简化的实数、复数和四元数神经模糊学习算法(IJISA-V10-N5-1)

简化的实数、复数和四元数神经模糊学习算法(IJISA-V10-N5-1)
简化的实数、复数和四元数神经模糊学习算法(IJISA-V10-N5-1)

复数与导数

复数专题练习 一、 选择题 1、若是纯虚数,则实数的值是( ) A 1 B C D 以上都不对 2、则是的( )条件 A 充分不必要 B 必要不充分 C 充要 D 既不充分又不必要 3、若,则是( ) A 纯虚数 B 实数 C 虚数 D 无法确定 4、的值域中,元素的个数是( ) A 2 B 3 C 4 D 无数个 5、,则实数的值为( ) A B C D 6、若,则方程的解是( ) A B C D 7、,则的最大值为( ) A 3 B 7 C 9 D 5 8、已知则的值为( ) A B 1 C D 3 9、已知,则的值为( ) A B 1 C D 10、已知方程m 表示等轴双曲线,则实数m 的值为( ) A B C 22 (1)(32)x x x i -+++x 1-1±22 1(1)(4),.z m m m m i m R =++++-∈23 2.z i =-1m =12z z =12,z z C ∈1212z z z z ?+?(),()n n f n i i n N -+=+∈3()m i R +∈m ±x C ∈||13x i x =+-12+124,1x x ==-43i -+12|34|2z i ++≤||z z =501001z z ++i 2i +11x x +=199619961x x +1-i -i |2||2|z z a --+=±

11、复数集内方程的解的个数是( ) A 2 B 4 C 6 D 8 12、复数的模是( ) A B C D 二、 填空题 13、的平方根是 、 。 14、在复平面内,若复数Z 满足,则Z 所对应的点的集合构成的图形是 。 15、设,则集合A={}中元素的个数是 。 16、已知复数,则复数 = 。 三、解答题 17 在复平面上,设点A 、B 、C ,对应的复数分别为。过A 、B 、C 做平行四边形ABCD ,求此平行四边形的对角线BD 的长。 2 5||60z z ++=1cos sin ,(2)z i ααπαπ=++<<2cos 2α 2cos 2α-2sin 2α2tan 2 α-34i +|1|||z z i += -12ω=-+|()k k x x k Z ωω-=+∈122,13z i z i =-=-215 z i z +,1,42i i +

(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

模糊数排序的心理测量方法(1)

模糊数排序的心理测量方法 1引言 由于许多人的推理是基于不精确的、模糊的和主观的价值观,在现实中,大部分决策处理需要模糊数的处理和评价。扎德(1965年扎德)模糊逻辑已经给分析师一个更精确的表示人类行为的工具,尤其是在存在相对较少的数据时,并在系统的专家知识是含糊和语言的(Hoogerdoorn等,1999)。Bortolon 和Degani(1985)评论不同的模糊排序方法,他们发现,有关他们违反直觉的结果,大部分的方法都存在问题。本文的目的是开发一个心理测量方法,为了模糊数排序要多属性或决策过程的多准则决策中使用。使用韦伯的心理物理法,1834年细分决策者相等的子区输入空间分为主观间,然后准备一个模糊的“如果- 那么”规则库来代表人类的认知替代品以成对的方式在这些间隔之间的比较。层次分析法(AHP)(Saaty 1980),然后,利用作为一个令人满意的技术,可以代表人类的认知决策过程正确预测的喜好,和排名模糊数。规定科目的喜好是基于一个真实的世界样本。该方法适用于每个案件的三角模糊数比较的结果进行了评价。这个新的程序提供了直观的有前途的和显着的结果,并可以扩展到任何类型的模糊数。 2层次分析法(AHP) AHP提供两两比较相关标准的替代品的选择和排名,在一个典型的层次分析法,相对于正在考虑每个标准,成对比较矩阵都由替代品作准备,A1, …A m,。在矩阵中的每个条目中,a ij 中,决策者认为可替代的“i”过另类的“J”的喜爱程度,Aij 可以被视为替代的重量估计的“i”,无线替代“J”。巴尔加斯(1990)表示,该模型是基于以下公理: 1. 相互比较公理;如果A i 主导AJ是AJ主导A i的χ倍 2.同质性公理,其主导地位的判断表示有通过界的规模。 3. 独立公理,在多目标的情况下刺激的权重标准是独立的。

复数的扩充与复数的概念讲解学习

复数的扩充与复数的 概念

精品文档 收集于网络,如有侵权请联系管理员删除 3.1.1复数的扩充与复数的概念 【教学目标】 1、在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 2、了解数学内部解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的分类表; 3、理解复数的有关概念以及符号表示; 4、掌握复数的代数表示形式及其有关概念。 【教学重点】引进虚数单位i 的必要性、对i 的规定以及复数的有关概念。 【教学难点】复数概念的理解。 【教学过程】 1、对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简明扼要的概括和总结): 自然数 整数 有理数 无理数 实数 2、提出问题: 我们知道,对于实系数一元二次方程012=+x ,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢? 3、组织讨论,研究问题: 我们说,实系数一元二次方程012=+x 没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢? 组织学生讨论,引导学生研究,最后得出结论:最根本的问题就是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1。 4、引入新数i ,并给出它的两条性质: 根据前面讨论的结果,我们引入一个新数i ,i 叫做虚数单位,并规定: (1)12-=i ; (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立. 有了前面的讨论,引入新数i ,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是i ±). 5、提出复数的概念

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

复数与方程

复数与方程 重点难点:一元二次方程 一、二项方程:形如(a0, a n∈C,a n≠0, n∈N)的方程 基本解法:化为的形成,利用复数开方求出它的根。 例1.在复数集中解下列方程 解1)法1、求方程的解,即求复数的4次方根, ∵ ∴其4次方根为(k=0,1,2,3) ∴原方程的解为下面4个复数: 法2、求方程的解,即求复数的4次方根。 ∵由知1-i为的一个4次方根, ∴由复数的次方根的几何意义有的其余三个4次方根分别为: ∴方程的解分别为1+i, -1+i, -1-i, 1-i。 解2) 令,∴, ∴解之有,∴原方程的根为2-i或-2+i。 注:解二项方程实质就是求一复数的次方根,所以要注意一复数Z的次方根的几种基本求法:<一>,则可用公式

(k=0,1,2,……,n -1) 求其n 个n 次方根。如例(1)解法1,此n 个复数的几何意义是复平面上n 个点,这n 个点均匀分布在以原点为圆心,以 为半径的圆上,组成一个正n 边形。 <二> 若能由已知中找出个Z 的n 次方根Z 0,则可由n 次方根的几何意义求其余n-1个n 个次根如下: , 。如例(1)解 法2。 <三>若Z 的辐角非特殊值,不好转化为三角形式或也不好看出Z 的n 次方根时,则可以考虑用n 次方根的定义利用代数形式及复数相等直接求。如例(2)。 二、一元二次方程 1. a,b,c ∈R 时基本解法 时,两不等实根可由求根公式 求出, 时,两相等实根。可由上面公式求出, 时,两互为其轭虚根,可由求根公式求出。另:韦达定理仍成立。 2. a,b,c ∈C 时基本解法 判别式定理不成立,所以不能由此判别根的情况。但可由求根公式, δ是b 2-4ac 的一个平方 根 另:韦达定理仍成立。 例2.在复数集中解方程 。 解:∵,∴ =, ∴ 原方程的根为。 注:∵ (x-1)(x 2+x+1)=x 3-1 ∴ x 2+x+1=0的根也是x 3=1的根,即1的两个立方虚根。 记,则,其有如下特征: ① ; ② ; ③ ;

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

实数系到复数系的发展史

实数系到复数系的发展史 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了自然数;随着生产和科学的发展,数的概念也得到了发展:为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了满足记数需要和表示具有相反意义的量,人们引进了负数;为了解决开方开不尽的矛盾,人们引进了无理数;在解方程时,为了使负数开平方有意义,人们就 引进了虚数,使实数域扩大到复数域. 十六世纪中叶,意大利数学家卡尔丹在解一元二次方程和一元三次方程时,分别得到类似下面的结果:由于负数在实数系内没有平方根,于是他首先产生了将负数开平方的思想,基于自己的设想,卡尔丹研究了类似于的新数,并进行了计算.后来又有一位意大利数学家帮加利探究了这类新数的运算法则.但最初,人们对复数的概念和性质的了解不甚清楚,对于卡尔丹将40表示成的乘积认为只不过是一种纯形式的表示而已,莫名其妙;再者用这类新数的运算法则计算又会得到一些矛盾,因而长期以来,人们把复数看作是不能接受的“虚数”.直到十七世纪和十八世纪,随着微积分的发明与发展,以及这个时期复数有了几何的解释,“虚数”才被揭去缥缈的面纱,渐露端倪.1637年,法国数学家笛卡尔正式开始使用“实数”、“虚数”这两个名词;同一时期,德国数学家莱布尼茨、瑞士数学家欧拉和法国数学家棣莫弗等研究了虚数与对数函数、三角函数之间的关系,除了解方程外,还把它用于微积分等方面进行应用研究,得到很多有价值的结果.1777年,欧拉系统地建立了复数理论,创立了复变函数论的一些基本定理,并开始把它们用到水力学和地图制图学上;欧拉首先用符号“i”作为虚数的单位,并定义1797年,挪威数学家维赛尔在平面内引进数轴,以实轴与虚轴所确定的平面向量表示虚数,不同的向量对应不同的点,他还用几何术语定义了虚数与向量的运算,揭示了虚数及其运算所具有的几何意义. 十八世纪末十九世纪初,著名的德国数学家高斯在证明代数基本定理“任何一元n次方程在复数集内有且仅有n个根”时,就应用并论述了卡尔丹所设想的新数,并首次引进了“复数”这个名词,把复数与平面内的点一一对应起来,创立了复平面,依赖于平面内的点或有向线段(向量)建立了复数的几何基础.这样历经300年的努力,数系从实数系到复数系的扩张才基本完成,复数才被人们广泛承认和使用. 复数在数学中起着重要的作用,除了上述的代数基本定理外,还有“实系数的一元n次方程虚根成对出现”定理等,特别是以复数为变量的“复变函数论”,是数学中一个重要分支.十九世纪,复变函数论经过法国数学家柯西、德国数学家黎曼和维尔斯特拉斯的巨大努力,已经形成了非常系统的理论,并且深刻地渗入到代数学、解析数论、微分方程,概率统计、计算数学和拓扑学等数学分支.同时,它在电学、热力学、 弹性理论和天体力学等方面都得到了实际应用. 虚数不虚 在学习开方时,总是要再三强调,被开方数一定要是非负数,被开方数为负数时,开方没有意义,众所周知,人们对事物的认识总是螺旋式上升的。现在,我们知道对负数进行开方可以用来表示一个虚数。 在很久以前,大多数学家都认为负数没有平方根。到1545年,意大利数学家卡尔丹在所著《重要的艺术》的第37章中列出并解出把10分成两部分,使其乘积为40的问题,方程是x(10-x)=40,他求得根为,然后说,"不管会受到多大的良心责备",把相乘,得乘积为25-(-15)或即40,卡尔丹在解三次方程时,又一次运用了负数的平方根。卡尔丹肯定了负数的平方根的用处,但当时,人们对它的认识也仅止于此。 "实数"、"虚数"这两个词是由法国数学家笛卡尔在1637年率先提出来的。而用i=表示虚数的单位是18世纪著名数学家欧拉的功绩。后来的人在这两个成果的基础上,把实数和虚数结合起来,记成a+b

复数的扩充与复数的概念

3.1.1复数的扩充与复数的概念 【教学目标】 1、在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 2、了解数学内部解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的分类表; 3、理解复数的有关概念以及符号表示; 4、掌握复数的代数表示形式及其有关概念。 【教学重点】引进虚数单位i 的必要性、对i 的规定以及复数的有关概念。 【教学难点】复数概念的理解。 【教学过程】 1、对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简明扼要的概括和总结): 自然数 整数 有理数 无理数 实数 2、提出问题: 我们知道,对于实系数一元二次方程012=+x ,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢? 3、组织讨论,研究问题: 我们说,实系数一元二次方程012=+x 没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢? 组织学生讨论,引导学生研究,最后得出结论:最根本的问题就是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1。 4、引入新数i ,并给出它的两条性质: 根据前面讨论的结果,我们引入一个新数i ,i 叫做虚数单位,并规定: (1)12-=i ; (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立. 有了前面的讨论,引入新数i ,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是i ±). 5、提出复数的概念 根据虚数单位i 的第(2)条性质,i 可以与实数b 相乘,再与实数a 相加.由于满足乘法交换律及加法交换律,从而可以把结果写成bi a +这样,数的范围又

模糊神经网络的预测算法在嘉陵江水质评测中的应用

题目:模糊神经网络的预测算法在嘉陵江水质评测中的应用 院(系):物联网工程学院 专业: 计算机科学与技术 班级:计科0802 姓名:刘伟 学号: 0304080230 设计时间: 10-11 学年 2 学期 2011年5月

一、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 二、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j 分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 三、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模糊化得到模糊隶属度值μ。模糊规则计算层采用模糊连乘公式计算得到ω。输出层采用公式计算模糊神经网络的输出。 四、嘉陵江水质评测 水质评测是根据水质评测标准和采样水样本各项指标值,通过一定的数学模型计算确定采样水样本的水质等级。水质评测的目的是能够准确判断出采样水样本的污染等级,为污染防治和水源保护提供依据。 水体水质的分析主要包括氨氮、溶解氧、化学需氧量、高锰酸盐指数、总磷和总氮六项

第8章 模糊神经网络方法

第八章 模糊神经网络算法 火灾火情决策是一个复杂的过程,它包括接收输入信号,与已知信息和经验进行比较,对输入信号作出判决,并给出正常、火警或故障信号。通常火灾自动报警系统的决策系统是很简单,它根据单个传感器送来信息作出是否发生火灾的判决。例如,当感烟探测器探测到的粒子数达到预定阈值,就发出火警信号。这些粒子可能是烟雾粒子,也可能是水雾或灰尘等非火灾产生的粒子,普通感烟探测器无法区分烟雾粒子,还是水雾和灰尘粒子,这就导致误报的发生。 经过长期的研究发现,火灾的发生具有双重性,既有它的随机性一面,又有它的确定性一面。人们并不能确切的知道何时发生火灾,但是当具备了发生火灾的条件,就会发生火灾,出现表征火灾的火灾参量。如果同时测量这些火灾参量,对信号进行综合分析处理,那么,火灾的误报率便大大降低。然而火灾的复杂性还在于相同的材料在不同的环境下,具有不同的着火温度,相同的环境不同的材料,着火条件也不一样,人类的活动以及环境的变化事先也无法确定,所以实际的火灾参量是随着空间和时间的变化而变化,很难用建立一种或几种数学模型进行精确描述。因此,火灾探测信号检测是一种十分困难的信号检测,它要求信号处理算法能够适应各种环境条件的变化,自动调整参数以达到既能快速探测火灾,又有很低的误报率。 而神经网络与模糊系统都属于一种数值化的和非数学模型的函数估计和动力学系统。它们都能以一种不精确的方式处理不精确的信息。因而它在火灾探测领域具有美好的应用前景。 第一节 模糊逻辑与模糊计算 一、模糊集合及其运算规则 (一) 模糊集合与隶属度 人们往往把讨论的议题限制在某个相关的范围内,例如讨论火灾问题,不会去谈论如何打乒乓球,讨论的范围称为“论域”。用大写字母U 、V 、X 、Y 表示。论域中的每个对象称为“元素”,用小写字母u 、v 、x 、y 表示。具有某些特定属性的元素的全体称为U 上的一个“集合”,常用大写字母A 、B……表示。 普通集合概念是论域中的任一元素,要么属于某个集合,要么不属于该集合,不允许有含混不清的说法,例如乒乓开关不是接通,就是断开。但是在现实生活中,却充满了模糊事物和模糊概念,例如“瘦子”集合,“少年”集合,“温度低”集合等等,其边界都是不明确的。将这类边界不明确的集合称为模糊集合,这里用A 表示一个模糊集合。 给定论域U 上的一个模糊集合A ,是指对于任意x U ∈都确定一个数A (x)μ , 0≤ A (x)μ ≤1,它表示x 对~ A 的隶属程度。 A A=((x)|x) , x U μ?∈ A (x )[0,1] μ∈

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

模糊神经网络综述

1.模糊神经网络的提出 模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR),以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作。从这个意义上讲,各种方法是互补的,而不是竞争的。在协作体中,各种方法起着不同的作用。通过这种协作,产生了混合智能系统。模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合,取长补短,形成一种协作体—模糊神经网络。 2.模糊神经网络的研究进展 模糊神经网络的发展经历了一个漫长的过程。MacCulloch-Pitta模型便是早期将模糊集应用到神经网络中的一例。此后,人们对模糊神经网络研究得很少。直到1990年Takagi才综述性地讨论了神经网络与模糊逻辑的结合。Kosko(1992)出版了该领域的第一本专著《Neural Network and Fuzzy Systems》,并在这本专著中提出了模糊联想记忆、模糊认知图等重要概念,促进了模糊神经网络的研究向着多元化深入发展。 (1)引入模糊运算的神经网络———狭义模糊神经网络 狭义模糊神经网络通过调整参数进行学习。其学习算法可以采用通用学习算法,也可以通过对原有神经网络的学习算法进行拓展得到。反向传播学习算法、随机搜索法、遗传算法等是几种与具体神经网络结构无关的通用学习算法。(2)用模糊逻辑增强网络功能的神经网络 这类模糊神经网络不是对神经网络与模糊逻辑直接进行融合,而是通过模糊逻辑改进神经网络的学习算法。首先通过分析网络性能得到启发式知识,然后再将启发式知识用于调整学习参数,从而加快了学习收敛速度。 (3)基于神经网络的模糊系统—神经模糊系统 于神经网络的模糊系统,也被称为神经模糊系统(NFS,Neural-Fuzzy Systems),是利用神经网络学习算法的模糊系统。这类模糊神经网络按照模糊逻辑的运算步骤分层构造,不改变模糊系统的基本功能(如模糊化、模糊推理和解模糊化)。 3.糊神经网络的应用 在基于模糊神经网络的控制器方面,Berenji和Khedker(1992)采用增强式学习方法提出了GARIC控制器结构,该系统通过三个神经网络完成了控制的功能:ASN进行普通模糊控制,AEN评价控制效果,SAM随机综合ASN和AEN的过程,然后产生控制信号;Lin和Lee(1994)提出了一种自动构造模糊系统的方法,该方

复数的基本概念与基本运算

复数的基本概念与基本运算 一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;?(2)理顺复数的三种表示形式及相互转换:z = r(cosθ+isinθ) , OZ(Z(a,b)) , z=a+bi (3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;复(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三

角数实数集集形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根纯虚数集ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。四、本章知识结构与复习要点1.知识体系表解 1 1/16页2.复数的有关概念和性质:(1)i称为虚数单位,规定2i,,1,形如a+bi的数称为复数,其中a,b?R.(2)复数的分类(下面的a,b均为实数) (3)复数的相等设复数,那么的充要zz,zabizabiababR,,,,,,(,,,)121112221122条件是:.abab,,且1122 (4)复数的几何表示复数z=a+bi(a,b?R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的. 2 2/16页复数 z=a+bi.在复平面内还可以用以原点O为起点,以点Z(a,b) abR,,,,向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处?任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.?实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:?**n4k,rrkNrN,,,nN,ii,i怎样计算?(先求n被4除所得的余数,),,,,1313?,,,,i、,,,,i

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

复数问题的题型与方法

复数问题的题型与方法 复数一节的题型主要是讨论复数的概念,复数相等,复数的几何表示,计算复数模,共轭复数,解复数方程等. 一、数学规律: 1.共轭复数规律, 2.复数的代数运算规律i4n 1=i,i4n 2= 1,i4n 3= i; 1)i 4n=1 n n 1 n 2 n 3 n n 1 n 2 n 3 (3)i · i · i ·i = 1,i +i +i +i =0; ; 3.辐角的运算规律 (1)Arg(z1·z2)=Argz1+Argz 2 3)Argzn=nArgz (n∈N) ?,n 1。 或z∈R 。 要条件是|z|=|a|。

(6)z 1·z 2 ≠0,则 4.根的规律 复系数一元 n 次方程有且只有 n 个根,实系数一元 n 次方程的虚根成对共轭出现。 5.求最值 时,除了代数、三角的常规方法外,还需注意几何法及不等式 ||z 1| |z 2 ||≤|z 1± z 2 |≤ |z 1 |+|z 2 |的运用。 即|z 1±z 2 |≤ |z 1 |+|z 2 |等号成立的条件是: z 1 , z 2所对应的向量共线且同向。 |z 1±z 2 |≥|z 1| |z 2 |等号成立的条件是: z 1,z 2 所对立的向量共线且异向。 二、 主要的思想方法和典型例题分析: 1.化归思想 复数的代数、几何、向量及三角表示,把复数与实数、三角、平面几何和解析几何有 机地联系在一起,这就保证了可将复数问题化归为实数、三角、几何问题。反之亦然。这 种化归的思想方法应贯穿复数的始终。 分析】这是解答题,由于出现了复数 z 和 z ,宜统一形式,正面求解。 解】解法一 设 z =x +yi ( x , y ∈R ),原方程即为 x 2 y 2 3y 3xi 1 3i 用复数相等的定义得: ∴ z 1= 1, z 2 = 1+3i.

相关文档
最新文档