2017_2018学年高中数学5.1对数函数的概念5.2对数函数y=log2x的图像和性质学案北师大版必修1

2017_2018学年高中数学5.1对数函数的概念5.2对数函数y=log2x的图像和性质学案北师大版必修1
2017_2018学年高中数学5.1对数函数的概念5.2对数函数y=log2x的图像和性质学案北师大版必修1

5.1 对数函数的概念 5.2 对数函数y=log2x的图像和性质

学习目标 1.理解对数函数的概念.2.掌握对数函数的性质.3.了解对数函数在生产实际中的简单应用.

知识点一对数函数的概念

思考已知函数y=2x,那么反过来,x是否为关于y的函数?

梳理一般地,我们把_______________________________________________________

叫作对数函数,其中x是自变量,函数的定义域是____________.a叫作对数函数的底数.特别地,称以10为底的对数函数y=lg x为常用对数函数;称以无理数e为底的对数函数y=ln x为自然对数函数.

知识点二对数函数的图像与性质

思考y=log a x化为指数式是x=a y,你能用指数函数单调性推导出对数函数单调性吗?

梳理类似地,我们可以借助指数函数图像和性质得到对数函数图像和性质:

类型一 对数函数的概念

例1 已知对数函数y =f (x )过点(4,2),求f ? ??

??12及f (2lg 2).

反思与感悟 对数函数必须是形如y =log a x (a >0,且a ≠1)的形式,即必须满足以下条件:

(1)系数为1.

(2)底数为大于0且不等于1的常数.

(3)对数的真数仅有自变量x .

跟踪训练1 判断下列函数是不是对数函数?并说明理由.

(1)y =log a x 2

(a >0,且a ≠1);

(2)y =log 2x -1;

(3)y =log x a (x >0,且x ≠1);

(4)y =log 5x .

类型二对数函数的定义域的应用

例2 求下列函数的定义域.

(1)y=log a(3-x)+log a(3+x);

(2)y=log2(16-4x).

引申探究

1.若把例2(1)中的函数改为y=log a(x-3)+log a(x+3),求定义域.

2.求函数y=log a[(x+3)(x-3)]的定义域,相比引申探究1,定义域有何变化?

反思与感悟求含对数式的函数定义域的关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数底数的取值范围是否改变.

跟踪训练2 求下列函数的定义域.

(1)y=

x2-4

lg x+3

(2)y=log(x+1)(16-4x);

(3)y=log(3x-1)(2x+3).

类型三对数函数单调性的应用

命题角度1 比较同底对数值的大小

例3 比较下列各组数中两个值的大小.

(1)log23.4,log28.5;

(2)log0.31.8,log0.32.7;

(3)log a5.1,log a5.9(a>0,且a≠1).

反思与感悟比较两个同底数的对数大小,首先要根据对数底数来判断对数函数的增减性;

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高中数学函数概念

函数 1、 函数的概念 定义:一般地,给定非空数集A,B,按照某个对应法则f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数。记作:x→y=f(x),x ∈A.集合A 叫做函数的定义域,记为D,集合{y ∣y=f(x),x ∈A}叫做值域,记为C 。定义域,值域,对应法则称为函数的三要素。一般书写为y=f(x),x ∈D.若省略定义域,则指使函数有意义的一切实数所组成的集合。 两个函数相同只需两个要素:定义域和对应法则。 已学函数的定义域和值域 一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 二次函数 c bx ax x f ++=2 )() 0(≠a :定义域R ,值域:当 2、 函数图象 定义:对于一个函数y=f(x),如果把其中的自变量x 视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y 视为此点的纵坐标,那么,这个函数y=f(x),无论x 取何值,都同时确定了一个点,由于x 的取值范围是无穷大,同样y 也有无穷个,表示的点也就有无穷个。这些点在平面上组成的图形就是此函数的图象,简称图象。 常数函数f(x)=1 一次函数f(x)=-3x+1 二次函数f(x)=2x 2+3x+1 反比例函数f(x)=1/x 3、定义域的求法 已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。一般有以下几种情况: 分式中的分母不为零; 偶次根式下的数或式大于等于零; 实际问题中的函数,其定义域由自变量的实际意义确定; 定义域一般用集合或区间表示。 4、值域的求法 ①观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 ②反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 练习:求函数y=(10x+10-x)/(10x -10-x)的值域。 ③配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x 2+x+2)的值域。 练习:求函数y=2x -5+√15-4x 的值域. ④判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 ⑤图象法 通过观察函数的图象,运用数形结合的方法得到函数的值域。 例4求函数y=∣x+1∣+√(x-2) 2的值域。 ⑥换元法 以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。 例5求函数y=x-3+√2x+1 的值域。 练习:求函数y=√x-1 –x 的值域。 ⑦不等式法 例6求函数y=(2x-1)/(x+1) (1≤x ≤2) 的值域。 5、复合函数 设y=f(u ),u=g(x ),当x 在u=g(x )的定义域Dg 中变化时,u=g(x )的值在y=f(u )的定义域D f 内变化,因此变量x 与y 之间通过变量u 形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数,其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。 6、函数的表示方法:列表法,解析法,图像法 7、分段函数:对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集. 分段函数经常使用图像法 8、函数解析式的求法 ①代入法 例1已知f(x)=x 2-1,求f(x+x 2) ②待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。 例2已知f(x)是一次函数,f(f(x))=4x+3,求f(x) ③换元法 ④特殊值法 例4已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12 ()()(++=-+成立,且0)1(=f 。 (1)求 )0(f 的值;(2)求)(x f 的解析式。 ⑤方程组法 1、求下列函数的定义域: 2、求下列函数的值域 3 函数? ?? ??>+-≤<+≤+=1,51 0,30 ,32x x x x x x y 的最大值是 。 4已知:x x x f 2)1(2 += +,求)(x f 。 6已知()3()26,f x f x x --=+求()f x .

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

高中数学函数的定义域教案人教版必修一

第二章--------函数的定义域 函数的独立元素:解析式 定义域 值域 性质 一、由函数解析式求定义域 基础练习A: 1.求下列函数的定义域: (1)y=lg(4x+3) (2)y=1/lg(4x+3) (3)y=(5x-4)0 (4)y=x 2/lg(4x+3)+(5x-4)0 2.用长为L 的铁丝弯成下部的矩形,上部分为半圆的框架(如图),若矩形的底边长为2x ,求此框架围成面积y 与x 的函数,写出的定义域。 例1、求下列函数的定义域 变1:使解析式 无意义的x 的取值范围是 变2:已知y 是x 的函数t t t t t t y x -+----+=+=222244,22其中t ∈R ,求 y=f(x)的函数解析式及其定义域 x x y )2lg(1-=、02)45()34lg(2-++=x x x y 、)39lg(|2|713x x y -+--=、3)12(23log )(4-=-x x f x 、x x y cos lg 2552+-=、C B 3442log 22+-+--x x x x

二、由y=f(x)的定义域,求复合函数y=f(g(x))的定义域;或者反过 来。 例2、设函数f(x)的定义域为[-2,9),求下列函数的定义域: (1)f(x+2) (2)f(3x) (3)f(x2) (4)f(lgx+5) (5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,求x的范围。 变:已知函数f(x)的定义域为[-1,1),则F(x)=f(1―x)+f(1―x2)的定义域为__。 例3、(1) 函数f(3x-2)的定义域是[-2,1),则f(x)的定义域为 (2)函数f(x2)的定义域是[-1,1),则f(x)的定义域为 x)的定义域为 (3)函数f(x2)的定义域是[-1,1],则f(log 2 ______ 例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义域为 实质:由中间变量u=g(x)的值域求f(x)的定义域

高中数学-函数的概念及表示练习

高中数学-函数的概念及表示练习 【考情分析】 高考在本考点的常考题型为选择和填空,分值5分,中高等难度 【考纲研读】 1.了解构成函数的要素,了解映射的概念 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数 3.了解简单的分段函数,并能简单应用 一、选择题 1.(·全国卷Ⅱ)设函数f (x )=??? 1+log 2(2-x ),x <1,2x -1,x ≥1, 则f (-2)+f (log 212)=( ) A .3 B .6 C .9 D .12 2.(·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin2x )=sin x B .f (sin2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1| 3.(山东)设f (x )={√x ,0

高中数学必修系列函数基础知识

高中数学必修系列函数基础知识 初等函数的性质定义判定方法函数的奇偶性 函如果对一函数f(x)定义域内任意一个x,都有 f(-x)=-f(x),那么函数f(x)叫做奇函数; 函如果对一函数f(x)定义域内任意一个x,都有 f(-x)=f(x),那么函数f(x)叫做偶函数 (1)利用定义直接判断; (2)利用等价变形判断: f(x)是奇函数f(-x)+f(x)=0?f(x)是 数f(-x)-f(x)=0 函数的单调性 对于给定的区间上的函数f(x): (1)如果对于属于这个去件的任意两个自变的值 x1、x2,当x1

二次函数 y=ax2+bx+c(a、 b、c为常数,其中a ≠0) R a>0时,?[- ,+∞) a<0时,?(- ∞,] b=0时为偶函数 b≠0时为非奇非 偶函数 a>0时,?在(-∞,-]上是减函数 在(-,+∞]上是增函数 a<0时, 在(-∞,-]上是增函数 在(-,+∞]上是减函数角 一条射线绕着它的端点旋转所产生的图形叫做角。旋转开始时的射线叫角的始边,旋转终止时的射线叫 角的终边,射线的端点叫做角的顶点。 角的单 位制 关系弧长公式扇形面积公式 角度制10=弧度≈0.01745 弧度 l=S 扇形= 弧度制1弧度=≈57018'l=∣α∣·r S 扇形=∣α∣·r 2=lr 角的终 边 位置角的集合 在x轴正半轴上{α∣α=2kπ,k Z} 在x轴负半轴上{α∣α=2kπ+π,kZ} 在x轴上{α∣α=kπ,k Z} 在y轴上{α∣α=kπ+,k Z} 在第一象限内{α∣2kπ<α<2kπ+,kZ} 在第二象限内{α∣2kπ+<α<2kπ+π,k Z} 在第三象限内 {α∣2kπ+π<α<2kπ+,kZ} 在第四象限内 {α∣2kπ+<α<2kπ+2π,kZ} 特殊角 的三角 函数值 函数/角0 π2π sina 0 1 0 -1 0 cosa 10 -10 1

高一数学知识点总结:函数的定义域

高一数学知识点总结:函数的定义域 导语:高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。以下是为大家精心的高一数学知识点总结:函数的定义域,欢迎大家参考! 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 “范围”与“值域”相同吗? “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

高中数学必修一函数的概念及其表示

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设 A 、B 是非空的数集,如果按照某种确定的关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 f (x )和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数。 例 1. 下列从集合 A 到集合 B 的对应关系中,能确定 y 是 x 的函数的是( ) x ① A={x x ∈Z},B={y y ∈ Z} ,对应法则 f :x →y= ; 3 ② A={x x>0,x ∈R}, B={y y ∈ R} ,对应法则 f :x → y 2 =3x; A=R,B=R, 对应法则 f :x →y= x 2; A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例 2. 下列哪个函数与 y=x 相同( ) 变式 1. 列图像中,是函数图像的是( ② 变式 2. 已知函数 y=f ( x ),则对于直线 x=a (a 为常数) A. y=f ( x )图像与直线 x=a 必有一个交点 C.y=f ( x )图像与直线 x=a 最少有一个交点 变式 4. 对于函数 y =f (x ) ,以下说法正确的有? ( ①y 是 x 的函数 ②对于不同的 x ,y 的值也不同 ③f (a ) 表示当 x = a 时函数 f (x ) 的值,是一个常量 A .1 个 B .2 个 C .3 个 D 变式 5.设集合 M ={x|0 ≤x ≤ 2} ,N = {y|0 ≤y ≤2},那么下面的 4 个图形中,能表示集合 M 到集合 N 的函 ,以下说法正确的是( B.y=f ( x )图像与直线 x=a 没有交点 D.y=f ( x )图像与直线 x=a 最多有一个交点 ④ f (x ) 一定可以用一个具体的式子表示出来 . 4 个 y 2x 1,x ∈ Z 与 y 2x 1, x ∈Z

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

高中数学函数定义域值域求法总结

函数定义域、值域求法总结 一。求函数得定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式得被开方数非负。 (3)对数中得真数部分大于0。 (4)指数、对数得底数大于0,且不等于1 (5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。 ( 6 )中x 二、值域就是函数y=f(x)中y得取值范围。 常用得求值域得方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学得始终。 定义域得求法 1、直接定义域问题 例1 求下列函数得定义域: ①;②;③ 解:①∵x—2=0,即x=2时,分式无意义, 而时,分式有意义,∴这个函数得定义域就是、 ②∵3x+2〈0,即x<-时,根式无意义, 而,即时,根式才有意义, ∴这个函数得定义域就是{|}. ③∵当,即且时,根式与分式同时有意义, ∴这个函数得定义域就是{|且} 另解:要使函数有意义,必须: 例2 求下列函数得定义域: ①② ③④ ⑤ 解:①要使函数有意义,必须: 即: ∴函数得定义域为: []

②要使函数有意义,必须: ∴定义域为:{ x|} ③要使函数有意义,必须: ? ∴函数得定义域为: ④要使函数有意义,必须: ∴定义域为: ⑤要使函数有意义,必须: 即 x< 或 x〉∴定义域为: 2定义域得逆向问题 例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题) 解:∵定义域就是R,∴ ∴ 练习: 定义域就是一切实数,则m得取值范围; 3复合函数定义域得求法 例4 若函数得定义域为[-1,1],求函数得定义域 解:要使函数有意义,必须: ∴函数得定义域为: 例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。 分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。 (注意:f(x)中得x与f(2x-1)中得x不就是同一个x,即它们意义不同。) 解:∵f(x)得定义域为[—1,1], ∴—1≤2x-1≤1,解之0≤x≤1, ∴f(2x-1)得定义域为[0,1]。 例6已知已知f(x)得定义域为[-1,1],求f(x2)得定义域。 答案:—1≤x2≤1 x2≤1-1≤x≤1 练习:设得定义域就是[-3,],求函数得定义域 解:要使函数有意义,必须: 得: ∵≥0 ∴ ∴函数得定域义为: 例7 已知f(2x-1)得定义域为[0,1],求f(x)得定义域 因为2x-1就是R上得单调递增函数,因此由2x-1, x∈[0,1]求得得值域[-1,1]就是f(x)得定义域、 练习: 1已知f(3x-1)得定义域为[—1,2),求f(2x+1)得定义域。) (提示:定义域就是自变量x得取值范围) 2已知f(x2)得定义域为[-1,1],求f(x)得定义域

高一数学必修一函数及其表示-函数的概念

1.2函数及其表示 §1.2.1函数的概念 【教学目的】 1、使学生理解函数的概念,明确决定函数的定义域、值域和对应法则三个要素; 2、理解函数符号的含义,能根据函数表达式求出定义域、值域; 3、使学生能够正确使用“区间”、“无穷大”的记号; 4、使学生明白静与动的辩证关系,激发学生学习数学的兴趣和积极性。 【教学重点】 在对应的基础上理解函数的概念 【教学难点】 函数概念的理解 【教学过程】 一、复习引入 〖提问〗初中学习的(传统)的函数的定义是什么?初中学过哪些函数? 〖回答〗设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数,并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域,这种用变量叙述的函数定义我们称之为函 数的传统定义。 〖讲述〗初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。 〖提问〗问题1:y =1(x ∈R )是函数吗? 问题2:y =x 与y = x x 2 是同一函数吗? 〖投影〗观察对应: 〖分析〗观察分析集合A 与B 之间的元素有什么对应关系? 二、讲授新课 函数的概念 (一)函数与映射 〖投影〗函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个

数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,x ∈A 。其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。 函数符号y =)(x f 表示“y 是x 的函数”,有时简记作函数)(x f 。 函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A} 注:只有当这三要素完全相同时,两个函数才能称为同一函数。 映射:设,A B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射. 如果集合A 中的元素x 对应集合B 中元素y ,那么集合A 中的元素x 叫集合B 中元素y 的原象,集合B 中元素y 叫合A 中的元素x 的象. 映射概念的理解 (1)映射B A f →:包含三个要素:原像集合A ,像集合B(或B 的子集)以及从集合A 到集合B 的对应法则f .两个集合A,B 可以是数集,也可以是点集或其他集合.对应法则f 可用文字表述,也可以用符号表示.映射是一种特殊的对应关系,它具有: (1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的; (2)任意性:集合A 中的任意一个元素都有像,但不要求B 中的每一个元素都有原像; (3)唯一性:集合A 中元素的像是唯一的,即不允许“一对多”,但可以“多对一”. 函数与映射的关系 函数是一种特殊的映射.映射与函数概念间的关系可由下表给出. 映射B A f →: 函数B y A x x f y ∈∈=,),( 集合A,B 可为任何集合,其元素可以是物,人,数等 函数的定义域和值域均为非空的数集 对于集合A 中任一元素a ,在集合B 中都有唯一确定的像 对函数的定义域中每一个x ,值域中都有唯一确定的值与之对应 对集合B 中任一元素b ,在集合A 中不一定有原像 对值域中每一个函数值,在定义域中都有确定的自变量的值与之对应 函数是特殊的映射,映射是函数的推广. 〖注意〗(1)函数实际上就是集合A 到集合B 的一个特殊对应f :A →B 。这里A ,B 为非空的数集。 (2)A :定义域,原象的集合;{)(x f |x ∈A}:值域,象的集合,其中{)(x f |x ∈A}?B ;f :对应法则,x ∈A ,y ∈B (3)函数符号:y =)(x f ,y 是x 的函数,简记) (x f 〖回顾〗(二)已学函数的定义域和值域: 1、一次函数)(x f =ax +b (a ≠0):定义域R ,值域R 2、反比例函数)(x f = x k (k ≠0):定义域{x |x ≠0},值域{y | y ≠0} 3、二次函数)(x f =ax 2 +bx +c (a ≠0):定义域R ,值域:当a >0时,{y |y ≥a b a c 442 -};

高中数学人教版必修函数的概念作业(系列一)

1.2.1 函数的概念 时间:45分钟 分值:100分 一、选择题(每小题6分,共计36分) 1.下列四个方程中表示y 是x 的函数的是( ) ①x -2y =6 ②x 2+y =1 ③x +y 2=1 ④x =y A .①② B .①④ C .③④ D .①②④ 解析:对于①,得y =1 2x -3,y 是x 的一次函数; 对于②,得y =1-x 2,y 是x 的二次函数; 对于③,得y 2=1-x ,当x =-3时,y 1=2,y 2=-2,y 不是x 的函数; 对于④,得y =x 2(x ≥0),y 是x 的二次函数. 答案:D 2.下列四组式子中,f (x )与g (x )表示同一函数的是( ) A .f (x )=4x 4,g (x )=(4x )4 B .f (x )=x ,g (x )=3 x 3 C .f (x )=x ,g (x )=(x )2 D .f (x )=x 2-4 x +2 ,g (x )=x -2 解析:A 、C 、D 定义域不同,B 定义域、对应关系、值域都相同. 答案:B 3.函数y =4-x 2 x -1的定义域为( ) A .[-2,2] B .[-2,2) C .[-2,1)∪(1,2] D .(-2,1)∪(1,2) 解析:解不等式组??? 4-x 2≥0, x -1≠0, 解得[-2,1)∪(1,2]. 答案:C 4.若g (x )=1-2x, f (g (x ))=1-x 2x 2,则f (1 2)的值为( ) A .1 B .15

C .4 D .30 解析:方法一:由f [g (x )]=1-x 2x 2,得f (1-2x )=1 x 2-1. 设1-2x =t ,则x =1-t 2, ∴f (t )=41-t 2-1. ∴f (12 )= 41-12 2-1=15. 方法二:令g (x )=1-2x =1 2, ∴x =14.∴f (1 2)=1-1161 16=15. 答案:B 5.函数f (x )的定义域是[0,3],则f (2x -1)的定义域是( ) A .[1 2,2] B .[0,3] C .[-1,5] D .(1 2 ,2) 解析:由f (x )定义域为[0,3]知,0≤2x -1≤3,即1 2≤x ≤2. 答案:A 6.已知集合A ={x |x ≥4},g (x )=1 1-x +a 的定义域为B ,若A ∩B =?,则实数a 的取值 范围是( ) A .(-2,4) B .(3,+∞) C .(-∞,3) D .(-∞,3] 解析:g (x )的定义域B ={x |x

高中高一数学函数的定义域知识点

2019高中高一数学函数的定义域知识点 数学的学习贯穿了我们的整个学习阶段,是我们必须掌握的知识,为了帮助大家学好数学,小编准备了高一数学函数的定义域知识点,希望你喜欢。 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A 叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区 定义域、对应法则、值域是函数构造的三个基本元件。平时数学中,实行定义域优先的原则,无可置疑。然而事物均具有二重性,在强化

定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手硬一手软,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。范围与值域相同吗? 范围与值域是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。值域是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而范围则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:值域是一个范围,而范围却不一定是值域。 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初

相关文档
最新文档