图像复原基本方法的研究毕业设计

图像复原基本方法的研究毕业设计
图像复原基本方法的研究毕业设计

毕业设计说明书(论文)

作者: 学号:

系:

专业:

题目: 图像复原基本方法的研究

指导者:

(姓名) (专业技术职务)

评阅者:

(姓名) (专业技术职务)

2012 年 5 月

毕业设计(论文)评语

毕业设计说明书(论文)中文摘要

毕业设计说明书(论文)外文摘要

目次

1 绪论 (1)

1.1 图像复原的来源和发展 (1)

1.2 图像复原的基本思想 (2)

1.3图像复原的应用 (2)

1.4 图像复原方法的分类 (2)

1.5 图像复原的主要方法 (2)

1.6 本课题研究的内容 (3)

2 图像复原方法概述 (4)

2.1 图像复原的核心理论 (4)

2.2 图像质量的客观评价 (7)

2.3 Matlab在图像复原中的应用 (7)

2.4 本章小结 (9)

3 几种较经典的复原方法介绍 (10)

3.1 维纳滤波 (10)

3.2 正则滤波法 (11)

3.3 Lucy-Richardson算法 (11)

3.4 盲去卷积 (12)

3.5 本章小结 (12)

4 Matlab仿真 (13)

4.1 维纳滤波和正则滤波的仿真 (13)

4.2 LR算法和盲去卷积的仿真 (16)

4.3 常用图像复原方法的比较 (21)

4.4 本章小结 (21)

5 盲去卷积 (23)

5.1 盲去卷积的设计思想及流程图 (23)

5.2 盲去卷积对灰度噪声图像的复原仿真 (23)

5.3 盲去卷积对彩色噪声图像的复原仿真 (25)

5.4 本章小结 (27)

结论 (28)

致谢 .................................................. 错误!未定义书签。参考文献 .. (29)

1 绪论

复原的目的是在预定义的意义上改善给定的图像。复原通过使用退化现象的先验知识试图重建或恢复一幅退化的图像。因此,复原技术趋向于将退化模型化并用相反的处理来恢复原图像。

1.1 图像复原的来源和发展

在获取图像的过程中,由于光学系统的像差、光学成像的衍射、成像系统的的非线性畸变、记录介质的非线性、成像过程的相对运动、环境随机噪声等影响,会使观测图像和真实图像之间不可避免的存在偏差和失真。这种图像质量下降的情况在实际应用中都会遇到,如宇航卫星、航空测绘、遥感、天文学中所得的图片。由于大气湍流、光学系统的像差以及摄像机与物体间的相对运动会使图像降质;X射线成像系统由于X射线散布会使医学上所得的照片分辨率和对比度下降;电子透镜的球面像差往往会降低电子显微照片的质量等等[1]。通常,称由于这些因素引起的质量下降为图像退化。

图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原。

图像复原是一种改善图像质量的处理技术,是图像处理研究领域中的热点问题,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善[2]。

早期的图像复原是利用光学的方法对失真的观测图像进行校正,而数字图像复原技术最早则是从对天文观测图像的后期处理中逐步发展起来的[3]。其中一个成功例子是NASA的喷气推进实验室在1964年用计算机处理有关月球的照片。照片是在空间飞行器上用电视摄像机拍摄的,图像的复原包括消除干扰和噪声,校正几何失真和对比度损失以及反卷积。另一个典型的例子是对肯尼迪遇刺事件现场照片的处理。由于事发突然,照片是在相机移动过程中拍摄的,图像复原的主要目的就是消除移动造成的失真。随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。

1.2 图像复原的基本思想

图像复原试图利用退化图像的某种先验知识来重建或复原被退化的图像,因此图像复原可以看成图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或原始图像的最优估值,从而改善图像质量[4]。

1.3图像复原的应用

在天文成像领域中,地面上的成像系统由于受到射线以及大气的影响,会造成图像的退化。在太空的成像系统中,由于宇宙飞船的速度远远快于相机快门的速度,也会造成运动模糊。此外噪声的影响也不可忽略。因此,必须对所得到的图像进行处理尽可能恢复原本的面目,才能提取更多有用的信息。

在医学领域,图像复原被用来滤除X光照片上的颗粒噪声和去除核磁共振成像上的加性噪声。另一个正在发展的领域是定量放射自显影,用以提高其分辨率。

在军事公安领域,如巡航导弹地形识别,测试雷达的地形侦察,指纹自动识别,手迹、印章、人像的鉴定识别,过期档案文字的识别等[5]。

在图像及视频编码领域,随着高敛低速图像编码技术的发展,人为图像缺陷如方块效应的解决必须采用图像复原技术等。

其他领域,随着宽带通信技术的发展,电视电话、远程诊断等都进入我们的生活,而所有的这些技术都高度依赖于图像质量。

1.4 图像复原方法的分类

图像复原算法有线性和非线性两类。线性算法通过对图像进行逆滤波来实现反卷积,这类方法方便快捷,无需循环或迭代,能够直接得到反卷积结果,然而,它有一些局限性,比如无法保证图像的非负性。而非线性方法通过连续的迭代过程不断提高复原质量,直到满足预先设定的终止条件,结果往往令人满意。但是迭代程序导致计算量很大,图像复原时耗较长,有时甚至需要几个小时。所以实际应用中还需要对两种处理方法综合考虑,进行选择[6]。

1.5 图像复原的主要方法

1.5.1 维纳滤波法

维纳滤波法是由Wiener首先提出的,应用于一维信号处理,取得了很好的效果。之后,维纳滤波法被用于二维信号处理,也取得了不错的效果,尤其在图像复原领域,

由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。

1.5.2 正则滤波法

另一个容易实现线性复原的方法称为约束的最小二乘方滤波,在IPT中称为正则滤波,并且通过函数deconvreg来实现。

1.5.3 Lucy-Richardson算法

LR算法是一种迭代非线性复原算法,它是从最大似然公式印出来的,图像用泊松分布加以模型化的。

1.5.4 盲去卷积

在图像复原过程中,最困难的问题之一是,如何获得PSF的恰当估计。那些不以PSF为基础的图像复原方法统称为盲去卷积。它以MLE为基础的,即一种用被随机噪声所干扰的量进行估计的最优化策略[7]。

1.6 本课题研究的内容

图像复原技术在实际生活中有着很广泛的应用。常用的几种图像复原方法,如维纳滤波法、正则滤波法、LR算法、盲去卷积等,它们都有自己的特点,也都能满足一定条件下对退化图像的处理,但是并不清楚哪种算法是最实用的。本课题将对各种算法进行深入分析并通过MATLAB仿真实验,观察对模糊和噪声图像的复原结果来解答这个问题,得到的结果对人们的图像复原技术方法的选取会有很大的帮助。

本文第二章对图像复原方法进行了深入的介绍,详细介绍了其核心理论及Matlab 在图像复原技术中的应用。

本文第三章从理论上简单介绍了常用的几种图像复原方法:维纳滤波、正则滤波、LR算法、盲去卷积。

本文第四章利用Matlab软件对介绍的图像复原方法进行了两组仿真,分别是维纳滤波和正则滤波、LR算法和盲去卷积,并在该章的最后比较了这四种复原方法的特点。

本文第五章对盲去卷积进行了介绍,并利用该算法对灰度噪声图像和彩色噪声图像进行了仿真。

从全文结构上看,第二、三章介绍了常用的图像复原的方法,为后续章节打下了基础;第四、五章为本课题的主要设计部分,并通过仿真对复原方法的原理进行验证。

2 图像复原方法概述

2.1 图像复原的核心理论

2.1.1 图像复原的概念

图像复原也称图像恢复,是图像处理中的一大类技术。所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降。这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可在空间域,也可在频域进行。

影响图像质量的因素主要有下面一些:图像捕获过程中镜头发生了移动,或者暴光时间过长;场景位于焦距以外、使用了广角镜、大气干扰或短时间的暴光导致捕获到的光子减少;供焦显微镜中出现散光变形[8]。

典型的图像复原方法往往是在假设系统的点扩散函数(PSF)为已知,并且常需假设噪声分布也是已知的情况下进行推导求解的,采用各种反卷积处理方法,如逆滤波等,对图像进行复原。然而随着研究的进一步深入,在对实际图像进行处理的过程时,许多先验知识(包括图像及成像系统的先验知识)往往并不具备,于是就需要在系统点扩散函数未知的情况下,从退化图像自身抽取退化信息,仅仅根据退化图像数据来还原真实图像,这就是盲目图像复原(Blind Image Restoration)所要解决的问题。由于缺乏足够的信息来唯一确定图像的估计值,盲目图像复原方法需要利用有关图像信号、点扩散函数和高斯噪声的已知信息和先验知识,结合一些附加信息,对噪声模糊图像的盲复原以及振铃的消除问题的解形成约束条件,而盲目图像复原就是在满足这些约束条件的前提下,求取真实图像在某种准则下的最佳估计值[9]。

2.1.2 退化模型

图像复原在实际中的应用非常广泛,算法也比较多。在应用中我们要把握两点:一时尽可能地从物理原理上估准图像的点扩展函数,因为只有退化模型准确,才有可能复原出图像本来的面目;二是尽可能地尝试多种方法。否则我们应当从多个方法来观察图像的复原效果,选择结果最好的。

由此可以了解到退化模型的重要性,如果退化模型很准确,对图像的复原是很有好处的,接下来将会介绍退化模型的概念。

图像的复原就是要尽可能恢复退化图像的本来面目,它是沿图像降质的逆向过程进行。典型的图像复原是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,使图像质量得到改善。可见,图像复原主要取决于对图像退化过程的先验知识所掌握的精确程度。

图像复原的一般过程:分析退化原因——建立退化模型—— 反映推演——恢复图像。所以图像恢复一般要分两步:首先通过系统辨识方法求解h ,然后采用相应算法由模糊图像y)g(x,和点扩展函数y)h(x,来恢复。

图像复原处理的关键问题在于建立退化模型。在用数学方法描述图像时,它的最普遍的数学表达式:

t),z,y,f(x ,I λ= (2.1) 这样一个表达式可以代表一幅活动的、彩色的立体图像。当研究的是静止的、单色的、平面的图像时,则其数学表达式就简化为

y)f(x ,I = (2.2) 基于这样的数学表达式,可建立如图2.1所示的退化模型。由图2.1的模型可见,一幅纯净的图像),(y x f 是由于通过了一个系统H 及加性噪声),(y x n 而使其退化为一幅图像),(y x g 的。

图2.1 图像退化模型

图像复原可以看成是一个估计过程。如果已经给出了退化图像),(y x g 并估计出系统参数H ,从而可近似地恢复),(y x f 。这里,),(y x n 是一种统计性质的噪声信息。当然,为了对处理结果做出某种最佳的估计,一般应首先明确一个质量标准。根据图像的退化模型及复原的基本过程可见,复原处理的关键在于对系统H 的基本了解。就一 般而言,系统是某些元件或部件以某种方式构造而成的整体,整个过程如图2.2所示:

g(x,y)f^(x,y)

图2.2 图像的退化/复原过程模型

对于退化图像),(y x g :

??

+∞∞-+∞

∞-+--=),(),(),(),(y x n d d y x h f y x g βαβαβα (2.3)

如果上式中f ,h ,n ,g 按相同间隔采样,

产生相应的阵列[]AB j i f ),(、[]CD j i h ),(、[]AB j i n ),(、[]AB j i g ),(,然后将这些阵列补零增广得到大小为N M ?的周期延拓阵列,

为了避免重叠误差,这里1-+≥C A M ,1-+≥D B N 。由此,当k=0,1,L,M-1;l=0,1,L,N-1时,即可得到二维离散退化模型形式:

∑∑

-=-=+--=101

0),(),(),(),(M i N j e e e e l k n j l i k h j i f l k g (2.4)

如果用矩阵表示上式,则可写为:

n Hf g +=

(2.5) 其中,f ,g ,n 为一个行堆叠形成的1?MN 列向量,H 为MN MN ?阶的块循环矩阵。

现实中造成图像退化的种类很多,常见的图像退化模型及点扩展函数有如下情景:

(1) 线性移动退化

线性运动退化是由于目标与成像系统间的相对匀速直线运动形成的退化。水平方向线性移动可以用以下退化函数来描述:

?????=≤≤=其他

若0001),(n and d m d

n m h (2.6) 式中,d 是退化函数的长度。在应用中如果线性移动退化函数不在水平方向,则可类似地定义移动退化函数。

(2) 散焦退化 当镜头散焦时,光学系统造成的图像退化相应的点扩展函数是一个均匀分布的圆形光斑。此时,退化函数可表示为: ?????=+=其他若0R 1),(2222

n m R n m h π (2.7)

式中,R 是散焦半径。在信噪比较高的情况下,在频域图上可以观察到圆形的轨迹。

(3) 高斯退化

高斯退化函数是许多光学测量系统和成像系统最常见的退化函数。对于这些系统,决定系统点扩展函数的因素比较多。众多因素综合的结果往往使点扩展函数趋于高斯型。高斯退化函数可以表达为:

???∈+-=其他若0),()](exp[),(22C n m n m K n m h α (2.8)

式中,K 是归一化常数,α是一个正常数,C 是),(n m h 的圆形支持域。由高斯退化函数的表达式可知,二维的高斯函数能分解为两个一维的高斯函数的乘积。

2.2 图像质量的客观评价

各类数字成像技术正在飞速发展,数字图像的清晰度日益成为衡量数字成像系统优劣的重要指标,我们在进行模糊图像复原的同时,如何判定我们复原得到的图像是否比原图像有所改进、清晰度有所提高,这些问题都涉及到如何客观有效地评价数字图像的清晰度。所以,我们在进行图像复原工作的时候,可以把图像质量评价标准作为一个的课题来进行研究,针对特定类型的图像,研究特定的图像质量评价标准。通过客观的图像质量评定标准来判断复原后的图像质量是否改善,以及改善的程度,但是,经常出现这样的情况,就是图像清晰度在主观视觉上有了比较明显的改善,但是其清晰度函数的评价值却不一定提高,或者提高得很少,所以,我们不能将清晰度评价函数值作为图像复原的质量的唯一评价标准,在参考复原图像清晰度评价函数值改变的同时,还需要我们人眼的客观判断,二者的结合才是对复原图像效果的客观而相对准确判断。

2.3 Matlab 在图像复原中的应用

2.3.1 Matlab简介

MATLAB语言是由美国MathWorks公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是今年来再国内外广泛流行的一种可视化科学计算软件。它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的,界面友好的用户环境,而且还具有可扩展性特征。MathWorks公司针对不同领域的应用,推出了信号处理、控制系统、神经网络、图像处理、小波分析、鲁棒控制非线性系统控制设计、系统辨识、优化设计、统计分析、财政金融、样条、通信等30多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。同时,工具箱内的函数源程序也是开放性的,多为M文件,用户可以查看这些文件的代码并进行更改,MATLAB支持用户对其中的函数进行二次开发,用户的应用程序也可以作为新的函数添加到相应的工具箱中。MATLAB中的数字图像时以矩阵的形式表示的,这意味着MATLAB强大的矩阵运算能力用于图像处理非常有利,矩阵运算的语法对MATLAB中的数字图像同样适用[10]。

图像处理工具箱提供一套全方位的参照标准算法和图形工具,用于进行图像处理、分析、可视化和算法开发。可用其对有噪图像或退化图像进行去噪或还原、增强图像以获得更高清晰度、提取特征、分析形状和纹理以及对两个图像进行匹配。工具箱中大部分函数均以开放式 MATLAB 语言编写。

本文对MATLAB图像处理工具进行探索与应用,实验证明该软件工具箱具有丰富的技术支持,应用简单效果良好。

2.3.2 Matlab图像恢复函数的介绍

MATLAB7.0 的图像处理工具箱提供了 4 个图像恢复函数,用于实现图像的恢复操作,按照其复杂程度列举如下:

deconvwnr 函数:使用维纳滤波恢复;

deconvreg函数:使用波约束最小二乘滤波恢复;

deconvlucy函数:使用 Lucy- Richardson 恢复;

除了以上3个恢复函数外,还可以使用 MATLAB自定义的恢复函数。

Matlab语言对图像进行复原处理时具有编程简单、处理速度快的特点。本文研究了利用Matlab图像处理工具箱函数对图像进行增强和复原处理,取得了不同的效果,适用于不同的处理场合。

2.4本章小结

本章首先介绍了图像复原的核心理论,包括图像复原的基本概念和退化模型,然后又介绍了图像质量的客观评价方法,接着简单的介绍了常用的四种图像复原方法,它们分别是维纳滤波、正则滤波、LR算法和盲去卷积。

总而言之,图像复原的算法很多,无论何种算法,原则上,它们都要依据获取的相关信息(包括关于退化系统、原图像、噪声等的确定性信息和统计性信息)才能有效地实施。算法利用的信息越多,信息的准确性越高,则复原图像的质量就越高。盲图像复原技术在近二十年获得极大的重视,也是目前图像复原研究的重要课题。对这几种算法具体的介绍将在第三、四、五章。

本章第三节介绍了Matlab软件,简要的介绍了该软件在图像复原领域的功能,并列出了它的图像处理工具箱所提供的函数。

3 几种较经典的复原方法介绍 图像复原算法有线性和非线性两类。线性算法通过对图像进行逆滤波来实现反卷积,这类方法方便快捷,无需循环或迭代,直接可以得到反卷积结果,然而,它有一些局限性,比如无法保证图像的非负性。而非线性方法通过连续的迭代过程不断提高复原质量,直到满足预先设定的终止条件,结果往往令人满意。但是迭代程序导致计算量很大,图像复原时耗较长,有时甚至需要几个小时。所以实际应用中还需要对两种处理方法综合考虑,进行选择。

3.1 维纳滤波

维纳滤波法是由Wiener 首先提出的,在图像复原领域,由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。维纳滤波最开始主要应用在一维信号处理里,取得了比较不错的效果。之后,维纳滤波法也用于二维信号处理中,也取得了比较好的效果。

维纳滤波器寻找一个使统计误差函数

}){(22∧

-=f f E e (3.1) 最小的估计∧f 。E 是期望值操作符,f 是未退化的图像。该表达式在频域可表示为 ),(]),(/),(),(),(),(1

[),(22v u G v u S v u S v u H v u H v u H v u F ηη+=∧ (3.2)

其中,),(v u H 表示退化函数且),(),(),(2v u H v u H v u H *=,

),(v u H *表示),(v u H 的复共轭,2),(),(v u N v u S =η表示噪声的功率谱,2

),(),(v u F v u S f =表示未退化图像的

功率谱。比率),(/),(v u S v u S ηη称为信噪功率比。在IPT 中维纳滤波使用函数deconvwnr 来实现的。

维纳滤波能最佳复原的条件是要求已知模糊的系统函数,噪声功率谱密(或其自相关函数),原图像功率谱密度(或其自相关函数)。但实际上,原图像功率谱密度(或其自相关函数)一般难以获知,再加上维纳滤波是将图像假设为平稳随机场的前提下的最佳滤波,而实际的图像通常不能满足此前提。因此维纳滤波复原算法在实际中只能获得次最佳实施,它更多的是具有理论价值,被用作度量其他算法性能优劣的标杆。

3.2 正则滤波法 另一个容易实现线性复原的方法称为约束的最小二乘方滤波,在IPT 中称为正则滤波,并且通过函数deconvreg 来实现。

在最小二乘复原处理中,常常需要附加某种约束条件。例如令Q 为∧f 的线性算子,为拉格朗日乘子。那么最小二乘方复原的问题可以看成函数2∧f

Q ,服从约束条件

22n f H g =-∧的最小化问题,这种有附加条件的极值问题可以用拉格朗日乘数法来处理。

寻找一个∧

f ,使下述准则函数为最小: 222)(n f H

g f Q f W --+=∧∧∧λ (3.3)

式中λ叫拉格朗日系数。通过指定不同的Q ,可以得到不同的复原目标。可以发现约束最小二乘复原算法不需要获知原图像的统计值,便可以有效地实施最优估计,这点与维纳滤波是不同的。正则化方法作为一种解决病态反问题的常用方法,通常用图像的平滑性作为约束条件,但是这种正则化策略通常导致复原图像的边缘模糊。

3.3 Lucy-Richardson 算法

前面所讨论的图像复原方法都是线性的。在感觉上它们也更“直接”,因为复原滤波一旦被指定下来,相应的解决方法就会通过滤波器的应用得到。这种实现的简单性、适量的运算要求和容易建立的理论基础,使得线性方法在很多年间都是图像复原的一个基本工具。

在过去的20年里,非线性迭代技术已经越来越多地被人们接受,作为复原的工具,它常常获得比线性方法更好的结果。非线性方法的主要缺陷是它们的特性常常是不可预见的,并且它们常需要获得重要的计算资源。但是经过这些年的发展,这些缺陷都已经不再是问题。因为在很多应用领域非线性技术都优于线性技术,并且在过去的十年中计算能力一直在以惊人的速度增长。在工具箱中选择的非线性方法是由Richardson 和Lucy 独立开发的技术。工具箱提供的这些算法被称为Lucy-Richardson 算法。

LR 算法是一种迭代非线性复原算法,它是从最大似然公式印出来的,图像用泊松

分布加以模型化的。当下面这个迭代收敛时模型的最大似然函数就可以得到一个令人满意的方程: ]),(),(),(),()[,(),(1y x f y x h y x g y x h y x f y x f k k k ∧∧∧+**

--= (3.4) *代表卷积,∧f 代表未退化图像的估计,g 和h 和以前定义一样。

在IPT 中,LR 算法由deconvlucy 函数完成的。

3.4 盲去卷积

前面几种图像复原方法都是在知道模糊图像的点扩展函数的情况下进行的,而在实际应用中,通常都要在不知道点扩展函数的情况下进行图像复原。那些不以PSF 知识为基础的图像复原方法统称为盲去卷积。盲去卷积恢复就是在这种应用背景下提出的。在过去的20年里,盲去卷积已经受到了人们的极大重视,它是以最大似然估计(MLE)为基础的,即一种用被随机噪声所干扰的量进行估计的最优化策略。简单的说,关于MLE 方法的一种解释就是将图像数据看成是随机量,它们与另外一族可能的随机量之间有着某种似然性,似然函数用()y x g ,、()y x f ,和()y x h ,来加以表达,然后,问题就变成了寻求最大似然函数。在盲去卷积中,最优化问题用规定的约束条件并假定收敛时通过迭代来求解,得到的最大()y x f ,和()y x h ,就是还原的图像和PSF 。MATLAB 提供了 deconvblind 函数用于实现盲解卷积。盲解卷积算法一个很好的优点就是,在对失真情况毫无先验知识的情况下,仍然能够实现对模糊图像的恢复操作。

3.5 本章小结

本章详细的介绍了图像复原的几个基本方法,如维纳滤波、正则滤波、LR 算法和盲去卷积。对它们的原理也进行了比较充分的描述,在第四章将对这些算法进行Matlab 仿真,并进行更深入的比较。

4 Matlab仿真

4.1 维纳滤波和正则滤波的仿真

4.1.1 维纳滤波的仿真

维纳滤波复原函数 deconvwnr 的调用格式:J=deconvwnr(I,PSF,NCORR,ICORR)其中,I表示输入图像,PSF表示点扩散函数,NSR(默认值为0)、NCORR和ICORR都是可选参数,分别表示信噪比、噪声的自相关函数、原始图像的自相关函数。输出参数J表示复原后的图像[11]。

本次仿真所用的维纳滤波复原源代码:

I=checkerboard(8);

noise=0.1*randn(size(I));

PSF=fspecial('motion',21,11);

Blurred=imfilter(I,PSF,'circular');

BlurredNoisy=im2uint8(Blurred+noise);

NP=abs(fftn(noise)).^2;

NPOW=sum(NP(:)/numel(noise));

NCORR=fftshift(real(ifftn(NP)));

IP=abs(fftn(I)).^2;

IPOW=sum(IP(:)/numel(noise));

ICORR=fftshift(real(ifftn(IP)));

ICORR1=ICORR(:,ceil(size(I,1)/2));

NSR=NPOW/IPOW;

subplot(221);imshow(BlurredNoisy,[]);

title('模糊和噪声图像');

subplot(222);imshow(deconvwnr(BlurredNoisy,PSF,NSR),[]);

title('deconbwnr(A,PSF,NSR)');

subplot(223);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]);

title('deconbwnr(A,PSF,NCORR,ICORR)');

subplot(224);imshow(deconvwnr(BlurredNoisy,PSF,NPOW,ICORR1),[]);

title('deconbwnr(A,PSF,NPOW,ICORR_1_D)');

原始图如图4.1所示,从复原的图像来看,因为这里采用了真实PSF函数来恢复,效果还是很好的。但是实际生活当中大多数情况下是不知道PSF的,所以要按照具体情况具体分析,然后再恢复图像。复原结果如图4.2所示:

图4.1 原始图

图4.2 左上图为模糊的噪声图像;右上图为逆滤波的结果;左下图为使用自相关函数的维纳滤波的结果;右下图为使用常数比率的维纳滤波的结果观察复原图像,可以发现,第二幅图为直接逆滤波的结果,这个结果是由噪声的效果所决定的。第三幅图是在复原中使用自相关函数,由图可知,所得到的结果虽然仍有一些噪声存在,但已经和原图像很接近了。因为原图像和噪声函数都是已知的,所以可以正确的估算参量,并且该图便是在这种情况下能够由维纳反卷积所得到的最佳结果。在实践中,当这些量之一(或更多)未知时,挑战便是在实验中智能地选择所用的函数,直到获得可接受的结果为止。第四幅图是使用常数比率复原的结果,这种方法对直接逆滤波给出了重大的改进。

4.1.2 正则滤波的仿真

正则滤波恢复函数的调用格式:J=deconvreg(I,PSF,NOISEPOWER,RANGE)。其中,I表示输入图像,PSF表示点扩散函数,NOISEPOWER与2

η成比例,RANGE为值的范围,在求解γ时,该算法受这个范围的限制。默认范围是[10-9,109](Matlab中的符号为

[1e-10,1e10].同时,该函数也可以在指定的范围内搜索最优的拉氏算子。利用振铃抑制恢复图像是3种中恢复效果最好的,其他几种方法也可以恢复但是比较模糊,效果不是很明显。

本次仿真所用的规则化滤波复原程序源代码:

I=checkerboard(8);

PSF=fspecial('gaussian',7,10);V=.01;

BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);

NOISEPOWER=V*numel(I);

[J LAGRA]=deconvreg(BlurredNoisy,PSF,NOISEPOWER);

subplot(221);

imshow(BlurredNoisy);

title('A=Blurred and Noisy');

subplot(222);imshow(J);

title('[J LAGRA]=deconvreg(A,PSF,NP)');

subplot(223);imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));

title('deconvreg(A,PSF,[],0.1*LAGRA)');

subplot(224);imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10))

title('deconvreg(A,PSF,[],10*LAGRA');

原始图如图4.3所示:

图4.3 原始图

关于数字图像处理论文的题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

数字图像处理毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

通信工程专业 本科毕业设计题目(DOC)

通信工程和电子信息工程专业 毕业设计参考题目 来源: 来源不限.. 科研生产实际自拟其它状态: 可选状态结束状态状态不限.. 列表按默认题目导师专业来源部门限选已选结束日期降序升序排列 自动化与电气工程系秦刚电子信息工程[需要1人] 已结束浏览详情 [1] 电缆隧道车转向控制系统的研究4004 张海宁专业方向不限[需要1人,已接受0人] 可选报 [2] 电动扭矩扳手设计还没有人选报! 雷斌专业方向不限[需要1人] 已结束浏览详情 [3] 便携式水分数据采集仪设计与实现4018 王鹏专业方向不限[需要1人] 已结束浏览详情 [4] 基于WIFI的嵌入式图像监控系统--图像存储模块4023 张峰专业方向不限[需要1人] 已结束浏览详情 [5] 无线气压测量系统—接口及显示单元设计4015 雷斌专业方向不限[需要1人] 已结束浏览详情 [6] 基于Creator/V ega的试验水槽仿真模型的实现4031 雷斌专业方向不限[需要1人] 已结束浏览详情 [7] 靶场试验环境的虚拟现实场景建模4016 雷斌专业方向不限[需要1人] 已结束浏览详情 [8] 便携式热敏电阻测温缆数据采集仪设计4015 雷斌专业方向不限[需要1人] 已结束浏览详情 [9] 多路高精度计时及延时控制器通信接口设计4032 雷斌专业方向不限[需要1人] 已结束浏览详情 [10] 多路高精度计时及延时控制器人机接口设计4019 雷斌专业方向不限[需要1人] 已结束浏览详情 [11] 多路高精度计时及延时控制器设计与实现4032 雷斌专业方向不限[需要1人] 已结束浏览详情 [12] 水下激光靶目标检测器设计与实现4029 雷斌专业方向不限[需要1人] 已结束浏览详情

电子科技大学-数字图像处理-课程设计报告

电子科技大学 数字图像处理课程设计 课题名称数字图像处理 院(系)通信与信息工程学院 专业通信工程 姓名 学号 起讫日期 指导教师

2015年12月15日 目录 摘要: (03) 课题一:图像的灰度级分辨率调整 (04) 课题二:噪声的叠加与频域低通滤波器应用 (06) 课题三:顶帽变换在图像阴影校正方面的应用 (13) 课题四:利用Hough变换检测图像中的直线 (15) 课题五:图像的阈值分割操作及区域属性 (20) 课题六:基于MATLAB?的GUI程序设计 (23)

结束语: (36) 参考文献: (37)

基于MATLAB?的数字图像处理课题设计 摘要 本文首先对数字图像处理的相关定义、概念、算法与常用变换进行了介绍;并通过七个课题实例,借助MATLAB?的图像处理工具箱(Computer Vision System Toolbox)对这些案例逐一实现,包括图像的灰度值调整、图像噪声的叠加、频域低通滤波器、阈值分割、Hough变换等,常用的图像变化与处理;然后通过MATLAB?的GUI程序设计,对部分功能进行模块化整合,设计出了数字图像处理的简易软件;最后给出了软件的帮助文件以及该简易程序的系统结构和m代码。 关键词:灰度值调整噪声图像变换 MATLAB? GUI设计

课题一:图像的灰度级分辨率调整 设计要求: 128,64,32,16,8,4,2,并在同一个figure窗将图像的灰度级分辨率调整至{} 口上将它们显示出来。 设计思路: 灰度级分辨率又称色阶,是指图像中可分辨的灰度级的数目,它与存储灰度级别所使用的数据类型有关。由于灰度级度量的是投射到传感器上的光辐射值的强度,所以灰度级分辨率又称为辐射计量分辨率。随着图像灰度级分辨率的的逐渐降低,图像中所包含的颜色数目将变得越来越少,从而在颜色维度造成图像信息量的退化。 MATLAB?提供了histeq函数用于图像灰度值的改变,调用格式如下: J = histeq(I,n) 其中J为变换后的图像,I为输入图像,n为变换的灰度值。依次改变n的值为 128、64、32、16、8、4、2 就可以得到灰度值分辨率为128、64、32、16、8、4、2 的输出图像。利用MATLAB?的subplot命令可以将不同灰度的图像放在同一个figure中方便对比。 课题实现: 该思路的MATLAB?源代码如下: in_photo=imread('lena.bmp'); %读入图片“lena.bmp”,位置在matlab当前工作区路径下D:\TempProject\Matlab\Works for i = [128,64,32,16,8,4,2] syms(['out_photo',num2str(i)]); %利用for循环定义7个变量,作为不同灰度值分辨率的输出变量 eval(['out_photo',num2str(i), '=histeq(in_photo,i)',';']); %histeq函数用于改变图像灰度值,用eval函数给变量循环赋值

基于变换域和基于特征点的图像配准方法毕业论文

基于变换域和基于特征点的图像配准 方法毕业论文 目录 摘要 ...................................................................... III Abstract.................................................................... V 第一章绪论.. (1) 第一节引言 (1) 第二节论文研究的意义 (1) 第三节图像拼接技术概述 (2) 1.3.1 图像拼接技术的发展历程 (2) 1.3.2 图像拼接技术的国研究现状 (3) 第四节本文主要研究容和组织结构 (3) 1.4.1 主要研究容 (3) 1.4.2 论文组织结构 (4) 第二章图像拼接流程 (6) 第一节图像拼接的步骤 (6) 第二节主要拼接步骤简介 (7) 第三章图像预处理 (9) 第一节相机成像原理模型 (9) 3.1.1 摄像机垂直转动 (10) 第二节图像预处理的容 (12) 第三节本章小结 (13) 第一节相位相关度法原理 (14) 第二节基于二幂子图像的FFT对齐算法 (15) 4.2.1 二幂子图像 (15) 4.2.2 二幂子图像的对齐 (16)

第三节本章小结 (17) 第五章图像配准 (18) 第一节图像配准的定义及关键要素 (18) 5.1.1 图像配准的原理和图像变换 (18) 5.1.2 图像配准的步骤 (19) 5.1.3 图像配准的关键要素 (21) 第二节常用的配准方法分析 (23) 5.2.1 基于灰度信息的图像配准方法 (23) 5.2.2 基于变换域的图像配准方法 (24) 5.2.3 基于特征的图像配准方法 (24) 5.2.4 配准算法的优缺点分析 (24) 第三节基于变换域的图像配准方法 (26) 5.3.1 相位相关技术原理 (26) 5.3.2 傅里叶算法步骤 (27) 第四节基于特征的图像配准方法 (28) 5.4.1算法流程 (28) 5.4.2 算法原理 (29) 第六节本章小结 (38) 第六章图像融合 (39) 第一节直接平均融合法 (39) 第二节多分辨率样条技术融合法 (40) 第三节加权平均融合法 (40) 第四节合方法优缺点分析 (42) 第五节实验结果及分析 (43) 第六节本章小结 (45) 第七章图像拼接的实现与应用 (46) 第一节图像拼接的实现 (46) 第二节图像拼接的具体仿真过程 (48) 第三节图像拼接的应用 (51)

基于Matlab的数字图像处理系统毕业设计论文

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGACPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

数字图像处理课程设计题目和要求-2013

. . . .页脚. 数字图像处理课程设计容、要求 题目一:图像处理软件 1、设计容及要求: (1)、独立设计方案,实现对图像的十五种以上处理(比如:底片化效果、灰度增强、图像复原、浮雕效果、木刻效果等等)。 (2)、参考photoshop软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 2、参考方案(所有参考方案若无特殊说明,均以matlab为例说明): (1)实现图像处理的基本操作 学习使用matlab图像处理工具箱,利用imread()语句读入图像,例如 image=imread(flower.jpg),对图像进行显示(如imshow(image)),以及直方图计算和显示。 (2)图像处理算法的实现与显示 针对课程中学习的图像处理容,实现至少十五种图像处理功能,例如模糊、锐化、对比度增强、复原操作。改变图像处理的参数,查看处理结果的变化。自己设计要解决的问题,例如引入噪声,去噪;引入运动模糊、聚焦模糊等,对图像进行复原。 (3)参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视功能多少而定;参考matlab软件中GUI设计,学习软件界面的设计。

. . . 题目二:数字水印 1、设计容及要求: 为保护数字图像作品的知识产权,采用数字水印技术嵌入水印图像于作品中,同时尽可能不影响作品的可用性,在作品发生争执时,通过提取水印信息确认作品。通常情况下,水印图像大小要远小于载体图像,嵌入水印后的图像可能遇到噪声、有损压缩、滤波等方面的攻击。因此,评价水印算法的原则就是水印的隐藏性和抗攻击性。根据这一要求,设计水印算法。 (1)、查阅文献、了解数字水印的基本概念。 (2)、深入理解一种简单的数字水印嵌入与提取方法。 (3)、能够显示水印嵌入前后的载体图像。 (4)、能够显示嵌入与提取的水印。 (5)、选择一种以上的攻击方法,测试水印算法的鲁棒性等性能。 (6)、设计软件界面 2、参考方案 (1)对水印图像进行编码置乱(可采用伪随机码,提高水印图像的隐蔽性); (2) 对图像进行子图像分解(如8*8),对子块分别进行DCT变换; (3) 对DCT系数按照zig-zag排序进行排列,选择一种频系数,对该种频系数相邻 的系数进行水印嵌入 (4) 低通滤波检验水印算法的抗攻击性。 (5) 设计数字水印的软件界面。 .页脚.

关于车牌识别图像预处理技术的研究

关于车牌识别图像预处理技术的研究 【摘要】随着交通事业的飞速发展,ITS系统在道路交通领域占有极其重要的位置。通过智能化的车牌识别方式,可以对机动车进行自动进行记录、查验、监控、报警,在很多情况下可以有很好的适用性。本文主要介绍了在图像预处理阶段利用图像灰度化以及一种图像灰度增强方法初步处理被捕捉图像,随后叙述了边缘检测的工作原理及意义,并对传统边缘检测算子进行了分析和介绍,并描述了各个算子在实际应用的优点和不足。 【关键词】车牌识别;图像处理;灰度拉伸;边缘检测 1.引言 在摄像机捕获图像的过程中,因受环境因素的影响,图片预处理通过必要的技术手段把被识别车牌图像进行标注,以提高车牌识别系统的性能。 相应的技术手段有车牌图像的灰度图转换、边缘检测、二值化处理、图像增强、形态学处理等技术[1-3]。 2.灰度化(Image grizzled processing) 灰度化的基本方法是将彩色图片的各个颜色分量R、G、B分量取其最大值或平均值并代替之这样就消除了图像中每个像素点的颜色差异,仅仅通过亮度值大小来区别像素点。对于现有主流的图像像素颜色划分有256个亮度级的灰度图像,其灰度值最高值为255就代表白色,灰度值最低值为0就代表黑色[2]。 使用函数H(x,y)描述像素点(x,y)的灰度值,R(x,y)表示像素点(x,y)的红色分量的色度值,G(x,y)表示像素点(x,y)的绿色分量的色度值,B(x,y)表示像素点(x,y)的蓝色分量色度值。可用如下公式进行灰度转换。 3.灰度拉伸(Gray stretch) 灰度拉伸主要是以图像中的像素点为着眼点对图像进行适当的变换从而达到对噪声的去除或者削弱的目的。通过一系列的变换处理,从而使得图像能够被计算机更好地识别。 5.总结 本文详细叙述了图像灰度化以及一种图像灰度增强方法初步处理被捕捉图像,随后叙述了边缘检测的工作原理及意义。在本文中采用Canny算子对图像边缘进行纹理、轮廓、区域定位等特征的提取的同时对图像中的噪声进行抑制。基本达到图像预处理的目的,同时也应该认识到,也有很多的方法同样适用。

(完整版)基于matlab的数字图像处理毕业设计论文

优秀论文审核通过 未经允许切勿外传 摘要 数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。关键词:MATLAB,数字图像处理,图像增强,二值图像

Abstract Digital image processing is an emerging technology, with the development of computer in various areas on the processing speed requirement is relatively ),线性量化(liner quantization ),对数量化,MAX 量化,锥形量化(tapered quantization )等。 3. 采样、量化和图像细节的关系 上面的数字化过程,需要确定数值N 和灰度级的级数K 。在数字图像处理中,一般都取成2的整数幂,即: (2.1) (2.2) 一幅数字图像在计算机中所占的二进制存储位数b 为: *log(2)**()m N N b N N m bit == (2.3) 例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。随着N 和m 的增加,计算机所需要的存储量也随之迅速增加。 由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N 值)以及量化的级数K(或m 值)。N 和K 的值越大,图像越清晰。 2.2 数字图像处理概述 2.2.1 基本概念 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的

数字图像处理课程设计题目

PROJECT 03-01 Image Enhancement Using Intensity Transformations The focus of this project is to experiment with intensity transformations to enhance an image. Download Fig. 3.8(a) and enhance it using (a) The log transformation of Eq. (3.2-2). (b) A power-law transformation of the form shown in Eq. (3.2-3). In (a) the only free parameter is c, but in (b) there are two parameters, c and r for which values have to be selected. As in most enhancement tasks, experimentation is a must. The objective of this project is to obtain the best visual enhancement possible with the methods in (a) and (b). Once (according to your judgment) you have the best visual result for each transformation, explain the reasons for the major differences between them. 使用强度的转变实现图像增强 这个项目的焦点就是通过强度转换实验来增强图像。 下载图片3.8(a),并且对它实现增强。对数变换的公式如3.2.2所示,幂次变换的基本形式如3.2.3所示。 在(a)中,唯一的自由参数是c,但是在(b)中有两个参数,c以及一个需要被选定值的参数r,在大多数关于增强的任务中,实验是必须的。这个项目的目的是为了用在(a)和(b)中的方法来获得最佳可视化增强的可能性,一旦(根据你的判断)你对每一个变换都拥有了最好的视觉效果,解释一下它们之间产生主要差别的原因。 PROJECT 03-02 [Multiple Uses] Histogram Equalization (a) Write a computer program for computing the histogram of an image. (b) Implement the histogram equalization technique discussed in Section 3.3.1. (c) Download Fig. 3.8(a) and perform histogram equalization on it. As a minimum, your report should include the original image, a plot of its histogram, a plot of the histogram-equalization transformation function, the enhanced image, and a plot of its histogram. Use this information to explain why the resulting image was enhanced as it was. 直方图均衡化 (a)写一个程序来计算图像的直方图 (b)实现直方图均衡化方法在参考3.3.1 (c)下载图38(a)并实现其直方图均衡。 你的实验报告中至少需要包括原图,绘制其直方图,增强后的图形,并绘制它的直方图。用以上这些信息解释为什么图像的增强结果是这样的。 PROJECT 03-03 [Multiple Uses]

数字图像处理系统毕业设计论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

图像处理毕业设计题目

图像处理毕业设计题目 篇一:数字图像处理论文——各种题目 长春理工大学——professor——景文博——旗下出品1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识

别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容: 基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1> 对原始参考图和实时图像进行去噪处理; 2> 对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑;

图像处理课程设计

《图像处理技术应用实践》课程设计题目图像增强算法综合应用 学生姓名韩帅_______ 学号 院系计算机与软件学院 专业计算机科学与技术 范春年____ 噪声,不同的去噪方法效果不同,因此应该采用不同的去噪方法以达到最好的去噪效果。? (2)随机噪声应在空间域去除,而空域去噪方法中,中值滤波法效果最好。? (3)周期噪声应在频域中消去。?

(4)去除噪声后的图像仍然可以改善处理。? (5)均方误差评估去噪处理后图像的去噪效果。 2.2算法设计? (1)读入初始图片及加噪图片。? clc;?clear;? f=imread();? ? for?j?=?1?:?N? ???????d?=?sqrt((i-m)^2+(j-n)^2);? ????? h?=?1/(1+0.414*(d/d0)^(2*nn));??%?计算低通滤波器传递函数??????????? ?result(i,j)?=?h?*?G(i,j);???????? end???

end (4)计算均方误差评估去噪效果。? [m?n]=size(p);?l=f-p;? he=sum(sum(l));? avg=he/(m*n); ?k=l-avg;? result1=(sum(sum(k.^2)))/(m*n);? for i=1:M for j=1:N d=sqrt((i-m)^2+(j-n)^2); h=1/(1+0.414*(d/d0)^(2*nn)); %h=1/(1+(d/d0)^(2*nn)); %备用 G(i,j)=h*G(i,j); end end p=uint8(real(ifft2(ifftshift(G)))); subplot(341);imshow(f),title('原图'); subplot(345);imshow(log(abs(f2)),[]),title('频谱'); subplot(349);imhist(f),title('原图'); subplot(342);imshow(g),title('噪声');

基于matlab的数字图像处理本科毕业设计论文

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

数字图像处理课程设计报告

课程设计报告书 课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期:2013 年06 月20 日 数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真

3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 ? ??20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。 傅里叶变换在数字图像处理中广泛用于频谱分析,傅里叶变换是线性系统分析的一个有力工具,它使我们能够定量地分析诸如数字化系统,采样点,电子放大器,卷积滤波器,噪声,显示点等地作用(效应)。傅里叶变换(FT)是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。因此,对涉及数字图像处理的工作者,深入研究和掌握傅里叶变换及其扩展形式的特性,是很有价值得。 (2)关于傅里叶(Fourier)变换 在信号处理中,傅里叶变换可以将时域信号变到频域中进行处理,因此傅里叶变换在信号处理中有着特殊重要的地位。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。傅里叶变换属于谐波分析。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号

相关文档
最新文档