体介质粘度,涡轮的旋转角速度与流体流速成正比.由此,流体流速可通过涡轮的旋转角速度得到,从而可以计算得到通过管道的流体流量. 此主题相关图片如下: 按此查看图片详细信息 涡轮的转速通过装在机壳外的传感线圈来检测.当涡轮叶片切割由壳体内永久磁钢产生的磁力线时,就会引起传感线圈中的磁通变化.传感线圈将检测到的磁通周期变化信号送入前置放大器,对信号进行放大、整形,产生与流速成正比的脉冲信号,送入单位换算与流量积算电路得到并显示累积流量值;同时亦将脉冲信号送入频率电流转换电路,将脉冲信号转换成模拟电流量,进而指示瞬时流量值. 涡轮流量计总体原理框用见图3—2所示. 2.涡轮流量计的构造 流体从机壳的进口流入.通过支架将一对袖承固定在管中心轴线上,涡轮安装在轴承上.在涡轮上下游的支架上装有呈辐射形的整流板,以对流体起导向作用,以避免流体自旋而改变对涡轮叶片的作用角度.在涡轮上方机壳外部装有传感线圈,接收磁通变化信号. 下面介绍主要部件. (1)涡轮 涡轮由导磁不锈钢材料制成,装有螺旋状叶片.叶片数量根据直径变化而不同,2-24片不等.为了使

涡轮对流速有很好的响应,要求质量尽可能小. 对涡轮叶片结构参数的一般要求为:叶片倾角10°-15°(气体),30°-45°(液体);叶片重叠度P为1—1.2;叶片与内壳间的间隙为0.5—1mm. (2)轴承 涡轮的轴承一般采用滑动配合的硬质合金轴承,要求耐磨性能好. 由于流体通过涡轮时会对涡轮产生一个轴向推力,使铀承的摩擦转矩增大,加速铀承磨损,为了消除轴向力,需在结构上采取水力平衡措施,这方法的原理见图3—3所示.由于涡轮处直径DH略小于前后支架处直径Ds,所以,在涡轮段流通截而扩大,流速降低,使流体静压上升 P,这个 P的静压将起到抵消部分轴向推力的作用. 图3-3 水力平衡原理示意图 此主题相关图片如下: 按此查看图片详细信息 (3)前置放大器 前置放大器由磁电感应转换器与放大整形电路两部分组成,示意图见图3—4所示.

涡街与涡轮流量计区别

涡街流量计:,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。无可动机械零件,因此可靠性高,维护量小。仪表参数能长期稳定. 涡轮流量计: 是一种速度式仪表,它具有精度高,重复性好,结构简单,运动部件少,耐高压,测量范围宽,体积小,重量轻,压力损失小,维修方便等优点,用于封闭管道中测量低粘度气体的体积流量和总量。在石油,化工,冶金,城市燃气管网等行业中具有广泛的使用价值。 涡轮流量计是采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。 涡街流量计是根据卡门涡街原理设计制造的。应用流体振荡原理来测量流量的,流体在管道中经过涡街流量变送器时,在三角柱的旋涡发生体后上下交替产生正比于流速的两列旋涡,旋涡的释放频率与流过旋涡发生体的流体平均速度及旋涡发生体的特征有关系。 涡轮是通过叶轮转动切割磁感线来输出信号然后经过信号处理和输出来得到的流量计量。 涡街是通过检测卡门漩涡然后处理输出信号得到的流量计量。 涡轮流量计是速度式流量计中的主要种类,其原理是当被测流体流过涡轮流量计传感器时,在流体的作用下,叶轮受力旋转,其转速与管道平均流速成正比,同时,叶片周期性地切割电磁铁产生的磁力线,改变线圈的磁通量,根据电磁感应原理,在线圈内将感应出脉动的电势信号,即电脉冲信号,此电脉动信号的频率与被测流体的流量成正比。简单讲通俗地将,就是跟家用水表差不多,介质一流动就推动一个轮子在转,从而能根据转的情况来计算流量。 涡街流量计的里面没有轮子,它的原理是在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡,如右图所示,旋涡列在旋涡发生体下游非对称地排列。其原理图如下: 1

转子流量计工作原理

转子流量计工作原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

转子流量计工作原理 转子流量计又称浮子流量计,是变面积式流量计的一种,它是由一个锥形管和一个置于锥形管内可以上下自由移动的转子(也称浮子)构成。转子流量计本体可以用两端法兰、螺纹或软管与测量管道连接,垂直安装在测量管道上。当流体自下而上流入锥管时,被转子截流,这样在转子上、下游之间产生压力差,转子在压力差的作用下上升,这时作用在转子上的力有三个:流体对转子的动压力(向上)、转子在流体中的浮力(向上)和转子自身的重力(向下)。 流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都平行于管轴。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。此时,重力=动压力+浮力。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知的常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。这就是转子流童计的计量原理。 转子稳定时公式: ()t f V g P A ρρ-=?? (1-1) 其中:t ρ为转子的密度;f ρ为流体的密度;V 为转子的体积;P ?为转子前后的压差(P ?是一常数);A 为转子的最大截面积。 图1 转子流量计测量原理 其具体工作过程为:流量增加→浮子节流作用产生的压差力也增加→浮子上升→浮子与锥形管壁间的环形流通面积增大→流过此环隙的流速降低→压差力随之下降,直到

质量流量计工作原理

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计 ?正比于2 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合 v 构成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合

如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘测得的输出信号与流体体积流量 v 法运算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为 (1-3) 图2体积流量计和密度计组合图3 节流式流量计和其他体积流量计组合除上述几种组合式质量流量计外,在工业上还常采用温度、压力自动补偿式质量流量计。由于流体密度是温度和压力的函数,而连续测量流体的温度和压力要比连续测量流体的密度容易,因此,可以根据已知被测流体密度与温度和压力之间的关系,同时测量流体的体积流量以及温度和压力值,通过运算求得质量流量或自动换算成标准状态下的体积流量。但这种测量方式不适合高压或温度变化范围大的情形,因为在此条件下自动补偿检测出来的温度、压力很困难。 2.直接式质量流量计 直接式质量流量计的输出信号直接反映质量流量,其测量不受流体的温度、压力、密度变化的影响。直接式质量流量计有许多种形式。

转子流量计原理介绍

转子流量计的原理介绍 简介 转子流量计又称浮子流量计,通过量测设在直流管道内的转动部件的(位置 )来推算流量的装置。它可以测量液体、气体、蒸汽的流量,宜测中小管径4-250mm 的流量。压力损失小,且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段的长度要求不高,其测量精度±2%左右,受被测的液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。 工作原理: 转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由移动的转子。转子流量计当测量流体的流量时,被测流体从锥形管下端流入,流体的流动冲击着转子,并对它产生一个作用力(这个力的大小随流量大小而变化);当流量足够大时,所产生的作用力将转子托起,并使之升高。同时,被测流体流经转子与锥形管壁间的环形断面,这时作用在转子上的力有三个:流体对转子的动压力、转子在流体中的浮力和转子自身的重力。流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都沿平行于管轴的方向。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。 为了使转子在在锥形管的中心线上下移动时不碰到管壁,通常采用两种方法:一种是在转子中心装有一根导向芯棒,以保持转子在锥形管的中心线作上下运动,另一种是在转子圆盘边缘开有一道道斜槽,当流体自下而上流过转子时,一面绕过转子,同时又穿过斜槽产生一反推力,使转子绕中心线不停地旋转,就可保持转子在工作时不致碰到管壁。转子流量计的转子材料可用不锈钢、铝、青铜等制

质量流量计工作原理精编版

质量流量计工作原理精 编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计连 ?正比于2 v 续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合构 v 成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合 如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘法运测得的输出信号与流体体积流量 v 算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为

涡轮流量计工作原理及技术参数.

涡轮流量计工作原理及技术参数 一、工作原理 流体流经传感器壳体,由于叶轮的叶片与流向有一定的角度,流体的冲力使叶片具有转动力矩,克服摩擦力矩和流体阻力之后叶片旋转,在力矩平衡后转速稳定,在一定的条件下,转速与流速成正比,由于叶片有导磁性,它处于信号检测器(由永久磁钢 和线圈组成的磁场中,旋转的叶片切割磁力线,周期性的改变着线圈的磁通量,从而使线圈两端感应出电 脉冲信号,此信号经过放大器的放大整形,形成有一定幅度的连续的矩形脉冲波,可远传至显示仪表,显示出流体的瞬时流量和累计量。在一定的流量范围内,脉冲频率f与流经传感器的流体的瞬时流量Q成正比,流量方程为:Q=3600×f/k 式中: f——脉冲频率[Hz]; k——传感器的仪表系数[1/m],由校验单给出。若以[1/L]为单位Q=3.6×f/k Q——流体的瞬时流量(工作状态下[m3/h];https://www.360docs.net/doc/0b12779572.html, 3600——换算系数。 每台传感器的仪表系数由制造厂填写在检定证书中,k值设入配套的显示仪表中,便可显示出瞬时流量和累积总量。 二、技术参数 公称口径:管道式:DN4~DN200 插入式:DN100~DN2000 精度等级:管道式:±0.5级,±1.0级

插入式:±1.5级、±2.5级 高精度的可达0.2级 环境温度:-20℃~50℃ 介质温度:测量液体:-20℃~120℃ 测量气体:-20℃~80℃ 大气压力:86KPa~106KPa 公称压力: 1.6 Mpa 、2.5Mpa 、6.4Mpa 、25Mpa 防爆等级:ExdIIBT4 连接方式:螺纹连接、法兰夹装、法兰连接、插入式等 直管段要求:气体:上游直管段应≥10DN,下游直管段应≥5DN 液体:上游直管段应≥20DN,下游直管段应≥5DN 插入式:上游直管段应≥20DS,下游直管段应≥7DS(DS为管道实测内径 显示方式:(1远传显示:脉冲输出、电流输出(配显示仪表 (2现场显示:8位LCD 显示累积流量,单位(m3 4位LCD显示瞬时流量,单位(m3/h、电池电量、频率、流速 (3温度压力补偿型: A、显示标准瞬时流量及标准累计流量 B、显示当前压力、温度、电池电压 输出功能:

涡轮流量传感器的工作原理分析

涡轮流量传感器的工作原理分析 涡轮流量传感器的工况流量信号可以远传输送至显示仪表,功能优势独特,性能齐全,广泛应用于石油、有机液体、无机液、液化气、天然气和低温流体测量中。 涡轮流量传感器的工作原理,涡轮流量传感器的工作原理是当流体流经传感器壳体时,由于叶轮的叶片与流向有一定的角度,流体的冲力使叶片具有转动力矩,克服摩擦力矩和流体阻力之后叶片旋转,在力矩平衡后转速稳定,在一定的条件下,转速与流速成正比,由于叶片有导磁性,涡轮流量传感器处于信号检测器的磁场中,旋转的叶片切割磁力线,周期性的改变着线圈的磁通量,从而使线圈两端感应出电脉冲信号,此信号经过放大器的放大整形,形成有一定幅度的连续的矩形脉冲波,可远传至显示仪表,显示出流体的瞬时流量和累计量。 涡轮流量传感器的涡轮选用铜材质,涡轮选用铜材质原因有:1.铜的延展性或者说柔韧性比较好,https://www.360docs.net/doc/0b12779572.html,稍微变形不能将它折断。2.作为金属它的化学性质没有铁活泼。不会因为发生置换反应而腐蚀。锌合金的延展性和抗腐蚀性能应该都没有铜好。 涡轮流量传感器的日常保养工作 1、使用时,应保持被测介质的清洁,不含纤维和颗粒等杂质。 2、涡轮流量传感器的维护周期一般为半年。检修清洗时,请注意勿损伤测量腔内的零件,特别是叶轮。装配时请看好导向件及叶轮的位置关系。

4、涡轮流量传感器不用时,应清洗内部介质,吹干后且在涡轮流量传感器两端加上防护套,防止尘垢进入,然后置于干燥处保存。 5、配用的过滤器应定期清洗,不用时应清洗内部的介质,同涡轮流量传感器一样,加防尘套,置于干燥处保存。 涡轮流量传感器的日常维护直接影响这它的使用寿命,其实涡轮流量传感器在安装前也应严格注意,如用口吹或手拨叶轮,使其快速旋转观察有无显示,当有显示时再安装涡轮流量传感器。若无显示,应检查有关各部分,排除故障。

射流器工作原理

射流器工作原理 Last updated on the afternoon of January 3, 2021

射流器(文丘里混合器\水射器\气水、液混合器)文丘里混合器,又称为喷射式混合器,是一种本身没有运动部件,它是由喷嘴、吸入室、扩压管三部分组成。具有一定压力的工作流体通过喷嘴高速喷出,使压力能转化速度能,在喷嘴出口区域形成真空,从而将被抽介质吸引出来,二股介质在扩压管内进行混合及能量交换,并使速度能还原成压力能,最后以高于大气压力而排出。文丘里混合器是一种集吸气和混合反应于一体的设备。独特的混合气室设计,强劲的水流与空气或液体混合喷射,使搅拌均匀、完全,产生的气泡多而细腻,促使气体溶解效率提高。常见于液~气相混合,液~液相混合,还可以用于气~气相混合以及气~液相混合。射流器结构简单、工作可靠、噪音低、无污染、使用寿命长、极少维修、管理使用方便、便于综合利用。尤其适用于作为传质和化学混合反应设备或抽吸气体。文丘里混合器俗称射流器、水射器等。制造材料有金属,塑料等。一般通量较大需定制。 采用模具压铸的文丘里混合器有以下三种材料: 1、氟塑料(PVDF)材料 黑色,耐强氧化、耐强酸碱腐蚀、耐臭氧;寿命长,广泛用于臭氧水混合、污水处理、加药领域。规格较为齐全,规格参数详见下表。 2、聚丙烯(PP)材料

乳白色,PP材料常用在一般耐酸碱条件下。进出口径有以下规格有:1寸(DN25),可配软管接口。 3、透明有机玻璃材料 无色透明,透明的有机玻璃则通常应用于可直观了解射流效果的场合,如实验室。进出口径有以下规格有:6分(DN20),1寸(DN25)无软管接口。

流量计综述

流量计综述 流量测量方法和仪表的种类繁多,分类方法也很多。至今为止,可供工业用的流量仪表种类达 60 种之多。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。 这 60 多种流量仪表,每种产品都有它特定的适用性,也都有它的局限性。按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。因此,以严格意义来分流量计和总量表已无实际意义。 按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等 目前最流行、最广泛的分类法,即分为:容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计来分别阐述各种流量计的原理、特点、应用概况及国内外的发展情况。 1.1 差压式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。 差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。 二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。 差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。 检测件又可按其标准化程度分为二大类:标准的和非标准的。 所谓标准检测件是只要按照标准文件设计、制造、安装和使用,无须经实流标定即可确定其流量值和估算测量误差。 非标准检测件是成熟程度较差的,尚未列入国际标准中的检测件。 差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。 优点: (1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;

涡轮流量计压电式压力传感器的工作原理

涡轮流量计压电式压力传感器的工作原理 压电式压力传感器的原理主要是压电效应,涡轮流量计是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里,压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。 当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,涡轮流量计的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。 压电式压力传感器的有关特点有下面几个。 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是用压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较

质量流量计基本原理

质量流量计基本原理 质量流量计结构原理 在工业生产过程中,有时需要测量流体的质量流量,如化学反应的物料平衡、热量平衡、配料等,都需要测量流体的质量流量。质量流量是指在单位时间内,流经封闭管道截面处流体的质量。用来测量质量流量的仪表统称为质量流量计。 质量流量计由传感器,变送器及数字指示累积器等三部分组成。传感器根据科里奥利效应制成的,由传感管、电磁驱动器、和电磁检测器三部分组成。电磁驱动器使传感器以其固有频率振动,而流量的导入使u形传感器在科氏力的作用下产生一种扭曲,在它的左右两侧产生一个相位差,根据科里奥利效应,该相位差与质量流量成正比。电磁监测器把该相位差转变为相应的电平信号送入变送器,经滤波、积分、放大等电量处理后。转变成与质量成正比的4-20mA模拟信号和一定范围的频率信号两种形式输出。 质量流量计的测量原理以牛顿第二运动定律为基础 F=ma 式中F-流体作用力;m-被测介质质量;a-加速度。 当流体通过两个平行的测量管时,会产生一个与流速方向横向的加速度及相应的科里奥利力,该力使测量管振荡而发生扭曲,这一扭曲现象被称之为科里奥利现象。 根据牛顿第二运动定律,测量管扭曲量的大小是完全与流经测量管的质量流量的大小成正比的。当流体流过测量管时,流体就会受到科里奥利力的作用,测量管里流体所受科里奥利力的反作用,产生进口和出口的相位差。当流体为零

时,测量管在固有频率下振动,测量管不产生扭曲,流体进口和出口的相位差为零。当有流体流经测量管时进口处管子振动减速,出口处管子振动加速,进口与出口产生相位差。当质量流量增加时该相位差也增加。通过安装于进口和出口测量管上电磁信号检测器可测得相位差。 质量流量计的特点: 对示值不用加以理论的或人工经验的修正; 输出信号仅与质量流量成正比例,而与流量的物性(如温度、压力、粘度、密度雷诺数等)无关; 与环境条件(如温度、湿度、大气压等)无关; 只需检测、处理一个信号(即仪表的输出信号),就可进行远传和控制;只需一个变量对时间进行积分,所以流量的积算简单等等。

相关文档
最新文档